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Zusammenfassung

Zukünftige e+e−-Linearbeschleuniger bieten die Möglichkeit für präzise Teilchenmes-
sungen und benötigen eine bisher unerreichte Detektorauflösung. Dafür entwickelt
die CALICE Kollaboration fein-segmentierte Kalorimeter zur Anwendung des Particle
Flow Approach (PFA).

Ein technischer Prototyp für ein Analoges Hadronkalorimeter (AHCAL) basierend
auf der SiPM-on-tile Technologie wurde von der CALICE Kollaboration in Betrieb
genommen. Er besteht aus 22.000 Kanälen mit jeweils einer Größe von 30 x 30 mm2.
Mit dem AHCAL kann Information in 5 Dimensionen gemessen werden: Der Ort in
3D, die Energie und der Zeitpunkt jedes Kalorimeter-Ereignisses.

Der Prototyp wurde 2018 am Teststrahl des CERN SPS getestet. Die Testläufe
mit Pionen und die darauf basierende Monte Carlo Simulation werden genutzt, um
die Energieauflösung des AHCAL zu bestimmen. Eine Verbesserung der Energieau-
flösung gegenüber der Standard-Energierekonstuktion kann durch den Einsatz von
Software-Kompensation oder andere Machine Learning Algorithmen erreicht werden.

Tiefe neuronale Netzwerkarchitekturen (DNN) können für die Energierekonstuk-
tion eines kompletten 5D Kalorimeterbildes genutzt werden. Mehrere Architek-
turen werden vorgestellt und mit der Standardrekonstruktion und lokaler Software-
Kompensation verglichen. Diese Netzwerke werden sowohl auf Teststrahl-Daten als
auch auf Monte Carlo Ereignissen trainiert.

Ein auf Locally Connected Layern basierendes Netzwerk nutzt Gewichtungsfak-
toren für jeden Kalorimeter-Kanal und kann Schauerverluste in der Energiesumme
ausgleichen. Weiter wird eine Convolutional Neural Network (CNN) Architek-
tur gezeigt, welche die Energieauflösung im Vergleich zu Software-Kompensation
verbessert, aber mit dem Nachteil von Overfitting an den Grenzen des trainierten
Energiebereiches. Außerdem wird eine aus beiden Ansätzen zusammengesetzte
Netwerkachitektur vorgestellt, welche zusätzlich die Zeit-Information im Event nutzt.
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Abstract

Future linear lepton colliders offer the possibility of precision physics studies and
demand detectors with an unprecedented resolution. For this purpose the CALICE
collaboration is developing highly-granular calorimeters for the application of the
Particle Flow Approach (PFA).

An engineering prototype for an analogue hadron calorimeter (AHCAL) based on
the SiPM-on-tile technology was assembled by the CALICE collaboration consisting
of about 22,000 channels each with a size of 30 x 30 mm2. Events measured by the
AHCAL include 5-dimensional information: the 3D location, energy and timing of a
each calorimeter hit.

The prototype underwent test beam at the CERN SPS in 2018. These pion test beam
runs and a Monte Carlo simulation of the test beam setup is used to determine the
energy resolution of the AHCAL. An improvement over the energy resolution with
the standard event energy reconstruction can be achieved by employing a hit energy
weighting based on software compensation or other supervised machine learning
approaches.

Deep neural network (DNN) architectures can be used to reconstruct the event
energy from the full 5D calorimeter image. Multiple architectures are presented and
compared to the standard reconstruction and to local software compensation. The
networks are trained on either test beam data or Monte Carlo samples.

Neural networks based on locally connected layers with cell-wise hit energy
weighting show promising results for shower leakage compensation. A convolutional
neural network (CNN) architecture is presented that improves the energy resolution
over software compensation, but suffers from overfitting at the boundaries of the
trained energy space. A merged architecture of both approaches also including the hit
timing is discussed.
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Chapter 1

Introduction

Over the past 50 years the Standard Model of Particle Physics has emerged as a successful
theoretical framework to describe the fundamental structure of matter. The Standard
Model is explored with particle collision experiments at very high energies. Currently
the largest particle accelerator experiments are located at the Large Hadron Collider
(LHC) at CERN which collides protons with a centre of mass energy of

√
s = 13 TeV.

The greatest success of the LHC experiments to date was the discovery of the Higgs
boson [1, 2] which was predicted in 1964 [3, 4].

Despite the success of the Standard Model there is overwhelming observable
proof that physics beyond the Standard Model exists. To explore and understand
’new physics’ very precise measurements of particle properties are necessary. Such
measurements could be performed at a future linear lepton collider such as the
proposed Compact Linear Collider (CLIC). With CLIC electrons and positrons could be
collided with a centre of mass energy of up to

√
s = 3 TeV. To achieve the best possible

measurement precision, an unprecedented detector resolution is required, i.e. a jet
energy resolution of σE/E ≈ 3.5 % above 100 GeV [5].

Such a resolution can be achieved with the Particle Flow Approach (PFA) to calorime-
try [6]. For successful application of PFA a highly-granular calorimeter is necessary.
These calorimeters are subject of studies in the Calorimetry for Linear Collider Experiment
(CALICE) collaboration. A engineering prototype for an analogue hadron calorime-
ter (AHCAL) was assembled by CALICE in 2018. This prototype is based on the
SiPM-on-tile technology and underwent multiple test beam campaigns in 2018 and
2019.

In this thesis the energy resolution of the AHCAL prototype for pions is evaluated
and algorithms are compared to improve the energy resolution. In past studies by
the CALICE collaboration with previous prototypes, software compensation algorithms
were successfully applied to improve the detector resolution by utilizing a few event
parameters [7].

Modern deep learning approaches use all available information in a given data set,
i.e. convolutional neural networks are trained on images and are very successful in
classifying objects [8]. In a highly-granular calorimeter all measured information of an
event can be represented as a 5-dimensional image. These images include the location
in 3D, energy and timing of a calorimeter hit. This thesis discusses the application
of deep neural network architectures to event energy reconstruction to improve the
energy resolution of the AHCAL. Multiple network architectures are explored and
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9

applied to both test beam data and Monte Carlo simulation. A comparison with
software compensation is made.

