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Overview part 16

I Hitchiker’s Guide to General Relativity
I Black Holes
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Overview GR

I Einstein 1907–1915
I geometrical description of the effects of matter on

space-time.
I uses curved space-time to describe motions under the

effect of (conventional) gravity
I 2D representation:
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Space-time curvature
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Overview GR !!

I mass acts on space-time, telling it how to curve
I curved space-time acts on mass, telling it how to move
I explains part of Mercury’s perihelion shift not accounted

for by Newtonian mechanics
I light moves along the quickest route between two points
I curved space-time → bending of light rays
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curved light paths
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Overview GR !!

I 2 cumulative effects:
1. length of the path (shortest for light)
2. time dilation (quickest for light)

I time runs slower in curved space-time
I this predicts a change in positions of stars if they are

close to the Sun:
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curved light paths
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Gravitational & Inertial Mass

I 2 particles, (m, q) and (M ,Q) with mass and charge
I force due to gravity:

mia = G
mgMg

r 2

I force due to electric field:

mia =
qQ

r 2

9 / 59



Gravitational & Inertial Mass !!

I inertial mass mi : resistance to acceleration (left hand side)
I right hand side masses mg : measure “charge” similar to

electric charges
I experimental fact: mi/mg = const. (better than 10−12)
I consequence on Earth: everything falls with same

acceleration
I chose units so that mi = mg (changes G ).
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Principle of Equivalence !!

I special relativity → inertial frame motions
I gravity → accelerated, non-inertial reference frames
I idea: no gravity observed in free-falling coordinate system
I →

All local, freely falling, non-rotating laboratories are fully
equivalent for the performance of all physical experiments

I local inertial frames
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Principle of Equivalence
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Principle of Equivalence

I special relativity is sub-set of general relativity
I Lorentz transformation with instantaneous velocity is used

to transfer coordinates
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curvature of space-time
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curvature of space-time

I “lab” suspended over ground
I photon emitted by light source when suspension severed
I lab is free falling → local inertial frame
I lab observer → light travels in straight horizontal line
I observer on ground → accelerated lab (gravity)
→ photon moves at constant distance from lab “floor”
→ photon path curved for observer on ground
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curvature of space-time

I photon path is “quickest” route through
I → curved space-time around Earth
I estimating the angle of deflection:
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curvature of space-time
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curvature of space-time

I curved path approximated by circle
I `: width of the lab (path length)
I arc length AB ≈ `

I photon crossing time: t = `/c

I free fall distance C → B : d = 1
2gt

2
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curvature of space-time

I from the geometry of the triangles:

B̄C

ĀC
=

B̄D

ŌD

or
1
2gt

2

`
=

`
2 cos(φ/2)

ŌD

I φ� 1→ cos(φ/2) ≈ 1
I ŌD ≈ rc →

rc =
c2

g
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curvature of space-time

I Earth: rc = 9.2× 1017 cm ≈ 0.2 pc
I ` = 10m → φ = `/rc ≈ 2.3× 10−10 arcsec
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gravitational redshift
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gravitational redshift

I same setup as previously, but light source emits photons
vertically upward

I lab free falling local inertial frame
→ lab detector measures frequency ν0 identical to
emitted frequency

I observer on ground
→ reaches detector at t = h/c
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gravitational redshift

I detector has speed v = gt = gh/c

I → should have detected blueshifted frequency > ν0

I slow free-fall:
∆ν

ν0
=

v

c
=

gh

c2

23 / 59



gravitational redshift

I but detector found ν0

→ curved space-time must have exactly compensated the
shift by a gravitational redshift of

∆ν

ν0
= −v

c
= −gh

c2

I total gravitational redshift for light escaping to infinity
→ integrate with g = GM/r 2 and dr = h (assume nearly
flat space-time!) ∫ ν∞

ν0

dν

ν
≈
∫ ∞
r0

GM

r 2c2 dr
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gravitational redshift

I this gives:

ln

(
ν∞
ν0

)
≈ −GM

r0c2

for weak gravity (r0/rc = GM/r0c
2 � 1).
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gravitational redshift !!

