Wolfram Schmidt

8. Mai 2016



## Überblick

### Eigenschaften von Galaxien

- Galaxientypen
- Elliptische Galaxien
- Spiralgalaxien

### 2 Spiralgalaxien

- Das interstellare Medium
- Sternentstehung



Eigenschaften von Galaxien

Galaxientypen

### **Die Hubble-Sequenz**



commons.wikimedia.org



#### Galaxientypen

#### The Spitzer Infrared Nearby Galaxies Survey (SINGS) Hubble Tuning-Fork



Eigenschaften von Galaxien

Galaxientypen



# HST-Aufnahme von NGC 1132 (hubblesite.org)

Eigenschaften von Galaxien

#### Galaxientypen



# HST-Aufnahme von NGC 5866 (hubblesite.org)

э

Galaxientypen

#### Sombrero Galaxy • MI04



Hubble Heritage

NASA and The Hubble Heritage Team (STScI/AURA) • Hubble Space Telescope ACS • STScI-PRC03-28

Galaxientypen

#### Spiral Galaxy NGC 3370



NASA, The Hubble Heritage Team and A. Riess (STScI) • Hubble Space Telescope ACS • STScI-PRC03-24

Galaxientypen

#### Barred Spiral Galaxy NGC 1300



Hubble Heritage

NASA, ESA, and The Hubble Heritage Team (STScI/AURA) • Hubble Space Telescope ACS • STScI-PRC05-01

Galaxientypen

## Die Klassifikation nach Hubble

### Elliptische Galaxien

- bestehen überwiegend aus alten Sternen (rötliche Farbe) und enthalten kaum interstellares Gas (keine Sternentstehung)
- werden nicht durch Rotation stabilisiert sondern durch unabhängige, chaotische Eigenbewegungen der Sterne
- gehen wahrscheinlich aus Verschmelzungs- und Wechselwirkungsprozessen mit anderen Galaxien hervor

### Spiralgalaxien

- bestehen aus einer gasreichen, dünnen Scheibe und einem sphäroidischen Kern
- der Kern ähnelt einer elliptischen Galaxie und zeigt keine Sternentstehung (hauptsächlich massearme, rötliche Sterne)
- die vom Kern ausgehenden Spiralarme zeigen starke Sternentstehungsaktivität (viele massereiche, bläulicher Sterne)

### Balkenspiralgalaxien

 die Spiralarme gehen nicht vom Zentrum, sondern von einem mehr oder weniger ausgeprägten Balken aus

#### Galaxien Eigenschaften von Galaxien Elliptische Galaxien

## Klassifizierung von elliptischen Galaxien

- **cD-Galaxien**: sind extrem massereich  $(M \sim 10^{13} 10^{14} M_{\odot})$ ; enthalten besonders viel dunkle Materie  $(M/L \text{ bis zu } 750 M_{\odot}/L_{\odot})$ und befinden sich meist im Zentrum eines Galaxienhaufens;  $-22 \leq M_{\rm B} \leq -25$ ; besitzen einen hellen, ellipsenförmigen Kern und einen diffusen Halo aus Sternen
- Normale elliptische Galaxien:  $M \sim 10^8 10^{13} M_{\odot}$ ;  $M/L \sim (10 - 100) M_{\odot}/L_{\odot}$ ;  $-15 \leq M_{\rm B} \leq -23$ ; Durchmesser zwischen 1 und 200 kpc; dazu gehören Riesenellipsen (gE) und kompakte Ellipsen (cE)
- Zwergellipsen (dE): viel niedrigere Oberflächenhelligkeit als eine cE mit der gleichen absoluten Helligkeit;  $M \sim 10^7 - 10^9 M_{\odot}$ ;  $-13 \le M_{\rm B} \le -19$
- Blaue kompakte Zwerggalaxien (BCD): enthalten eine große Anzahl von jungen, massereichen Sternen und erscheinen daher ungewöhnlich blau ( $0.0 \le B - V \le 0.3$ );  $M \sim 10^9 M_{\odot}$

・ロット (雪) (日) (日)

Elliptische Galaxien

### Faber-Jackson-Beziehung

Für die Leuchtkraft *L* und die zentrale Geschwindigkeitsdispersion  $\sigma$  in normalen elliptischen Galaxien und Zwerggalaxien sowie im sphäroidischen Kern von Spiralgalaxien gilt:

