Einführung in die Astronomie II _{Teil 11}

Peter Hauschildt yeti@hs.uni-hamburg.de

Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg

30. Oktober 2019

Overview part 11

Interstellar Material

- interstellar reddening
- neutral H I
- H II regions
- molecules

The ISM

Presence of ISM apparent through

- bright reflection nebulae
- dark clouds (star counts)
- Stars form out of the material in the ISM and return (processed?) material back to it.
- The next generation of stars forms from the ISM after it was enriched by the previous generations *→chemical evolution*

- Interstellar dust clouds in the line of sight towards distant stars obscure the light
- changes the distance modulus equation:

$$m_{\lambda} = M_{\lambda} + 5 \log d - 5 + a_{\lambda}$$

 a_{λ} : the interstellar absorption in [mag]

• a_{λ} is related to the optical depth τ_{λ} of the cloud

$$I_{\lambda}/I_{\lambda,0} = \exp(- au_{\lambda})$$

$$m_1 - m_2 = -2.5 \log \left(\frac{F_1}{F_2}\right)$$

$$egin{aligned} m_\lambda - m_{\lambda,0} &= -2.5 \log \left(\exp(- au_\lambda)
ight) \ &= 2.5 au_\lambda \log e pprox 1.086 au_\lambda \end{aligned}$$

► so that

 $a_\lambda pprox 1.086 au_\lambda$

optical depth is given by

$$\begin{aligned} \tau_{\lambda} &= \int_{0}^{s} n(s) \sigma_{\lambda} \, ds \\ &= \sigma_{\lambda} \int_{0}^{s} n(s) \, ds \quad \equiv \sigma_{\lambda} N_{d} \end{aligned}$$

- σ_{λ} : extinction cross section of the cloud
- n(s): number density of absorbing/scattering particles in the cloud
- N_d: column density of absorbing/scattering particles in the cloud
- ▶ → number of particles in a cylinder with cross section of 1 cm^2 in the line of sight towards the observer.

- Most of the extinction in the ISM originates from *dust* particles.
- optical properties of spherical, homogeneous dust grains are described by the *Mie theory* (G. von Mie, 1908).

Mie Theory

geometrical cross section of a dust particle with radius a

$$\sigma_g = \pi a^2$$

• dimensionless *extinction coefficient* Q_{λ}

$$Q_{\lambda} \equiv rac{\sigma_{\lambda}}{\sigma_{g}}$$

- Q_{λ} depends on the *composition* and the *size* of the dust particles.
 - 1. if $\lambda \approx a$ then $Q_{\lambda} \propto a/\lambda$ so that $\sigma_{\lambda} \propto \lambda^{-1}$
 - 2. if $\lambda \gg a$ then $Q_{\lambda} \to 0$
 - 3. if $\lambda \ll a$ then $Q_{\lambda} \rightarrow \text{const.}$ (independent of λ)

Mie Theory

- the above implies a wavelength dependent effect of the dust.
- dust scatters blue light stronger than red light.
- ▶ it also *absorbs* more blue light than red light.
- Rayleigh scattering: special case of Mie scattering for molecules with $\ll \lambda$, giving $\sigma_{\lambda} \propto \lambda^{-4}$.
- combined effects lead to

Interstellar Reddening !!

Interstellar Reddening

- stars seems behind a cloud of dust appear *redder* than without the cloud
- blue light will be scattered into the line of sight leading to reflection nebulae
- ► typical dust grain sizes in the ISM are 0.2μ and densities (in the plane of the Galaxy) are about 10^{-13} cm^{-3} .
- Mie theory works well in visible to IR light
- ▶ at *shorter* wavelengths (UV) there are larger discrepancies:

Interstellar Reddening

Color Excess !!