This thesis is structured as follows. In chapter 2 a basic introduction to high-energy
physics is given. The Standard Model of Particle Physics as well as collider experi-
ments and detectors are introduced. In chapter 3 the basics of the interaction between
particles and matter in calorimeters are explained and particle shower development
and their calorimeter response are outlined. The CALICE AHCAL engineering proto-
type is presented in chapter 4. This chapter focuses in particular on the data quality
of the test beam campaign in May 2018. A basic introduction to machine learning
and neural networks is given in chapter 5. The results of this thesis are presented in
chapter 6. The results are divided into network trainings on data and on Monte Carlo
samples, for which results are compared to software compensation. In chapter 7 the
findings of this thesis are summarized.



Chapter 2

Introduction to High-Energy
Physics

Elementary particle physics is the study of the fundamental structure of matter. Cur-
rently, the best theory for our understanding of matter and three of the four fundamen-
tal forces is the Standard Model of Particle Physics. Apart from experiments with cosmic
rays, colliding particles in particle accelerators have emerged as a very important tool
for physicists to explore and validate the predictions of the Standard Model over the
past decades. These experiments are undertaken with large accelerators and modern
particle detection systems.

This chapter is giving a brief introduction to the Standard Model as well as collider
experiments and corresponding detectors.

2.1 The Standard Model of Particle Physics

The Standard Model of Particle Physics is a theoretical framework that classifies all
known elementary particles and their interactions. It emerged in the 1960s and 70s
from the theory of Quantum Electrodynamics (QED) [9], the Glashow-Weinberg-
Salam (GWS) theory of electroweak processes [10, 11] and the theory of Quantum
Chromodynamics (QCD) [12].

The Standard Model includes 12 elementary particles with spin 1
2 that follow the

Fermi-Dirac statistics. These particles form all known matter and are called fermions.
The fermions are divided into two families: leptons and quarks. Each is categorized
in three groups ordered by increasing particle mass. In addition to those 12 particles
there is another set of 12 anti-particles each corresponding to its counterpart with the
same mass, but opposite quantum numbers. This leads to a total of 24 fermions in the
Standard Model.

The leptons are categorized by their electric charge (0, ±1) and their lepton num-
bers (electron, muon, or tau number). The negatively charged leptons are the electron
(e−), the muon (µ−) and the tau (τ−) and their positive counterparts are called positron
(e+), anti-muon (µ+) and anti-tau (τ+). The electrically neutral leptons are the neutrinos
(νe, νµ and ντ) and the anti-neutrinos (νe, νµ and ντ) each classified to their respective
lepton family. While the electron and the neutrinos (and their anti-particles) are stable,
the muons and taus decay with a lifetime of 2.2 x 10−6 s and 2.9 x 10−13 s respectively.

10



2.1. THE STANDARD MODEL OF PARTICLE PHYSICS 11

The quarks are categorized into up-type and down-type. The up-type quarks are
the up (u), charm (c) and top (t) and carry an electrical charge of + 2

3 . The down-type

quarks are the down (d), strange (s) and bottom (b) with an electrical charge of − 1
3 .

Their anti-quarks carry the charges − 2
3 and + 1

3 . Each quarks comes in one of three
colours: (anit-)red, (anti-)green and (anti-)blue. Only colourless bound states of two or
three quarks have been discovered. These bound states form together particles called
hadrons. Those bound hadrons are divided into two groups: mesons and baryons. A
meson consists of two quarks with corresponding colour and anti-colour. The baryon
consists of three quarks with each different colour or anti-colour.

Figure 2.1: The elementary particles of the Standard Model, consisting of the 12 funda-
mental fermions and four fundamental gauge bosons and the Higgs boson. Brown loops
describe which gauge bosons (red) couple to which fermions (purple and green). The
Higgs boson couples to all massive particles shown. Adapted from [13].

Another set of elementary particles in the Standard Model are the Gauge bosons
with a spin 1. These Gauge bosons are acting as force carriers for the three fundamental
interactions considered in the Standard Model: the electromagnetic interaction, the weak
interaction and the strong interaction. The fourth fundamental interaction, gravity, is
not described by the Standard Model, which is one of the limitations of this theory.

The electromagnetic force acts on any particle with an electric charge and is medi-
ated by the massless photon (γ). The weak interaction is transmitted by two charged
bosons, the W+ and W−, and a neutral boson, the Z0. The reach of this interaction
is limited as these bosons are massive with mW± ≈ 80.4 GeV and mZ0 ≈ 91.2 GeV.
The strong interaction acts on any particle with a colour charge and is mediated by
eight gluons that carry both colour and anti-colour and are massless. All of these
interactions obey several conservation law such as conservation of energy, momen-
tum, angular momentum, charge, colour, quark number, flavour (except for the weak
interaction) and lepton number.
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The final elementary particle is the Higgs boson (H), which is a spin 0 particle with
no colour or electric charge and a mass of mH ≈ 125.09 GeV. [14]. This particle is
produced by the excitation of the Higgs field, introduced by the Higgs mechanism
[3, 4], and gives mass to the particles of the Standard Model. An overview of the
elementary particles and the interactions is shown in figure 2.1.

2.2 Future Collider Experiments

The experimental discovery of all the particles described above, including the Higgs
boson in 2012 [1, 2], have made the Standard Model to one of the most successful
theories in physics. The common way for physicists to produce and study elementary
particles is with accelerator experiments in which particles are accelerated to very high
energies and smashed at a target (fixed target experiment) or at another accelerated
particle beam (collider experiments). The particles produced in these experiments are
limited by the centre of mass energy of the collision as the produced particle has to
have a lower rest mass energy, leading to the popularity of collider experiments and
the development of more and more powerful accelerators in recent decades.

There are two types of particle accelerators: linear and circular ones. The most
powerful circular accelerator to date is the Large Hadron Collider (LHC) at CERN
colliding protons and heavy ions with a current centre of mass energy of

√
s = 13 TeV

in a synchrotron ring with a circumference of 26.7 km. The LHC was designed to
explore the Standard Model up to until previously unreached energies and search for
physics beyond the Standard Model. The Higgs boson was discovered by the CMS
and ATLAS experiments at the LHC [1, 2]. However, as protons consist of quarks and
gluons there is a limitation to the precision of measurements in proton-collisions at
the LHC. The proton constituents are the actual colliding objects and their exact centre
of mass energy is uncertain. Another limitation arises from the strong interaction
between theses particles that result in a large QCD background.