 $L\propto\sigma^4$ 

- Wurde von *Robert Earl Jackson* und *Sandra M. Faber* 1976 entdeckt
- Folgt aus aus  $\sigma^2 = GM/(5R)$  unter der Annahme, dass
  - $L \propto M$  (konstantes Masse-Leuchtkraft-Verhältnis)  $\Rightarrow R \propto L/\sigma^2$
  - $L \propto R^2$  (konstante Oberflächenleuchtkraft)
- Die beobachtete Faber-Jackson-Beziehung lautet:

$$\log_{10} \sigma \,[\text{km/s}] = -0.1 M_{\text{B}} + \text{konst.}$$

wobei M<sub>B</sub> die absolute Helligkeit im B-Band ist

(2)

(1)

Elliptische Galaxien



I. Chilingarian et al., Discovery of a new M 32-like "Compact Elliptical" galaxy in the halo of the Abell 496n cD galaxy, Astron. & Astrophys. 466, L21 (2007)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Eigenschaften von Galaxien

Spiralgalaxien

## Rotationskurven von Spiralgalaxien



Rotationskurve der Galaxie M33 (commons.wikimedia.org)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Eigenschaften von Galaxien Spiralgalaxien

- Um 1970 bestimmte *Vera Rubin* die Geschwindigkeitsprofile von Sternen in Spiralgalaxien mittels spektrographischer Messungen
- Sie stellte fest, dass die Rotationsgeschwindigkeit der Sterne in der Scheibe nahezu konstant ist, was eine lineare Zunahme der Masse mit dem Radius impliziert:



commons.wikimedia.org

$$V^2 = rac{GM_r}{r} \quad \Rightarrow \quad rac{\mathrm{d}M_r}{\mathrm{d}r} = rac{V^2}{G} \quad \Rightarrow \quad 
ho(r) \propto r^{-2}$$

### Navarro-Frenk-White-Profil

Das radiale Dichteprofil von Halos aus kalter dunkler Materie in N-Körper-Simulationen ist näherungsweise gegeben durch

$$\rho_{\rm NFW}(r) = rac{
ho_0}{(r/r_{\rm s})(1+r/r_{\rm s})^2}$$

200

(3)

Spiralgalaxien

### **Tully-Fisher-Beziehung**



V. Rubin et al., Rotation velocities of 16 SA galaxies and a comparison of Sa, Sb, and SC rotation properties, *Astrophys. J.* 289, 81 (1985)

< ∃→

Spiralgalaxien

### *Vera Rubin* (geb. 1928), US-amerikanische Astronomin

- Beobachtete Abweichungen der Galaxienbewegungen vom Hubble-Gesetz und argumentierte bereits 1954 in ihrer Doktorarbeit, dass Galaxien nicht gleichförmig verteilt sind, sondern in Haufen auftreten
- Zeigte in den 1970er Jahren durch ihre Messungen der Rotationskurven von Galaxien, dass diese nicht durch die Anziehungskraft der leuchtenden Materie erklärt werden können
- Ihre Forschungsergebnisse stießen anfangs auf erhebliche Skepsis
- Setzte sich besonders f
  ür Frauen in der Wissenschaft ein

SCIENCE IS COMPETITIN AGGRES DEMANDIN IS ALSC IMAGINATIVE. SPIRING. PLIFTING.

www.brainpickings.org



Das interstellare Medium

## Die Gasphasen des interstellaren Mediums

- Neben interstellarem Staub enthalten die Scheiben von Spiralgalaxien Gas, das auf verschiedene Phasen verteilt ist
- Neutrales Gas lässt sich vor allem über die 21-cm-Linie beobachten (Hyperfeinstrukturübergang von HI)
- Die kälteste und dichteste Phase besteht überwiegend aus H<sub>2</sub> (indirekte Beobachtung über die 2.6-mm-Linie des CO-Moleküls)



commons.wikimedia.org

| Komponente             | <i>T</i> [K]             | <i>n</i> [cm <sup>-3</sup> ] | Beobachtung      |
|------------------------|--------------------------|------------------------------|------------------|
| Molekülwolken          | 10 - 20                  | $10^2 - 10^6$                | 2.6-mm-Linie, IR |
| Kaltes neutrales Gas   | 50 - 100                 | 20 – 50                      | 21-cm Linie      |
| Warmes neutrales Gas   | 6000 - 10000             | 0.2 - 0.5                    | 21-cm Linie      |
| Warmes ionisiertes Gas | um 8000                  | 0.2 - 0.5                    | $H\alpha$        |
| Heißes ionisiertes Gas | $\sim 10^{6}$ – $10^{7}$ | $\sim 10^{-4} - 10^{-2}$     | UV und Röntgen   |

Das interstellare Medium



Verschiedene Gaskomponenten in M15, aus R. C. Kennicutt et al., Star Formation in NGC 5194 (M51a). II. The Spatially Resolved Star Formation Law, *Astrophys. J.* 671, 333 (2007)