• color excess $E_{\rm B-V}$ is defined as

$$E_{\rm B-V} = (B-V) - (B-V)_0$$

where $(B - V)_0$ is the unchanged color index of the star related to the a_{λ} through

$$E_{\rm B-V} = a_B - a_V$$

therefore

$$\frac{E_{\lambda-\mathrm{V}}}{E_{\mathrm{B}-\mathrm{V}}} \to \frac{-a_V}{E_{\mathrm{B}-\mathrm{V}}} \quad \text{for} \quad \lambda \to \infty$$

Color Excess !!

observed:

$$\frac{E_{\lambda-\mathrm{V}}}{E_{\mathrm{B-V}}} \rightarrow \approx -3 \quad \text{for} \quad \lambda \rightarrow \infty$$

important general result:

$$\frac{a_V}{E_{\rm B-V}} \equiv R \approx 3.1 \pm 0.1$$

 relates the interstellar reddening to the interstellar extinction

- interstellar absorption feature or "bump" at pprox 2175 Å
- hints about the composition of the dust
 - *Graphite* interacts strongly with photons around $\lambda = 2175 \text{ Å}$
 - it is unclear how such large graphite particles form in the ISM!
 - the interstellar extinction curve depends on the line-of-sight:

- \blacktriangleright presence of other interstellar absorption features \rightarrow
- ISM also contains other kinds of dust
- \blacktriangleright \approx 3.1 μ : water ice?
- ▶ $\approx 10 \,\mu$: (also at $\approx 18 \,\mu$) silicate features due to stretching of Si–O and bending of Si–O–Si bonds
- spectral features of dust tend to be broad and ill defined, so better statements about dust compositions are very hard to make.

PAH

- series of emission bands in the *diffuse* ISM
- unidentified infrared emission bands between 3.3 μ and 12 μ
- associated with vibrational transitions in C–C and C–H bonds
- \blacktriangleright \rightarrow polycyclic aromatic hydrocarbons (PAH)
- organic molecules with a planar, benzene ring-like structure

Interstellar Polarization

- light from interstellar dust is (depending on wavelength) slightly polarized (a few percent)
- this implies that the dust particles are non-spherical
- the polarization vectors are preferentially aligned, that implies that the dust grains are *aligned* too.
- alignment is probably due to interaction with a weak B-field of the rotating dust particles.

- incomplete picture of the interstellar dust:
 - graphite, silicate and PAH particles
 - sizes range from 0.25 µ (graphite, silicates?) to a few Å (PAH)
 - dominant species in the ISM are H I, H II, and H₂ (70%), metals make up only a few %, He makes up the remaining mass

- $\blacktriangleright\,$ H I in the ground state \rightarrow not observable in emission
- ▶ resonance lines \rightarrow deep UV
- ► H I can be observed through radio hyperfine structure line:

- reversal of the electron spin relative to the proton spin in H I
 - spins anti-parallel: ground state
 - spins parallel: slightly higher energy due to magnetic dipole moment associated with the spins
- magnetic dipole radiation with a transition probability of $2.87 \times 10^{-15} \, s^{-1}$
- ▶ lifetime of 11 million years.

- Collisions between particles are a competing process that can also flip the spins *without* emitting a photon.
- In the ISM, the time scales for collisions are a few 100 years so that most spin flips do not produce a 21 cm photon
- but there are still enough left to produce measurable 21 cm photons
- even under terrestrial "high vacuum" conditions, the particle densities are too high for 21 cm photons to be measured!

21 cm line is used to measure

- velocities (Doppler)
- B-fields (Zeeman)
- structure and kinematics of galaxies
- Iow transition probability of the hyperfine line
- competing collisional de-excitation processes
- ▶ → line *optically thin* over long line-of-sights through interstellar clouds

line profile is Gaussian, the optical depth in the line center is

$$\tau_{21} = 5.2 \times 10^{-19} \frac{N_H}{T \Delta v}$$

where

- N_H : column density of H I in cm⁻²
- ► T: temperature
- Δv : FWHM of the line in km/s ($\sim 10 \text{ km s}^{-1}$)
- ▶ proportional to N_H

diffuse H I clouds

- ► *T* ≈ 30 . . . 80 K
- ▶ $n \approx 100 \dots 800 \, \text{cm}^{-3}$
- \blacktriangleright cloud masses $\approx 1 \dots 100 \text{ M}_{\odot}$

H I clouds

• Comparing τ_{21} and a_V shows that

 $N_H \propto N_D$

 $(N_D: \text{dust column density})$ as long as

 $a_V < 1$

- suggests that dust and gas are distributed together in the ISM
- breaks down for a_V > 1: N_H does not increase as fast as N_D does!