Without particles consisting of quarks, the electrons (and positrons) are very good
candidates for precision collider experiments as they are stable and muons and taus
have a short mean lifetime. In an e+e−-collider the initial states of the particles are well
defined and the precise energy and spin-orientation (in polarized beams) are known.
With less background this allows for very precise measurements. The most powerful
circular lepton collider was the Large Electron-Positron Collider (LEP) at CERN that was
operated between 1989 and 2000 with a centre of mass energy of up to 209 GeV. It
was not possible to reach a higher beam energy with the given accelerator cavities
as the synchrotron radiation emitted by electrons is a limiting factor in the circular
accelerators.

The energy loss through synchrotron radiation is proportional to

∆E ∝
E4

r · m4
0

(2.1)

with the E and m0 the energy and rest mass of the accelerated particle and r as the
radius of the circular accelerator. Hence for electrons as very light particles the radius
of the collider would need to increase further to reach very high energies. For heavy
particles such as protons at the LHC the energy loss trough synchrotron radiations is
less of a limitation to the reachable centre of mass energy.
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For practical reasons it is likely that the next large scale lepton collider will be a
linear collider, as for linear colliders the synchrotron radiation is negligible and the
reachable energy increases with its length. This way precise measurements could
be done complementary to experiments at the LHC to explore the Standard Model
further and physics beyond. A current study for such a high energy linear collider
is the Compact Linear Collider (CLIC) possibly located at CERN with a centre of mass
energy up to 3 TeV [5].

2.3 Detectors for Future Linear Colliders

The detectors for the experiments at high-energy colliders are designed to identify and
measure the particles produced at the collision. Each individual collision produces
an event at a specific interaction point. The identification of the particles produced
in each event by measuring their four-momenta are the subject of studies in high-
energy physics. Large particle detectors are covering most of the 4π area around the
interaction point. These modern detectors consists of several layers of sub-detectors
each designed to perform specific measurements. A schematic design of such a
detector for CLIC can be found in figure 4.1 of chapter 4.

The innermost region of the detector closest to the interaction point is occupied
by the vertex detector, which has a fine resolution to resolve short-lived secondary
vertices originating from the primary vertex. A tracking detector is used to measure the
charge and momentum of charged particles. For this purpose it is placed in a strong
magnetic field as the paths, or tracks, of the produced charged particles are directed
perpendicular to the magnetic field. The charge and momentum of the particle can be
calculated from the direction and radius of the bent track.

The following sub-detectors are the electromagnetic calorimeter (ECAL) and the
hadronic calorimeter (HCAL), which are optimized to measure the energy of electrons
and photons and hadrons respectively. The particles deposit energy in the calorimeters,
hence this is a destructive measurement. Further detector parts are positioned as outer
layers to detect muons and energy leaked though the calorimeter.

The energy of particles that leave no response in the detector can be calculated
from missing momentum ~pmiss. The ~pmiss can be calculated as the the total momentum
of the colliding leptons is well defined (except for effects such as beamstrahlung).

To utilize the full potential of a future lepton collider all event structures need to
be measured with great detail. This requires a calorimeter system that can measure en-
ergies with a very fine resolution. A concept for such a calorimeter and corresponding
event reconstruction algorithms are presented in the following chapters.



Chapter 3

Calorimetry

In particle physics calorimetry refers to the destructive measurement of a particles’
energy by its absorption in matter. When a particles interacts with matter, the particle
deposits its energy via electromagnetic or (in case of hadrons) via hard-/hadronic
interactions. This process is called shower development and is discussed in section 3.1
by introducing both electromagnetic and hadronic showers. The two different types of
calorimeters, namely homogeneous and sampling calorimeter, are presented in section
3.2. The response to electromagnetic and hadronic showers of either calorimeter is
discussed in section 3.3. The calorimeter response to electromagnetic and hadronic
showers leads to different energy resolutions, explained in section 3.4. Lastly an
introduction to the particle flow approach (PFA) to calorimetry is given in section 3.5.

3.1 Particle Showers Development

Particles interact with matter in the calorimeter. By depositing energy, the particles are
creating cascades of more particles. Those cascades of particle multiplication are called
particle showers. We differentiate showers by their kind of fundamental interaction.
Electrons and photons interact with matter only via the electromagnetic force and
therefore these particle develop electromagnetic showers. Showers that originate from
particles interacting via the strong nuclear force, such as protons or pions, are called
hadronic showers.

3.1.1 Electromagnetic Showers

Electromagnetic Showers are started by electrons (positrons), photons or neutral pions
that interact with matter via the electromagnetic force. Photons interact due to the
photoelectric effect, due to Compton scattering or due to pair production, the latter
dominating at energies above 1 MeV.

Electrons (positrons) are interacting with matter mostly via ionization and radia-
tion (Bremsstrahlung) although processes such as Møller scattering, Bhabha scattering
and e+ annihilation contribute, too. At energies above 10 MeV radiation dominates,
below ionization does. The contribution of the different interactions to the energy loss
of an electron in matter are shown in figure 3.1.

At the critical energy both processes, ionization and radiation, are contributing

14



3.1. PARTICLE SHOWERS DEVELOPMENT 15

Figure 3.1: Fractional energy loss per radiation length in lead as a function of electron
energy. The different interaction types of electrons with matter are shown. [15]

equally on average. This energy can be parametrized with [16]

Ecirt =
610 MeV

Z + 1.24
(3.1)

for material in the liquid or solid state. The critical energy for iron is around 21 MeV.
Electrons and photons with an energy above 1 GeV initiate electromagnetic show-

ers. Electrons lose their energy by radiation emitting on average one photon per
radiation length (see below). This radiated photon will undergo pair production start-
ing a cascade of particle multiplication. This is shown in as a simplified illustration in
figure 3.2. This cascade of e−e+ and γ production continues until the energy of the
original particle is fully deposited inside the calorimeter material (or until parts of the
shower are leaked outside).

The depth of the shower at which the number of particles newly produced in the
cascade reaches a maximum is called shower maximum. It increases logarithmically
with the energy of the electron triggering the particle multiplication cascade.

