Einführung in die Astronomie II _{Teil 14}

Peter Hauschildt yeti@hs.uni-hamburg.de

Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg

13. August 2019

Overview part 14

Quasars

- first radio surveys of the sky:
- discovered 2 strong galactic radio sources: Cas A, Sgr A
- 3rd strongest source: Cyg A
- ▶ radio interferometry $(1951) \rightarrow \text{extra-galactic}$
- ▶ optical observations \rightarrow strange galaxy
- has emission spectrum (usually absorption spectrum!)

Cygnus A

Quasars

- more unusual radio sources were discovered (e.g., 3C 273, 3C 48)
- looked like stars in the visible
- normal stars don't show strong radio emission
- \blacktriangleright \rightarrow clear that these are weird objects
- spectrum: initially it appeared impossible to interpret the strange lines
- ▶ 1963 \rightarrow 3C 273 optical counterpart has z = 0.158
- \blacktriangleright \rightarrow distance of \approx 600 Mpc
- extremely powerful source

3C 273

Quasars !!

- objects like this were named quasi-stellar radio sources (quasars)
- discoveries of large redshift radio-quiet star like objects
 quasi-stellar objects (QSOs)
- optical spectra show very strong emission lines
- > 10000 quasars are known today!
- redshifts from 0.06 to > 5.0 (94% of c, 3600 Mpc distance)
- very remote objects: relation between redshift and distance depends on how the universe evolves

Quasars !!

- no quasars with small z
- ▶ → no nearby quasars (closest one \approx 250 Mpc)
- larger distance means looking farther back in time!
- thus: no nearby quasars
 - ightarrow quasar activity ended about 1 billion years ago
- appear to be common in the past

Quasars !!

- quasars are extremely luminous
- ▶ range 10^{38...42} W (normal galaxy: 10³⁷ W)
- spectrum of stars \rightarrow thermal spectrum
- quasars emit a very different type of spectrum
- intensity decreases with frequency, no maximum!
- called non-thermal spectrum
- produced by extremely fast moving ("relativistic") electrons spiraling around a magnetic field
- \blacktriangleright \rightarrow synchrotron radiation

Quasars

- quasar spectrum is more complex than this simple picture
- emission lines are broad
- indicating motions of the emitting clouds with 10000 km s⁻¹ inside the quasar

3C 273

Ha H_{β} H_y H_{δ} Intensity -

400 480 560 640 720 800 Wavelength (nm)

Quasars

- 1980s: quasars are located inside their host galaxy
- hard to observe host galaxy due to brightness of quasar
- some basic observations:
 - radio-quiet quasars \rightarrow spiral galaxies
 - radio-loud quasars \rightarrow elliptical galaxies
 - large fraction of very distorted or peculiar galaxies
 - many with nearby companion galaxies
- \blacktriangleright \rightarrow link between collision/merger and quasar?

Quasar & host galaxy !!

Seyfert galaxies

- huge gap between L of normal galaxies and quasars
- \blacktriangleright \rightarrow intermediate stage?
- Seyfert (1943): spiral galaxies with bright, compact nuclei
- show signs of intense activity
- \blacktriangleright \rightarrow Seyfert galaxies
- ▶ 10% of high *L* spirals are Seyfert galaxies
- today > 700 are known
- ► $L \approx 10^{36...38} \, \text{W}$

Seyfert galaxies

- max L of Seyfert galaxy comparable to min L quasar
- some Seyferts show signs of collision/merging

Seyfert galaxy NGC 1566

Seyfert galaxy NGC 1275

Seyfert galaxy NGC 1275

radio galaxies

- \blacktriangleright \rightarrow like dim, radio loud quasars
- show strong radio emission
- first discovered in the optical as peculiar galaxies
- Example: M87 with bright compact nucleus and jet
- central region: thermal radiation
- jet: synchrotron radiation

radio galaxies

- radio galaxies generally have 2 radio lobes
- span 5–10 times the size of the galaxy itself
- \blacktriangleright \rightarrow double radio sources
- \blacktriangleright in general: radio spectrum \rightarrow synchrotron radiation
- \blacktriangleright \rightarrow jets of relativistic particles

Cygnus A

radio galaxies

head-tail sources

- head with strong radio emission
- weaker tail "behind" the head
- fast moving galaxies, ejected particles deflected by intergalactic medium
- most radio galaxies located in center of rich clusters

 -> typical for giant ellipticals!
- energy output comparable to Seyferts
- quasars \rightarrow Seyfert/radio galaxies

NGC 1265

NGC 5128

b

c

active galaxies

- 1929: discovery of a strange type of variable object (BL Lac)
- varies by factor 15 over a few months
- spectrum featureless, no lines
- but shows fuzzy image
- fuzzy material's spectrum looks like elliptical galaxy
- prototype of *blazars*

BL Lac

3C 279

active galaxies !!

- synchrotron spectrum
- show prominent outbursts (factor 25!)
- ▶ radio \rightarrow double radio sources
- oriented so that we see their jets end-on!
- superluminal motion: appear to eject material with speeds
 c
- projection effect: we can see only the proper motion in the plane of the sky
- but the jets need to actually move at speeds quite close to c

Superluminal Motion in 3C 273

July 1977

March 1978

July 1980

Superluminal Motion !!

2000 = 2002 4 - 3 light-years = 2002Apparent speed of blob = 1.5c

b View from Earth

a View from above

active galaxies !!

- all these objects (quasars, blazars, Seyferts etc) are collectively called
- active galaxies
- ► most of the energy comes from their nuclei → active galactic nuclei (AGN)
- variability of AGN limits the size of the active region
- some blazars variable within 3–24h!
- object cannot vary on time scales that are shorter than its light crossing time
- ► → emit their energy from a volume smaller than the solar system!

Variability vs. Size

The Central Engine !!

- feasible power source for AGN?
- $\blacktriangleright \rightarrow$ black hole "eating" material
- material radiates *strongly* before taking the dive through the event horizon
- how massive has the BH to be?
- limit on luminosity that a BH can produce
- \blacktriangleright too much output \rightarrow radiation pressure pushes material away

The Central Engine !!

 \blacktriangleright \rightarrow Eddington limit

$$L_{
m Edd} = 30000 rac{M}{M_{\odot}} L_{\odot}$$

- example: quasar 3C 272: $L = 3 \times 10^{13} L_{\odot}$
- \blacktriangleright \rightarrow M > 10⁹ M $_{\odot}$
- \blacktriangleright \rightarrow supermassive black hole
- evidence for their existence numerous
- Milky Way has one, too
- ▶ M31: orbit of stars close to center \rightarrow high speed \rightarrow 10 million M_☉ within 5pc of the center

Unified Model !!

- tries to explain different types of active galaxies with a single model
- different objects are then just different views
- basic idea:
- supermassive BH surrounded by accretion disk
- friction heats and slows the gas in the disk
- ▶ it spirals closer to the BH

Central Engine

Unified Model

- $\blacktriangleright\,$ simulations $\rightarrow\,$ not all the gas reaches the BH
- stalls in orbit close to BH
- heats up, pressures rise
- way out: funnel shaped cavity at the poles of the disk
- \blacktriangleright \rightarrow jets
- viewing angle of disk then "selects" the type of object we see
- over time, most of the material in the disk is either "eaten" or ejected
- ▶ no feeding \rightarrow quasar dies
- collision/merger \rightarrow deliver fresh fuel

Central Engine

NGC 4261