H I clouds

- Optically thick dust clouds shield gas from UV radiation that can dissociate H₂ molecules.
- H₂ molecules can also form on the *surface* of dust grains easier
 - dust grain is a site for H atoms to "meet"
 - provides an energy reservoir for the binding energy set free by the formation of H₂
 - this energy heats the grain and can lead to an ejection of the molecule from the surface.

molecular clouds

- ▶ H I clouds with $N_h > 10^{21} \text{ cm}^{-2}$ also shield their inner regions from UV radiation so that H₂ forms → H₂ clouds are surrounded by a shell of H I.
- > spectrum of H_2 molecules is very different from H I,
- does not emit something like the 21 cm radiation
- extremely hard to detect (H₂ has electronic transitions in the UV)
- therefore, N_H and a_v are not well correlated in molecular clouds (a_v > 1)

molecular clouds

- H₂ is very difficult to observe directly, but other molecules can be used as *tracers*:
 - \blacktriangleright CO (about 10⁴ times less abundant than H₂), 2.6 mm transition
 - CH, OH, CS, C₃H₂
 - more than 50 interstellar molecules are known, some very complex and large: HC₁₁N etc.
- collisions excite the tracer molecules, the subsequently emitted photons are detected.

molecular clouds

- ► collisional rates depend on temperature and density of the gas → tracers provide info on temperatures and densities in the gas phase.
- To calculate the emitted radiation field, rate equations very similar to the nuclear rate equations have to be solved (problem: non-locality of the radiation field!)
- Results of tracer molecule studies show very different conditions:
- translucent molecular clouds:
 - H I gas
 - $a_V \approx 1 \dots 5$
 - ► *T* ≈ 15...50 K
 - ▶ $n \approx 500 \dots 5000 \, \text{cm}^{-3}$
 - $M \approx 3 \dots 100 \,\mathrm{M}_{\odot}$

▶ giant molecular clouds (GMC):

- molecular gas and dust
- ► 50 pc size
- ► *T* ≈ 20 K
- ▶ $n \approx 100 \dots 300 \, \text{cm}^{-3}$
- \blacktriangleright $M \approx 10^6 \, \mathrm{M}_\odot$
- $\blacktriangleright\,$ associated with young O and B stars $\rightarrow\,$ sites of star formation

GMC cores:

- 0.05 . . . 1 pc size
- ► a_V ≈ 50 . . . 1000
- ► *T* ≈ 100 . . . 200 K
- ▶ $n \approx 10^7 \dots 10^9 \, \mathrm{cm}^{-3}$
- \blacktriangleright $M \approx 100 \dots 1000 \,\mathrm{M}_{\odot}$

Bok globules:

- \blacktriangleright \approx 1 pc size
- \blacktriangleright $a_V \approx 10$
- $T \approx 10 \,\mathrm{K}$
- ▶ $n > 10^4 \, {\rm cm}^{-3}$
- $M \approx 1 \dots 1000 \,\mathrm{M}_{\odot}$
- have young stars in their centers (sites of active star formation)

Emission Nebulae !!

- emission nebulae appear close to O and B stars
- ▶ \rightarrow hot stars (> 20,000 K) emitting large amounts of UV photons
- atoms in the gas absorb UV photons and are ionized
- \blacktriangleright \rightarrow emission nebulae mostly H II (ionized hydrogen, H I: neutral H)
- \blacktriangleright \rightarrow H II regions

Emission Nebulae !!

- H II regions emit light by recombination of H II to H I
- electrons are typically captured in high-energy levels
- subsequently cascade down towards lower levels
- \blacktriangleright \rightarrow emit light in the spectral lines of the element

Emission Nebulae !!