Two scaling factors are describing the electromagnetic shower development above
1 GeV, called radiation length and Molière radius. The radiation length (X0) describes
the longitudinal shower development. For electrons it is defined such that over 1 X0

of material the energy loss equals on average (1 − e−1) = 63.2 %. For photons the
radiation length has a different meaning and is related to the mean free path. It is given
by [16]

λγ =
9

7
X0 (3.2)

The different definitions of the radiation length is due to the fact that high-energetic
electrons are starting to radiate immediately once they encounter the material. Photons
however do not necessarily interact in the same amount of material, hence the relation
to λγ.
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Figure 3.2: Illustration of a particle multiplication cascade initiated by an electron entering
a block of matter. The electron interacts with the material and radiates photons due to
Bremsstrahlung. The photons on the other hand can produce electron-positron due to
pair production. The x-axis represents the shower depth in units of radiation lengths X0.
[17]

The Molière radius (ρM) describes the lateral / transverse shower development and
is defined by the ratio between the radiation length and the critical energy:

ρM ∝
X0

Ecrit
(3.3)

Therefore ρM is less material dependent than X0 as one can express their scaling via

X0 ∝
A

Z2
and ρ ∝

A

Z
. (3.4)

This lateral development is on the one hand due to multiple scattering of electrons,
and on the other hand due to the production of photons and electrons in isotropic
processes such as Compton scattering or the photoelectric effect.

The longitudinal shower development differs in high-Z and low-Z materials as
well as in different energy scales. The critical energy decreases for high-Z materials
implying that the process of particle multiplication continues till lower energies. This
leads to longer shower extensions in high-Z materials as demonstrated in the bottom
plot of figure 3.3. The difference between shower containment of electron and photon
induced showers in the same material can be understood by the relation between X0

and the mean free path λγ. In addition, one should be aware that the scaling of X0

and ρM is only applicable for energies above the critical energy and the part of the
energy deposited by shower particles below the critical energy is not following the
same depth dependence. [18]
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Figure 3.3: Energy (a) and material (b) dependence of the average shower fraction
contained as a function of the radiation length X0. Results of EGS4 calculations. [16]

Interactions of Charged Heavy Particles

The critical energy, at which the energy loss from radiation and ionization is equal,
scales with (m/me)2 with m as the incoming particles’ mass. For a muon this gives a
scaling factor of (mµ/me)2 = 40, 000. Hence for muons and other charged particles
heavier than the electron the critical energy is much higher and up to larger energies
ionization is dominant. For muons ionization dominates in the mean energy loss for
energies below 100 GeV in all absorber materials. [18]

The mean rate of energy loss by charged heavy particles for an intermediate
energy range (10 MeV - 100 GeV) in intermediate-Z materials is given by the Bethe-
Bloch equation: [15]

〈

−dE

dx

〉

= Kz2 Z

A

1

β2

[

1

2
ln

2mec
2β2γ2Wmax

I2
− β2 − δ(βγ)

2

]

(3.5)

Here K equals a constant 4πNAr2
e mec

2, z is the charge number of the incident particle,
Wmax is the maximum energy transfer in a single collision, I is the mean excitation
energy, δ(βγ) is a correction term for the density effect, and β and γ are the particle
velocity and the Lorentz factor.

The equation applied for muons entering copper is shown in the ’Bethe’ region
of figure 3.1 which shows the mean energy loss as a function of βγ = p/Mc. Above
100 GeV radiative interactions dominate, a discussion on the low energy corrections
to the Bethe-Block equation in the region below 10 MeV can be found in [15]. Particles
with an energy close to the minimum of this curve are called Minimum Ionizing Particles,
short MIP’s. For muons this applies to an energy around 2 -3 GeV.

The probability distribution of the energy loss in thin absorber materials such as
scintillators is described by a Landau(-Vavilov) distribution. Compared to a Gaussian
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Figure 3.4: Mass stopping power for positive muons in copper as a function of βγ =
p/Mc. The x-axis is separated into regions for different models. [15]

distribution the Landau distribution is highly-skewed with a long tail towards higher
values. Therefore the most probable values (MPV) for the energy loss is quite different
from the mean energy loss calculated with the Bethe-Bloch equation. The tail is due
to rare collisions with atomic electrons that lead to a high-energy transfer. Due to
this rare events, the mean fluctuates strongly and is experimentally hard to measure.
Hence for energy deposition scaling the most probable value is used.

3.1.2 Hadronic Showers

Figure 3.5: Illustration of a hadronic shower. Its different energy components are high-
lighted and labelled. Detailed explanations can be found in the text. [19]
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Hadronic showers are initiated by charged or neutral hadrons interacting with
matter. In addition to the electromagnetic force, the strong interaction plays an
important role in hadronic showers. The energy deposition of the hadronic shower
can be categorized into different energy components shown in figure 3.5. A rough
difference can be made between the electromagnetic and the hadronic part of the
shower.

The electromagnetic energy component behaves like the electromagnetic shower
described previously. It is mainly due to neutral pions that decay into two photons
producing an electromagnetic cascade. These neutral pions have a very short lifetime
in the order of 10−7 s. The fraction of the electromagnetic energy on the whole
shower energy increases on average with the incident particles’ energy, but can vary
significantly on an event by event basis. This energy dependence leads to a non-linear
calorimeter response for the electromagnetic fraction in ratio to the hadronic fraction
of the shower.

The non-EM energy corresponds to the energy deposited through the strong in-
teraction and in nuclear interactions such as spallation and ionization. Such protons
released by nuclear spallation carry about 50 - 100 MeV per particle.

The invisible energy phenomenon refers an energy fraction that is ’lost’ trough nuclear
binding energy. The energy needed for the nuclear interaction between a hadron
and a nucleus releasing protons and neutrons is not contributing to the signal of
the calorimeter and is hence ’invisible’ in the detector response. The amount of
invisible energy can fluctuate largely between showers of same energy which limits the
resolution of hadronic calorimeters. Furthermore this phenomenon leads to hadronic
calorimeters in general being non-compensating. Compensating calorimeters detect
equal amounts of energy of the hadronic and electromagnetic shower fraction, which is
not the case when a part of the hadronic energy cannot be detected as this phenomenon
does not apply to the electromagnetic part.

The escaped energy is defined as energy deposited in neutrino production which
cannot be detected either.