Das interstellare Medium



Das interstellare Medium



HST-Aufnahme des Orionnebels (hubblesite.org)



Kombinierte Spitzer/HST-Aufnahme (hubblesite.org)





Sternentstehung

## Die Sternentstehungsrate

- Das kalte, dichte Gas in Molekülwolken kann kollabieren und Sterne bilden ( $M_{\rm J} \propto T^{3/2} \rho^{-1/2}$ )
- Die Zeitskala des Gravitationskollaps ist  $t_{\rm G} \propto (G\rho)^{-1/2}$  (Freifallzeitskala)
- Aus dieser Zeitskala ergibt sich die Sternentstehungsrate

$$\dot{
ho}_{\star} \sim rac{
ho}{t_{
m G}} \propto 
ho^{3/2}$$

- Oft wird statt der Volumendichte ρ die über die Dicke der Scheibe gemittelte Säulendichte Σ in Einheiten von M<sub>☉</sub> pc<sup>-2</sup> verwendet
- Wird außerdem eine effektive Zeitskala  $t_{\star} = t_{\rm G}/\epsilon$  mit dem Effizienzparameter  $\epsilon$  definiert, so lässt sich die Sternentstehungsrate schreiben als

$$\dot{\Sigma}_{\star} = \frac{\Sigma}{t_{\star}} = \epsilon \frac{\Sigma}{t_{\rm G}}$$



Sternentstehung

## Kennicutt-Schmidt-Gesetz

 Empirisch wurde f
ür normale Spiralgalaxien bei niedrigen Rotverschiebungen

 $\dot{\Sigma}_\star \propto \Sigma^lpha$ 

mit  $\alpha \approx$  1.4 festgestellt

- Aus der Proportionalitätskonstante folgt t<sub>\*</sub> ~ 10<sup>9</sup> a, was viel länger als t<sub>G</sub> ~ 10<sup>7</sup> a ist, d.h. ε beträgt nur etwa 1 %
- Ein wesentliches Problem ist also: Warum ist die Sternentstehung so ineffizient?



Lokale Sternentstehungsraten in M51, aus R. C. Kennicutt et al., *Astrophys. J.* 671, 333 (2007)

(日)



Spiralgalaxien

Sternentstehung

## Turbulenz in Molekülwolken

- Aus Beobachtungen von CO-Linien in Molekülwolken folgt eine Geschwindigkeitsdispersion  $\sigma \sim 1 10 \,\mathrm{km \, s^{-1}}$
- Die thermische Geschwindigkeit der Moleküle ist vergleichbar mit der isothermen Schallgeschwindigkeit

$$c_{
m s} = \sqrt{rac{kT}{\mu m_{
m H}}} pprox 0.3\,{
m km\,s^{-1}} \sim 0.1\sigma$$

 Die beobachteten Werte von σ in Molekülwolken weisen auf turbulente Bewegungen des Gases mit Überschallgeschwindigkeit hin



Geschwindigkeitsdispersion in Molekülwolken, aus M. H. Heyer & C M. Brunt, The Universality of Turbulence in Galactic Molecular Clouds, *Astrophys. J.* 615, L45 (2004)

A B > A B >

| Galaxien        |  |  |  |
|-----------------|--|--|--|
| Spiralgalaxien  |  |  |  |
| Sternentstehung |  |  |  |

• Diese Interpretation wird darüber hinaus durch den beobachteten Zusammenhang zwischen der Geschwindigkeitsdispersion und der Größe *L* von Molekülwolken bzw. Teilbereichen einer Wolke gestützt (ursprünglich 1981 von *R. B. Larson* festgestellt):

### $\sigma \propto L^{0.5\pm0.1}$

- Einer gängigen Theorie zufolge entstehen durch Stoßwellen starke Verdichtungen, während die mit turbulenten Wirbeln verbundenen Scherströmungen der Verdichtung entgegenwirken
- Wird die Jeans-Masse im verdichteten Gas überschritten, kann dieses kollabieren und einen **prästellaren Kern** bilden
- Numerische Simulationen zeigen, dass unter bestimmten Annahmen die niedrige Effizienz der Sternentstehung durch diesen Prozess erklärt werden kann



| •   |      |  |
|-----|------|--|
| 1-2 | 22   |  |
| ua  | IAAI |  |
|     |      |  |

Sternentstehung



Visualisierung einer Simulationen der Entstehung von prästellaren Kernen in einer turbulenten Gaswolke durch Alexei Kritsuk und Mike Norman (svs.gsfc.nasa.gov)