- very important 3–2 transition in hydrogen, Hα line at 656 nm
- this line gives emission nebulae their characteristic red color
- \blacktriangleright each high-energy UV photon absorbed \rightarrow several emitted photons in the visible
- \blacktriangleright \rightarrow gigantic fluorescent tubes ...

Radiation from H II Regions

- strong emission lines over weak continuum
- continuum: recombination of ionized H II (and He II/III)
- free-free Bremsstrahlung
- emission lines: cascades after recombinations
- $\blacktriangleright \text{ low density} \rightarrow \text{collisions rare}$
- \blacktriangleright \rightarrow meta-stable transitions can be observed

Radiation from H II Regions

emission from H:

- proportional to number of electrons
- \blacktriangleright proportional to number of H II particles \rightarrow

$$I\propto\int n_e^2\,ds$$

define emission measure

$$\mathrm{EM} = \int \mathit{n_e^2} \, \mathit{ds}$$

Extension of H II Regions !!

- $\blacktriangleright\,$ each H I ionization requires photon with $> 13.6\,{\rm eV}$
- ightarrow ightarrow requires $T_{
 m eff}$ > 20 000 K
- balance ionization by recombination processes
- \blacktriangleright \rightarrow max. size of H II region
- ▶ Recombination/sec $\rightarrow \alpha n_e$ per H II into excited states
- ▶ nebula of size s_0 , constant density →

$$N_R = \frac{4}{3}\pi s_0^3 n_{\rm HII} \alpha n_e \approx \frac{4}{3}\pi s_0^3 \alpha n_{\rm H}^2$$

Extension of H II Regions !!

▶ balance with number of ionizing photons N_L →

$$s_0 = \left(\frac{3N_L}{4\pi\alpha n_{\rm H}^2}\right)^{1/3} = R_S \left(\frac{n_{\rm H}}{1\,{
m cm}^3}\right)^{-2/3}$$

- Strömgren sphere
- \blacktriangleright excess energy of photons \rightarrow heating
- ► H II regions reach 10⁴ K

Expansion of H II Regions

- compared to H I region:
- ► T higher in H II region
- \blacktriangleright \approx twice as many particles
- $\blacktriangleright P = NkT \text{ is larger in H II region!}$
- $\blacktriangleright \rightarrow$ H II region expands into H I region
- ▶ $v \approx 15 \,\mathrm{km}\,\mathrm{s}^{-1}$ (c_s in H II)

Expansion of H II Regions

- ▶ but that's Mach 10 for H I!
- \blacktriangleright \rightarrow complicated shock structure interface
- H II gas thins out
- EM drops
- \blacktriangleright dissolved after $\approx 10^6$ years

Microscopic Proc. in the ISM !!

- clouds cool by emitting radiation: radiative cooling
- conduction or convection are usually unimportant
- basic mechanism:
 - collisional excitation of an atomic, ionic or molecular transition
 - subsequent emission of a photon
 - photon leaves (optically thin!) cloud
 - \blacktriangleright kinetic energy of the gas is reduced \rightarrow cooling

Cooling of the interstellar gas

$$egin{array}{rcl} A+B&
ightarrow&A+B^{*}\ B^{*}&
ightarrow&B+h
u \end{array}$$

Cooling of the interstellar gas

 Efficient cooling processes have the following characteristics:

- 1. Frequent collisions \rightarrow fairly abundant partners
- 2. Excitation energies comparable to (or less than) the thermal kinetic energy
- 3. large collisional cross-section (i.e., high probability for excitation during a collision)
- high radiative transition probability (i.e., photon is emitted *before* a second collision on the excited particle occurs)

Cooling by ions and atoms

- *first* criterion → collisions with H and other abundant elements (C, N, O), their ions and electrons are most likely.
- ► From the second criterion → excitation energy comparable to typical temperature of ca. 100 K for many low density clouds.
- ▶ predominant ion of C is C II with a ${}^{2}P_{1/2} \rightarrow {}^{2}P_{3/2}$ transition with an energy difference corresponding to 92 K.
- This transition will be unimportant in clouds with T = 20 K!

