Einführung in die Astronomie II _{Teil 10}

Peter Hauschildt yeti@hs.uni-hamburg.de

Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg

13. August 2019

Overview part 10

stellar black holes

Post-MS: $1 M_{\odot} \parallel$

Asymptotic Giant Branch

- \blacktriangleright core He burning \rightarrow cooling of the core and H shell source
- L goes down a bit, R shrinks and surface temperature increases
- ► stars moves horizontally through HRD → horizontal branch
- $\blacktriangleright\,$ core He burning lasts $\approx 10^8\, \text{yr}~(1\,\text{M}_\odot\,\text{star})$
- core consists of C and O
- core shrinks until it becomes (electron) degenerate

Asymptotic Giant Branch

- He burning re-starts in a shell
 - ightarrow shell helium burning
- same effect as earlier
 - \rightarrow energy output from He burning shell expands star
- \blacktriangleright \rightarrow it moves again toward the red giant region
- \blacktriangleright \rightarrow asymptotic giant branch (AGB)
- AGB star initially has a C-O core & He and H shell burning
- star reaches R of $\approx 1.5 \,\text{AU}$ (Mars orbit)
- \blacktriangleright 1 M $_{\odot}$ AGB star has 10⁴ L $_{\odot}$

old AGB star !!

Dredge up

- convection can dredge up material from the core to the surface
- *first dredge up* after core H burning ends and the star becomes a first time RG
- CNO cycle ashes can reach the surface area
 → changes in the observed abundances

Dredge up

- second dredge up after core He burning ends
- also enhances CNO in the atmosphere
- third dredge up during AGB stage (> $2 M_{\odot}$ stars)
- ► large amounts of C reach the surface → carbon star
- strong stellar winds of AGB stars eject large amounts of C into the ISM

Planetary Nebulae

- $\blacktriangleright\,$ low mass stars: $<4\,M_{\odot}$
- $\blacktriangleright \text{ AGB phase} \rightarrow \text{huge mass loss rates}$
- He core runs out of He
- \blacktriangleright contracts \rightarrow heats up H shell source \rightarrow more output

Planetary Nebulae

- He rains on the core
- it shrinks and heats up even more
- eventually a *helium shell flash* ignites a temporary He shell source
- this expands the H shell source layers
- they cool and H shell source turns off
- process repeats
 - \rightarrow thermal pulses (300,000 year intervals)

thermal pulses

Planetary Nebulae !!

- \blacktriangleright bursts of energy output \rightarrow bursts of mass loss
- ejects all the envelope material
- only hot core remains (100,000 K)
- ejected material is excited by high-energy photons to glow
- \blacktriangleright \rightarrow planetary nebula

NGC 7293

Hourglass Nebula

Planetary Nebulae

- common objects, 20,000–50,000 in the Galaxy
- bright emission lines of H, O, N
- \blacktriangleright expand at 10 30 km s⁻¹
- ▶ typical diameter is $1/3 \, \text{pc} \rightarrow \text{about } 10,000 \text{ years old}$
- eventually remnant (core) cools off too much and gas disperses
- ▶ 50,000 years lifetime of a PN
- $\blacktriangleright\,$ PN deliver about 5 M_{\odot}/yr into the ISM
- about 15% of the total input
- \blacktriangleright \rightarrow important for the chemical evolution of the Galaxy

White Dwarfs

- $\blacktriangleright\,$ stars $< 4\,M_{\odot}$
- He burning is the last thermonuclear reaction
- core of C+O becomes the remnant of the star
- core inert, just cools down over time
- material in the core is degenerate
 - \rightarrow doesn't shrink when cooling
- cooling WD can crystallize!

High Mass Stars !!

- larger mass produces more compression in the core
- \blacktriangleright \rightarrow higher temperatures
- $\blacktriangleright\,$ MS mass $>4\,M_\odot$: C-O core $>1.4\,M_\odot$
- \blacktriangleright \rightarrow continues to compress
- $T > 600 \times 10^6$ K: carbon burning
- produces O, Ne, Na, Mg

High Mass Stars !!

- $\blacktriangleright\,$ MS mass $> 8\,M_{\odot}:$ after C burning: temperatures reach $10^9\,K$
- \blacktriangleright \rightarrow Ne burning produces O and Mg
- $\blacktriangleright\,$ then: O burning ($T>1.5\times10^9\,{\rm K})$ produces S and Si
- $\blacktriangleright~T>2.7\times10^9\,{\rm K}\to$ Si burning produces S to Fe
- each phase of core thermonuclear burning has a shell source associated with it

High Mass Stars

- also causes several red giant phases!
- \blacktriangleright \rightarrow star moves back and forth in the HRD
- star is also losing mass at high rates
- some nuclear reactions produce neutrons
- these react easily with nuclei
 - \rightarrow neutron capture
- \blacktriangleright \rightarrow produces rarer elements

High Mass Stars

- each successive reaction lasts shorter
- ▶ $25 M_{\odot}$ star:
 - \rightarrow C burning 600 years
 - \rightarrow Ne burning 1 year
 - \rightarrow Si burning 1 day
- resulting structure looks like an onion

old massive star !!