I thus
ν∞
ν0
≈ exp

(
−GM

r0c2

)
I with exp(−x) ≈ 1− x for x � 1 we get

ν∞
ν0
≈ 1− GM

r0c2

I exact result:
ν∞
ν0

=

(
1− 2GM

r0c2

)1/2
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gravitational redshift !!

I for the redshift z we get:

z =
ν0

ν∞
− 1

=

(
1− 2GM

r0c2

)−1/2

− 1

≈ GM

r0c2

27 / 59



gravitational time dilation

I clock with one tick per vibration of monochromatic light
wave

I ∆t = 1/ν
I gravitational redshift
→ clock at r0 will tick slower than clock at r =∞

∆t0
∆t∞

=
ν∞
ν0

=

(
1− 2GM

r0c2

)1/2

≈ 1− GM

r0c2
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gravitational time dilation

I time passes more slowly as the surrounding space-time
becomes more curved

I Example: Sirius B (M = 2.1× 1033 g, R = 5.5× 108 cm)
I z ≈ 2.8× 10−4

I ∆t∞ = 3600 s → ∆t0 −∆t∞ = 1 s
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Intervals and Geodesics !!

I 4D space-time coordinates (x , y , z , ct) for each event
I field equations:

G = −8πG
c4 T

I T : stress-energy tensor
I G: Einstein tensor, describes curved space-time

I space-time diagrams:
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space-time diagrams

I (a) object at rest
I (b) object moving at constant speed
I (c) satellite orbiting planet
I world-line: path of object in space-time
I events and the light cone:
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space-time diagrams
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space-time diagrams

I distance in space-time: space-time interval

(∆s)2 = [c(tb − ta)]2 − (xa − xb)2

in a flat space-time
I (∆s)2 is invariant under Lorentz transformations
I (∆s)2 can be positive, negative or zero
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space-time diagrams

I (∆s)2 > 0: time-like interval
→ light can travel between events a and b
→ can find inertial frame S that moves along a straight
world-line connecting a and b so that both events happen
at the same location in S (but at different times)

I proper time: interval between these events:

∆τ =
∆s

c

I (∆s)2 = 0: light-like or null interval
→ proper time is zero!
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space-time diagrams

I (∆s)2 < 0: space-like interval
light cannot travel between the events
can find frames where events occur in different order or
simultaneously

I proper distance: measure in frame where ta = tb:

∆L =
√
−(∆s)2

would give the rest length of a rod connecting the events
I metric measures the differential distance along a path

(d`)2 = (dx)2 + (dy)2 + (dz)2
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space-time diagrams

I integrating along the path (line integral)

∆` =

∫ p2

p1

√
(d`)2 along P

I metric for flat space-time

(ds)2 = (c dt)2 − (dx)2 − (dy)2 − (dz)2

I interval along a world-line W :

∆s =

∫ p2

p1

√
(ds)2 along W
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space-time diagrams !!

I flat space-time
→ interval measured along straight time-like word-line
between two events is maximum

I curved space-time: “straightest possible world lines”
→ geodesics
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space-time diagrams !!

I time-like geodesics connecting 2 events
→ extremum
→ either maximum or minimum interval

I paths followed by free-falling particles are geodesics
I massless particles follow null geodesics
I coordinate speed: rate with which the spatial coordinates

of an object change
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space-time diagrams !!

I flat metric in spherical coordinates:

(d`)2 = (dr)2 + (r dθ)2 + (r sin θ dφ)2

I flat space-time metric in spherical coordinates:

(ds)2 = (c dt)2 − (dr)2 − (r dθ)2 − (r sin θ dφ)2
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Schwarzschild metric !!