A hadronic shower is developing on a different length scale due to the difference
between nuclear and electromagnetic cross-sections. In general a hadronic shower is
spread more in longitudinal as well as in lateral direction. The scaling is given by the
nuclear interaction length, short λint. It is defined by the mean distance or mean free
path a hadron is travelling before having lost (1 − e−1) of its energy due to nuclear
interaction. λint is generally much larger than X0 and is given by [20]

λint =
A

NA ρ σinel
≈ 35A1/3 g/cm2 (3.6)

with ρ begin the material density and σinel the inelastic cross section. Usually the
inelastic proton cross section is used, neglecting energy and particle type dependence
on incoming particle. For iron λint is about 132 g/cm2 or 17 cm. The depth of the
shower increases logarithmically with the energy just as it does for electromagnetic
showers. However, shower leakage can vary significantly due to fluctuations in the
shower development. The lateral shower development on the other hand has an
inverse relationship with the energy. Since the electromagnetic fraction of the shower
scales with energy, a shower at a higher energy is contained in less transverse material
on a 99 % level as the electromagnetic shower is more compact.
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Not all the components of the hadronic shower fraction develop on an relativistic
time scale as the electromagnetic fraction does. The thermal neutrons have the most
important impact on time structure inside the hadronic shower as they can travel
several microseconds to seconds before generating a signal in the calorimeter.

3.2 Calorimeter Types

There are two categories of calorimeters: Sampling and homogeneous calorimeters.
The terminology refers to its configuration. A homogeneous calorimeter consists of only
active material in which particles can generate a measurable signal. The active materi-
als are often scintillating crystals, lead loaded glass or noble gas. These calorimeters
can achieve a very good single particle energy resolution as all energy deposited
inside the calorimeter contributes to the signal.

A sampling calorimeter on the other hand is build with layers of active and passive
material in alternating order. The passive material acts only as absorber and the
energy deposited does not generate a signal response. Using a dense absorber with
a high atomic number allows for a more compact design as the shower produced
are shorter. Examples for absorber materials include steel, tungsten, copper, lead,
or uranium. Various approaches can be made to the exact geometric configuration
and the implementation of read-out electronics for the active material. As the energy
deposited in the passive material does not contribute to the signal a large fraction of
the shower energy is not detected which results in sampling fluctuations and a worse
energy resolution. The frequent material transition of particles inside the calorimeter
adds another layer of complexity. However, the segmentation allows for a layer-
specific signal read-out which can be a big advantage depending on the experiment
and reconstruction algorithm used.

As electromagnetic showers are governed by the radiation length and the hadronic
one by the nuclear interaction length there is a difference in the length scale of their lon-
gitudinal development. Hence in most major experiments the calorimeter is roughly
split into two parts each optimized to detect a respective particle type. The electro-
magnetic calorimeter, the ECAL, is used to measure electromagnetic showers while
the hadronic calorimeter, the HCAL is optimized for measuring hadronic showers.
Optimization can include the choice of active and passive material as well as the
geometry and read-out electronic.

3.3 Calorimeter Response

Due to instrumental constraints only a part of the energy deposited in the calorimeter
is actually measured as a signal. In this section a difference is made between the
response to electromagnetic showers and hadronic showers. As mentioned before
their interaction and energy deposition are governed by different principles which
makes an individual discussion necessary.

In general, the calorimeter response is defined as the ratio of average calorimeter
signal to a unit of deposited energy. [16] In the practical case of a scintillating crystal as
active material this could be a number of photos per GeV. If the calorimeter response
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is constant, one speaks of a linear calorimeter. This implies that the measured signal is
proportional to the incident particles energy.

A useful metric to give the precision of the calorimeter is given by the ratio of the
width σ and the mean energy E of a signal distribution. This ratio σ/E is called the
energy resolution. A lower ratio is regarded as a better resolution. [21]

3.3.1 Electromagnetic Response

Electromagnetic showers in homogeneous calorimeters can be measured with a high
resolution as the whole energy of the incident particle deposits energy with pro-
cesses that create a signal in the active material. Therefore in general electromagnetic
calorimeters are linear. However, non-linearities might be due to experimental con-
straints such as shower leakage or saturation effects in the photodetectors and read-
out electronics. Fluctuations in the shower development are described by Poissonian
statistics. Hence the width of the signal distribution σ is proportional to

√
Nvisible for

Nvisible particles measured in the shower. Since with increasing shower energy the
number of particles in a shower Nshower increases and for homogeneous calorimeters
Nvisible ≈ Nshower, a more precise measurement is possible for higher particle energies.
This means for higher energy the resolution of a calorimeter σ/E decreases. The fluc-
tuations are particle type dependent, so a calorimeter resolution has to be specifically
given for a particle type such as electrons, pions (hadrons) or muons.

In sampling calorimeters Nvisible does not equal Nshower as the particles absorbed
in the passive material do not contribute to the measured signal. Only a fraction
fsampling = Evisible/Eshower of the total shower energy is observed and contribute
to the calorimeter signal. This fraction is called the sampling fraction fsampling and
the fluctuations in Nsampling are refereed to as sampling fluctuations. In general, the
sampling fluctuations should dominate other sources of statistical fluctuations such as
signal quantum fluctuations (i.e. photo-electron statistics), fluctuations in the shower
leakage or fluctuations from electronic noise and other instrumental effects. These
sampling fluctuations are behaving in accordance with the Poissonian statistics and

lead to an energy uncertainty that can be written as σsampling =
√

d/ fsampling · E with

d as the thickness of the active material in mm. The fsampling is often defined by the
calorimeter response to minimum ionising particles (MIPs). [16]

3.3.2 Hadronic Response

The calorimeter response to hadronic particles is more complicate that the one to EM
particles as the energy deposited in the calorimeter has multiple components, measur-
able ones, such as the EM component and the purely hadronic, and not measurable
ones, like the invisible energy.

The energy components and their fractions measured are schematically illustrated
in figure 3.6. The calorimeter response to hadronic showers π can be parametrized as

π = fem · e + (1 − fem) · h (3.7)

with e as the calorimeter response to the electromagnetic fraction of the hadronic
shower, with h as the response to the hadronic one and with fem as the electromagnetic
fraction of the shower. The calorimeter response π is non-linear. One reason for
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Figure 3.6: Schematic illustration of the energy flow in a sampling hadron calorimeter
separating the hadronic and electromagnetic sector. Detailed explanation in the text. [22]

the non-linearity is that fem increases with energy. It also arises due to the invisible
energy phenomenon. In most hadronic calorimeters h < e is true as a part of the
hadronic energy is ’invisible’ to the calorimeter. When e = h a calorimeter is called
compensating. Most hadronic calorimeters are non-compensating as the response to
the electromagnetic and hadronic shower fraction is not the same. If e/h > 1 the
calorimeter is called undercompensating, for e/h < 1 it is called overcompensating.
Response distribution of the measurable electromagnetic and hadronic shower fraction
for an undercompensating are schematically shown in figure 3.7. With a sampling
calorimeter it is technically possible to design a compensating calorimeter by fine
tuning the material and geometric setup.