Cooling by ions and atoms

- collisions with electrons will be important (why?)
- third criterion \rightarrow requires QM calculation (very hard)...
- but typically the collisional cross-section is large when the radiative transition is *allowed*
- the same holds for the *fourth* criterion.
- for an allowed transition (i.e., a transition with a non-zero electric dipole moment) we can view the transition being caused by the electric field of the passing electron.

Important Cooling Processes

Table 3.1. Some important cooling transitions in cool interstellar clouds $(T \simeq 100 \text{ K})$

Transition	Colliding partners	$\Delta E/k$
$C^+ ({}^2P_{1/2} \rightarrow {}^2P_{3/2})$	H, e, H_2	92 K
$Si^+ ({}^2P_{1/2} \rightarrow {}^2P_{3/2})$	e	413 K
$O\left({}^{3}P_{2} \rightarrow {}^{3}P_{1,0}\right)$	На	228 K
	п, е	326 K

Cooling Rates

- to calculate the actual *cooling rate* the collisional cross-section must be known
- in general, the rates have forms somewhat similar to the C II cooling rate:

$$\Lambda_{\rm C~II} = 8 \times 10^{33} n(e) n({\rm C~II}) T^{-1/2} \exp(-92/T) [{
m Jm}^{-3} {
m s}^{-1}]$$

• excitation of H I will be important (H is abundant!) but its transitions are very energetic (n = 2 level is 10.2 eV above the ground state!) and require $T \approx 10^4$ K.

Cooling Rates

► at intermediate temperatures (T ≈ 1000 K), ions such as Fe II and Si II can be excited into *metastable* states → these act as new "ground-states" from which excitations can continue.

Molecular H (H₂) might be an important coolant:

 \blacktriangleright rotational energy levels ightarrow

$$E_J = \text{const.}J(J+1), \ J = 0, 1, 2, \dots$$

- ► H₂ does not have a permanent electric dipole moment → electric dipole transitions are forbidden
- transitions occur through *electric quadrupole transitions* with ΔJ = ±2.
- energy of the least energetic of those, $J = 0 \rightarrow J = 2$, corresponds to 510 K.

- H₂ cooling process is very different from the atomic cooling processes because the *lifetimes* of the rotational levels are very long:
 5 × 10¹⁰ s for the J = 2 level.
- collisions occur with a rate of $10^{11}/n s \rightarrow shorter$ than the radiative lifetimes!
- \blacktriangleright \rightarrow levels are populated with

$$N_J \propto (2J+1) \exp(-E_J/kT)$$

➤ radiation "leaks" out slowly (only minor perturbation of the collisionally established equilibrium!).

these arguments do not apply to HD:

- HD does have a (small) electric dipole moment
- transitions with $\Delta J = \pm 1$ are allowed
- \blacktriangleright \rightarrow HD is *more* effective in cooling per molecule
- but its abundances is down: $n(HD) < 10^{-5}n(H_2)$
- \blacktriangleright \rightarrow it will *not* add significantly to the H₂ cooling rate

▶ the cooling rate for H₂ is

$$\Lambda_{\mathrm{H}_2} = \textit{n}(\mathrm{H}_2, \textit{J})\Delta\textit{E}(\textit{J} \rightarrow \textit{J}-2)\textit{A}(\textit{J} \rightarrow \textit{J}-2)$$

where A is the transition probability (in 1/s).

• for T = 100 K this gives about 3×10^{-33} J/s per H₂ molecule.

other molecules are very important:

- next abundant molecule: CO
 - dense clouds: $n(H_2) \ge 10^{10}$
 - ▶ $n(CO) \approx 10^{-5} n(H_2)$
 - CO also significant in lower density clouds
 - CO is a very effective coolant because it has a dipole moment → allowed rotational transitions!
 - ► lowest rotational CO transition J = 1 → J = 0 corresponds to 5.5 K!

- CO can be an extremely efficient coolant in low temperature clouds!
- but CO can also get optically thick → reducing its cooling efficiency enormously (radiation is trapped!)