High Mass Stars !!

- ▶ high *L* expands outer layers \rightarrow supergiant
- \blacktriangleright up to 1000 R $_{\odot}$
- sequence of thermonuclear reactions end with Si burning
- ⁵⁶Fe is the most stable element (26 protons, 30 neutrons)
- adding protons or neutrons requires energy!!
- \blacktriangleright \rightarrow inert Fe core
- all energy production by shell sources within 1 Earth radius

Supernovae !!

- Fe core very hot (100's million K)
- $\blacktriangleright \rightarrow$ photons set off nuclear reactions that produce neutrinos
- these leave the star
- to compensate, core contracts within 1/10 s
- ▶ heats to $> 5 \times 10^9 \, {\rm K}$
- ► → photons energetic enough to break up nuclei → photodisintegration
- breaks up elements to He!

Supernovae !!

- this *costs* the core energy \rightarrow more contraction
- core becomes so dense that electrons and protons combine to produce neutrons and neutrinos
- \blacktriangleright these leave the core/star \rightarrow more contraction
- after about 0.25s the core reaches 20km diameter
- density comparable to that of nuclei!
- this changes the behavior of the material:
- very rigid
- contraction stops and core bounces back

SN simulation

15 milliseconds

20 milliseconds

Supernovae !!

- ► this creates a powerful pressure (sound) wave
- encounters outer material trying to fall onto the collapsed core (at speeds of 0.15c!)
- the pressure wave reverses the motion of the falling material (aided by neutrinos)
- reaches supersonic speed and becomes a shock wave
- drives the material outwards and reaches surface after a few hours

SN 1987A

Supernovae

- ▶ total energy released is 10⁴⁶ J
- 100 times more than the Sun has emitted during its lifetime
- red giant star becomes a Supernova
- $\blacktriangleright\,$ reaches $10^9\,L_\odot$ for a few months after explosion
- most material ejected into space at speed in excess of 10⁴ km s⁻¹

SN 1987A

closest recent SN: 1987A in the LMC

- bright enough to be seen directly
- ▶ reached only $10^8 L_{\odot}$: blew up as a blue supergiant
- neutrino emission detected!
- Sh before optical detection!

SNe emit most of their energy as neutrinos (99%)

SN 1987A

Supernova Remnants

- debris ejected by SN explosion
- plows into ambient gases and produces glowing nebula
 - many supernova remnants are known
- Gum nebula:
 - ▶ 60° in the sky (largest)
 - near side 100pc from Earth!
 - center about 460pc away
 - exploded about 9000 B.C.
 - parent SN as bright as the quarter moon!

Gum nebula

Supernova Remnants

- SN remnants best searched via radio observations
- Cas A: exploded about 300 years ago (unseen!)
- last galactic SNe: 1572 (Tycho), 1604 (Kepler)
- ▶ next earlier: ≈ 1000 years earlier!
- Galaxy should show about 5 SNe per century
- most are hidden by dust in the ISM!

Cas A: X-ray & radio

Neutron stars !!

- compact remnant of SN explosion
- ► $M \approx 1 \,\mathrm{M}_{\odot}$
- ▶ *R* ≈ 10 km
- density of nuclear matter!
- shrinks with larger M
- \blacktriangleright \rightarrow limiting mass $\approx 3\,M_{\odot}$

neutron star structure

Neutron stars

- ▶ predicted in 1930!
- observed as *pulsars*

Pulsars

Pulsars !!

Vela Pulsar

- stellar remnant too massive to become a WD or neutron star?
- collapses due to extremely strong gravity
- distortions of space-time increase dramatically
- light follows curved path due to huge distortions
- \blacktriangleright eventually, the escape speed from the surface reaches c

Black Holes !!

- at this stage, a "hole" is punched into space-time by the enormous gravity
- ➤ → collapsing objects disappears from the universe and becomes a *black hole*
- event horizon: location where the escape speed from the hole is equal to the speed of light
- nothing inside of the event horizon can ever leave the hole!
- ▶ can be considered "surface" of the BH

 inside the event horizon the mass of the collapsing star is concentrated at zero volume at the center of the BH

 \blacktriangleright \rightarrow singularity

distance singularity to event horizon:

 \rightarrow Schwarzschild radius

$$R_S = \frac{2GM}{c^2}$$

- inside a BH, directions of space and time interchange
- observer could affect time but cannot move in space!
- ▶ at the singularity, space and time completely lose identity
- singularity behaves randomly (unpredictable)
- all this is completely shielded from the universe by the event horizon!
- GR effects strong only within a small distance from the event horizon!

Overview