Figure 3.7: Response functions for the hadronic (non-π0) and the electromagnetic shower
fraction (π0) in an undercompensating calorimeter. The ratio of the mean of the distribu-
tions give e/h = 1.8. [16]

3.4 Energy resolution

The energy resolution of a calorimeter can be parametrized in the following way:
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σ

E
=

√

(

a√
E

)2

+ (b)2 +
( c

E

)2
=

a√
E
⊕ b ⊕ c

E
(3.8)

The first term is called the stochastic term, the second one is the constant term and
the third one is the noise term. The energy E is usually given in GeV and a, b and c are
free parameters usually cited in percent. The terms are added in quadrature as their
origins are uncorrelated. The terms origin will be explained in the following.

The stochastic term is due to intrinsic statistical shower fluctuations and sampling
fluctuations that follow the Poissonian statistics and is therefore energy dependent.
For electromagnetic calorimeters a is of the order of 10 %. For hadronic calorimeters
fluctuations affect the resolution much stronger resulting in an a in the order of 60 %.
A very good energy resolution was achieved in the ZEUS compensating hadron
calorimeter with a = 35 % [23].

The constant term originates from instrumental effects such as inhomogeneities in
the detector layout, dead active material or calibration uncertainties. All these effects
scale with energy and dominate at high energies with b in the order of a few percent.

The noise term describes the uncertainty of a measurement due to electronic noise
in the read-out. The term dominates in the low energy region. For some calorimeters
one assumes the noise to be neglectable and sets c = 0 % which results in

σ

E
=

a√
E
⊕ b (3.9)

3.5 Particle Flow Calorimetry

In detector experiments using traditional calorimetry a particles energy is usually
obtained from summing up all energy depositions in the ECAL and the HCAL. The
resolution of such a calorimeter can be described with equation 3.8. To improve the
energy resolution the particle flow approach (PFA) to calorimetry can be applied. In a
large detector experiment this algorithm combines information of the tracker with
measurements of both the ECAL and the HCAL. The basic concept is that with pooling
the measurements the algorithm can use for every particle the detector part it was best
measured in. While with conventional calorimetry the informations are separately
analysed, an analysis with PFA uses clustering algorithms to separate particles and
analyse them particle-wise, not calorimeter-wise.

Measurements at LEP showed that a typical jet deposits energy as about 60 %
charged particles (mainly hadrons), as about 30 % photons and about 10 % neutral
hadrons [6]. This means approximately 70 % of the jet energy is measured by the
hadron calorimeter which incidentally has a worse energy resolution compared the
ECAL or the tracker (see section 3.4). With PFA the HCAL would only be used to
measure the energy of neutral particles, so only of 10 % of the shower energy increasing
the energy resolution significantly. The charged particles would be measured with
the tracker and the photons in the ECAL. The PFA concept is schematically shown in
figure 3.8.

A limitation of PFA is the confusion term that has to be added to the energy res-
olution equation 3.8. The confusion term increases with beam energy as particle
showers increase in size and overlap. This makes it harder for a clustering algorithm
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Figure 3.8: The concept of Particle Flow Calorimetry. In traditional calorimetry 3.8a
each calorimeter part is analysed individually while in particle flow calorimetry the
particle showers are clustered and tracking information is used to reconstruct the energy
of charged hadrons, the ECAL is photons and the HCAL for neutral hadrons. [24]

to determine which calorimeter hit originated from which particle or jet. Hence this
uncertainty is introduced as confusion.

To achieve a efficient clustering a highly granular calorimeter is necessary in which
small calorimeter cells can be read out individually. For this purpose the CALICE
collaboration is developing highly granular calorimeter to be used in future detectors
that are optimized to make use of PFA. The next chapter 4 introduces this calorimeter
technology.



Chapter 4

The CALICE Analogue Hadron
Calorimeter

For the detector of a future linear collider, such as the concept for the detector of the
Compact LInear Collider (CLIC), calorimeters are developed that are highly-granular
to use the particle flow approach (see section 3.5). A model design for such a CLIC
detector is shown in figure 4.1. The detector aims to achieve a jet energy resolution
of σE/E ≈ 3.5 % above 100 GeV and a time resolution of about 1 ns allowing for the
separation of W and Z boson candidates of about 2.5σ in hadronic decays. [5]

Ultra-low mass vertex detector 
with 25 µm pixels

All-silicon main tracker with 
large pixels and/or short strips

Forward region with 
LumiCal and BeamCal

Fine grained calorimetry used for 
Particle Flow Analysis

λ = 1 + 7.5

Return yoke (iron) 
with detectors for 

muon ID

Solenoid magnet 
B = 4 T, R_in = 3.4 m

11.4 m

12.9 m

Figure 4.1: CLIC detector concept; top view. The hadron calorimeter is shown in light-
green. [5]

A candidate for a HCAL of such a detector (in the figure in light-green) is presented
in this chapter. First the CALICE AHCAL technology and the current prototype is
introduced in section 4.1. Details of the calibration for such a detector are highlighted.
In section 4.2 the test beam campaigns the prototype underwent so far are explained.
A focus is lied on the test beam in May 2018 at CERNs’ SPS. Furthermore the quality of

25
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the data is checked and the Monte Carlo simulation of that test beam setup introduced.
In section 4.3 different ways to calculate the energy resolution with the AHCAL data
are discussed.

4.1 CALICE AHCAL Calorimeter Concept

CALICE (CAlorimeter for LInear Collider Experiment) is an international R&D collabora-
tion whose members develop calorimeter technologies for detectors in future linear
collider experiments. A focus of the collaboration are highly-granular calorimeters for
application of the particle flow approach (see 3.5). The technologies explored include
various approaches for electromagnetic and hadronic calorimeters such as Analogue
Calorimeters and (Semi-)Digital Calorimeters. In the following the Analogue Hadron
CALorimeter (AHCAL) implementation by CALICE will be explained in detail.