Important Cooling Processes

Table 3.2. Main cooling mechanisms at different temperatures

Temperature (K) Main coolant	10 CO	10^{2} H ₂ , C ⁺	10 ³ Metastable ions	10^4 H, H ⁺ + e
Approximate cooling rates $(J m^{-3} s^{-1})$	$10^{-45} n^2$	$10^{-40} n^2$	$10^{-38} n^2$	$10^{-35} n^2$

- ► cooling is very rapid at high temperatures → large heating rates required to sustain high T's.
- if the gas is ionized, other cooling processes take over (PNe)

Heating of the interstellar gas !!

several sources are important:

- 1. starlight (local and "ambient")
- 2. cosmic rays
- 3. X-rays
- 4. novae & SNe
- 5. if cloud is collapsing: compression

Heating by starlight

photoionization:

- $\blacktriangleright A + h\nu \to A^+ + e$
- yields an electron with $E = h\nu I$ (*I*: ionization energy of *A*)
- electron interacts with the gas
- \blacktriangleright \rightarrow energy "thermalized" if most collisions are elastic
- some collisions will excite atoms/ions/molecules (inelastic collisions)
- \blacktriangleright \rightarrow can lead to photon emission \rightarrow energy lost!

Heating by starlight

- overall heating of clouds through b-f processes on C, Si, Fe.
- in H II regions, H ionizations are the most important heating source
- H ionizations "use up" all photons with E > 13.6 eV.
- in H I regions, C I ionizations (I = 11.3 eV) thus lead to a maximum deposited energy of about 2.3 eV per ionization.
- the mean value of deposited energy (for solar abundances) is about 2.1 eV

Photodissociation of H_2

Photodissociation of H₂

- excitation from ground state X to excited state B
- \blacktriangleright \rightarrow cascade into vibrational continuum of X
- 23% of these excitations/de-excitations lead to H₂ dissociation
- dissociated H atoms take excess energy in form of kinetic energy
- \blacktriangleright thermalization \rightarrow heating.
- \blacktriangleright about 0.4 eV deposited per photodissociation of H₂

Heating by cosmic rays and X-rays

- cosmic rays: high energy (few MeV) protons
- $\blacktriangleright\,$ soft X-rays with range of photon energies peaking at $\approx 0.1\, \rm keV.$
- ▶ ionization of H by protons:

$$(\mathbf{p},\boldsymbol{X}) + \mathbf{H} \rightarrow (\mathbf{p}',\boldsymbol{X}') + \mathbf{H}^+ + \mathbf{e}$$

- a 2 MeV proton leads to electrons with a range of energies peaking at about 30 eV.
- \blacktriangleright if medium is already ionized \rightarrow most of this energy is thermalized

Heating by cosmic rays and X-rays

 \blacktriangleright in a mainly neutral medium ightarrow

$$e + H(1s) \rightarrow e + H(2s) \rightarrow e + H(1s) + h\nu$$

or

$$e + H(1s) \rightarrow e + H^+ + e$$

- e-e collisions will slowly thermalize the energy
- \blacktriangleright when the e energy is $<13.6\,\text{eV}\rightarrow$ no further H ionizations
- \blacktriangleright when the e energy is < 10.2 eV \rightarrow no further H excitations
- ▶ including the energy loss mechanisms $\rightarrow \approx 3.4 \, {\rm eV}$ deposited per primary or secondary electron
Heating by cosmic rays and X-rays

X-ray situation is similar but:

- He (10% by number!) important because its X-ray cross-section is far larger than for H.
- secondary electron's kinetic energy can be thermalized
- or it produces further ionizations and excitations
- \blacktriangleright a 50 eV X-ray photon absorbed by He ightarrow 25 eV electron
- but only 6 eV are actually deposited as kinetic energy into the gas (for zero ionization)

Heating by grains

- photoelectric emission of electrons!
- creates electrons with a few eV energy
- this process is actually the *dominant* heating mechanism if it occurs rapidly enough!