I metric in the presence of a massive object:
→ Schwarzschild metric

(ds)2 =
(
c dt

√
1− 2GM/rc2

)2
−

(
dr√

1− 2GM/rc2

)2

−(r dθ)2 − (r sin θ dφ)2

I this is a vacuum solution of the field equations!
→ only valid outside the mass M!

40 / 59



Schwarzschild metric !!

I curvature → radial term
I radial distance between two simultaneous events (dt = 0):

dL =
√
−(ds)2 =

dr√
1− 2GM/rc2

I spatial distance dL is larger than coordinate distance dr !
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Schwarzschild metric !!

I clock at rest at radial coordinate r
→ proper time dτ

dτ =
ds

c
= dt

√
1− 2GM/rc2

→ time passes slower than without the mass M
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Schwarzschild metric

I Example: orbit of satellite around planet
I strict calculation delivers orbit and conservation laws in

one sweep
I simplistic approach: satellite orbits around equator of

Earth (θ = 90◦) with specified angular speed ω = v/r
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Schwarzschild metric

I inserting dr = 0, dθ = 0 and dφ = ω dt into the
Schwarzschild metric

(ds)2 =

[(
c
√

1− 2GM/rc2
)2
− r 2ω2

]
dt2

=

(
c2 − 2GM

r
− r 2ω2

)
dt2

I integrating →

∆s =

∫ 2π/ω

0

√
c2 − 2GM

r
− r 2ω2 dt
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Schwarzschild metric
I need to find extremum of this expression!
→ endpoints of word-line must be fixed:
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Schwarzschild metric

I extremum →

d

dr
∆s =

d

dr

(∫ 2π/ω

0

√
c2 − 2GM

r
− r 2ω2 dt

)
= 0
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Schwarzschild metric

I therefore:
d

dr

√
c2 − 2GM

r
− r 2ω2 = 0

so that
2GM
r 2 − 2rω2 = 0

or

v = rω =

√
GM

r

is the coordinate speed of the satellite
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Schwarzschild metric
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Black Holes !!

I old idea derived 1783 by amateur astronomer George
Michell using Newton’s particle model of light

I √ in Schwarzschild metric go to zero if

RS = 2GM/c2

is the surface radius of the object
→ Schwarzschild radius

I at RS a clock would measure a proper time dτ = 0
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Black Holes

I apparent speed of light → coordinate speed of light
→ with ds = 0:

0 =
(
c dt

√
1− 2GM/rc2

)2
−

(
dr√

1− 2GM/rc2

)2

− (r dθ)2 − (r sin θ dφ)2
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Black Holes

I → coordinate speed of a radially traveling photon
(dθ = dφ = 0):

dr

dt
= c

(
1− 2GM

rc2

)
= c

(
1− RS

r

)
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Black Holes
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Black Holes !!

I at r = RS → dr/dt = 0
→ Event horizon of a black hole

I properties inside the BH cannot be observed but
calculated

I center of a non-rotating BH → singularity with all of the
mass of the BH
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Black Holes

I free falling photon: integrate metric to obtain coordinate
speed

∆t =

∫ r2

r1

dr

dr/dt
=

r2 − r1
c

+
RS

c
ln

(
r2 − RS

r1 − RS

)
for r1 < r2

I r1 = RS → ∆t =∞!
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Black Holes
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Black Holes !!

I r(τ): observer in free falling frame S

I r(t): observer at rest at ∞
I object at rest at r < RS : dr = dθ = dφ = 0

(ds)2 = (c dt)2
(
1− RS

r

)
< 0

→ space-like interval → not allowed for particles
→ impossible for particles to remain at rest for r < RS
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Black Holes

I non-rotating BH: all word-lines converge at the singularity
I after singularity formed exterior follows Schwarzschild

metric
I maximum value of the angular momentum

Lmax =
GM2

c
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Rotating Black Holes

I structure of a maximally rotating BH
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Rotating Black Holes

I structure of metric changes → frame dragging
I ring singularity
I ergosphere: any particle must move in the direction of

rotation of the BH
I frame dragging planned to be measured for Earth!
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