4.1.1 AHCAL Technology

The AHCAL is a highly-granular sampling calorimeter separated into active and
passive layers in longitudinal direction, a so called sandwich structure. For the current
design study most of the passive material consists of steel. The active layers are made
of multiple plastic scintillator tiles of a few square centimetres surface area and a few
millimetres thickness. The scintillator tiles are wrapped in reflective foil with one
hole for scintillation photons to be read-out. The read-out is performed with a silicon
photomulitplier (SiPM). Those SiPMs, together with the read-out electronics including
multiple ASIC (application-specific integrated circuit) chips, are soldered onto a printed
circuit board (PCB). The wrapped scintillator tiles are glued on top of the respective
SiPM on the PCB with ideally no air gap in between tiles. This stack of tile and SiPM is
called SiPM-on-tile technology. A picture of a wrapped and unwrapped SiPM-on-tile
is shown in figure 4.2.

The ASIC reads out the SiPM charge and store basically two information: an
integrated charge which corresponds to the energy deposited in the scintillator tile
and a time stamp. This way for each scintillator tile, or calorimeter cell, energy and
time of shower particle is recorded.

4.1.2 AHCAL Engineering Prototype

The 2018 CALICE AHCAL engineering prototype, from now on only refereed to as
’AHCAL’, is the most recent and largest AHCAL prototype developed by the CALICE
collaboration to date. The AHCAL consists of 38 active SiPM-on-tile layers with
approximately 20 mm stainless steel absorber plates in between. This leads to a depth
of ≈ 4 λint.

Each active layer consists of 4 hadronic base units (HBUs) - PCBs integrated with
four ASICs, 144 SiPMs, calibration LEDs, and additional read-out electronics. As
ASIC the SPIROC2E chip was used. All HBUs are tiled with 12x12 = 144 plastic
scintillator tiles of 30x30x3 mm3 size. Hence each active layer consists of 4x12x12 = 576
calorimeter cells. The total surface area of each layer is 72x72 cm2 and the calorimeter
is about 75 cm deep resulting in a calorimeter volume of approximately 0.4 m3. With
its 38 layers the AHCAL has 21,888 channels in total. After completing the assembly
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Figure 4.2: SiPM-on-tile technology: Two 30x30x3 mm3 CALICE AHCAL plastic scin-
tillator tiles (left: unwrapped, right: wrapped in reflective foil) glued on top of silicon
photomultipliers (SiPMs) on a hadronic base unit (HBU)). [25]

99.96 % channels are tested as operational. Figure 4.3 shows one active layer consisting
of four HBUs. In figure 4.4 the whole assembled AHCAL is shown.

For efficient operation in a linear collider the AHCAL can be operated in a power-
pulsing mode. Unlike in normal operation mode, this mode allows to turn off most
of the read-out electronics in between beam collisions which are much less frequent
in linear colliders than in circular ones. The power-pulsing mode leads to extensive
power saving and lower temperature operation.

During the manufacturing of the prototype a process was designed to create a
scalable AHCAL assembly for a future detector. Most of the assembly including HBU
manufacturing, the tile wrapping and glueing were (semi-)automated. A International
Large Detector (ILD) study assumed approximately 8 million channels in the final
HCAL making an efficient production process necessary.

4.1.3 Calibration

A comprehensive calibration chain is necessary to properly calibrate all 21,888 calorime-
ter channels. Every single channel has to be calibrated separately due to non-uniformities
such as unequal tile wrapping and glueing or SiPM and ASIC specific features. Fur-
thermore, a chip by chip calibration is necessary as there are non-uniformities in the
electronics and memory cells of each individual chip.

Two calibration chains are needed, one for hit energy calibration and one for
time calibration. The energy or SiPM charge is read-out as ADC (analogue to digital
converter) and needs to be calibrated into units of minimum ionising particles (MIPs).
The time is stored as a charge TDC (time to digital converter) and is calibrated into
values of nanoseconds.

In addition to ADC and TDC a gain bit is stored as the SPIROC2E chip can store
the ADC either in low gain or in high gain mode. For the low gain mode a different
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Figure 4.3: Whole active AHCAL layer with four hadronic base units (HBUs) of wrapped
tiles and the interfaces for data acquisition, LEDs and power supply. The colour coding
on the wrapped tiles corresponds to the LED location. [25]

Figure 4.4: View on the top of the (opened) 2018 AHCAL engineering prototype fully
assembled with 38 active layers. The picture was taken during test beam at SPS in May
2018.

capacitor is used that reduces the ADC by an intercalibration factor ICHGLG (roughly
factor 20). This way a wider dynamic range in which the capacitors have a linear
response to the charge deposited is achieved. The intercalibration factor is ASIC
specific and needs to be included in the calibration chain.



4.1. CALICE AHCAL CALORIMETER CONCEPT 29

4.1.3.1 Energy Calibration

The following calibrations to the measured raw signal ai [ADC] in channel i are
applied:

• SiPM gain Gi

The SiPM gain Gi is the response difference between one more or less SiPM
pixel firing. It is extracted from a single photon spectrum recorded during a
LED calibration run. The LED runs are runs in calibration mode in which a LED
under each scintillator tile is emitting exactly enough photons for the SiPM to
fire a couple of pixels and record the single photon spectrum. Gi is defined as
the distance between the pedestal and the second photo-electron peak of the
spectrum divided by two. The gain is temperature dependent.

• saturation correction function fsat,i

The SiPM response saturates with increasing photons emitted in the scintillator
tile due to the dead time of the SiPM pixels in Geiger mode. Hence the recorded
ADC charge ai has to be corrected for this saturation effect. In calibration mode
the SiPM response is measured until saturation. A function fsat,i is extracted
from this response and its inverse can be used as the desaturation function f−1

sat,i.

• pedestal subtraction Pi

Specific test beam runs with muons are performed to extract the pedestal and the
MIP constants. For each low gain and high gain mode a pedestal Pi is measured
and subtracted from ai.

• pedestal memory cell offset Oi,m

A special feature of the SPIROC2E ASIC is that all of its 16 memory cells are
slighly different. Depending on in which memory cell (m) ai was stored a offset
factor Oi,m has to be subtracted from the channel wise pedestal Pi.

• intercalibration factors IC
phy
i and ICHGLG

i

As the saturation function fsat,i is measured in calibration mode but applied to

data from the detector in physics mode an intercalibration factor IC
phy
i is applied

to the gain value when applying it in fsat,i. As mentioned above to account for
low gain and high gain mode another intercalibration factor ICHGLG

i is applied
to ai after pedestal subtraction in case ai was recorded in low gain mode.

• MIP constant CMIP
i,p

To compare physics results, values of MIP were chosen as a common energy
scale. For this MIP calibration constants CMIP

i,p are extracted from muon runs

by calibrating the constants such that the most probable value (MPV) of muon
response peaks at 1. This is done by fitting a Landau-Gaussian convolution
function to the channel wise response to muons which is expected to be most
probable at 1 MIP. A complication to the extraction of MIP constants arises
from the two power modes in which the AHCAL was operated - either with or
without power-pulsing. In power-pulsing mode the detector is cooler and MIP
constants differ by about 2 %. Hence CMIP

i,p depend on the power mode p.
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With all the above calibration factors determined the calibrated hit energy Ei in
MIP can be calculated by applying the hit energy calibration as follows:

Ei = f−1
sat,i





(ai − Pi − Oi,m) · ICHGLG
i

Gi

IC
phy
1



 · Gi

CMIP
i,p

(4.1)

If channel specific values could not be obtained, default values are estimated.
All calibration factors are made available to members in CALICE via an internal
database. The database is accessed by the CALICE AHCAL reconstruction software
for event reconstruction and digitalization of Monte Carlo simulations. All events are
stored uncalibrated in the LCIO file format (Linear Collider Input Output) and can be
reconstructed into reconstructed LCIO files or ROOT files, the latter being a common
standard in high-energy physics.

For the analysis in this thesis the energy scale is often given in GeV for easier
readability and comparison with other experiments. This requires an additional MIP-
to-GeV calibration factor fMIPtoGeV . Assuming a linear response of the calorimeter this
factor is derived from a linear fit without pedestal. However, neither for data nor for
Monte Carlo the calorimeter response is exactly linear, as is shown in the upper plot of
figure 6.3 in chapter 6. The factor is particle type dependent due to non-compensating
nature of the AHCAL (see section 3.3.2).

To compute fMIPtoGeV for pion samples the beam energy was plotted against
the mean reconstructed energy (using RMS90; see section 4.3). Before Erms90 was
calculated, the sample selection to both data and simulation was applied as discussed
in section 6.1. The data and the resulting fit parameters are shown in figure 4.5. The fit
has to be performed for data and Monte Carlo simulation separately as there is a slight
difference between data and Monte Carlo is observed, hence data and simulation
specific fMIPtoGeV are used in this thesis (see section 4.2.3).
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Figure 4.5: Plot of beam energy against reconstructed mean energy Erms90 for both data
and simulation for pion samples. Linear fit performed to extract MIP-to-GeV calibration
factor fMIPtoGeV .
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4.1.3.2 Time Calibration

Just like most of the energy calibration, time calibration is performed with muon run
data since interactions with muons as charged heavy particles happen instantaneous
(see 3.1.1). The time information is stored in TDC values and needs to be calibrated to
nanoseconds to have a common time reference in each event. For this purpose a time
calibration chain is necessary as well as a global clock that references the hit time with
the start of the bunch crossing (in a collider experiment) or in general the trigger that
started the event recording.

For the time to be recorded the TDC voltage is ramped up and down in intervals
of 4000 ns. For this purpose the SPIROC2E chip has two TDC ramps for even and
odd bunch crossings (bx) that form together a combined up and down ramping.
Additionally there is a global clock that is turned on and off every 2000 ns and triggers
a new bunch crossing identification numer (bxID) to reference the global event time.

Once a hit occurs the bxID as well as the current TDC value is recorded in one of
the SPIROC’s 16 memory cells. From the slope of the TDC ramp and its pedestal the
time in nanoseconds can be calculated so both has to be channel wise & memory cell
wise calibrated. A detailed instruction on how the time calibration was performed for
prior prototypes can be found in [17].

At the time this thesis was written the time calibration was not yet finished for
AHCAL test beam data. Only in simulated Monte Carlo data the timing was consider,
however no detector like digitalization was applied. Instead simply a 1 ns Gaussian
smearing was applied to the accurate Monte Carlo timing. This 1 ns time resolution
of the HCAL is one of the design goals for a future CLIC detector [5]. In practice the
time resolution is limited by front-end electronic effects.

4.1.4 CALICE Software Framework

Event reconstruction and digitalization of simulation was performed by the CALICE
software that is based on the ILCsoft framwork [26]. The latest version available
at the time v4-12 of the CALICE software was used for all events analysed in this
thesis. The CALICE software framework was developed over many years by several
members of the CALICE collaboration including senior scientists and students. The
software uses several Marlin processors to perform the energy reconstruction. During
the reconstruction several hit-, event-, and layer-wise variables are calculated and
written into root tree branches. Among those are number of hits (’nHits’), the sum

∑ Ei of all hits in one energy (called ’energy sum’ or ’energySum’), hit energies, hit
coordinates in X, Y, Z (named I, J, K coordinates), centre of gravity in X, Y, Z and
layer-wise number of hits and energy sum.

During the reconstruction a cut on the hit energy values is applied. All recon-
structed hit energies below 0.5 MIP are rejected because those hits cannot be distin-
guished from random noise.

An additional pre-release processor was used to find the active detector layer
in which the hadronic shower starts, namely the layer in which the first hadronic
interaction is detected. A detailed description of how the algorithm works can be
found in [27]. For the data samples the shower start finder based on a moving average
window has been applied, while for the Monte Carlo samples the Monte Carlo shower
start was used.
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4.2 Test Beam Campaigns

The AHCAL prototype was fully assembled in early 2018 and underwent multiple
test beam campaigns since then. In April 2018 it underwent tests at DESY where it
was tested with an electron test beam to acquire preliminary calibration constants. In
May 2018 the AHCAL was shipped to CERN in Geneva to be used in three separate
test beam campaigns over the following months. All three campaigns were carried
out at the CERN North Area in beam line H2 of CERN’s Super Proton Synchrotron
(SPS). Campaigns took place for two weeks each in May 2018, June to July 2018 and in
October 2018. The author of this thesis took test beam shifts for one week each during
the May and June campaign.

For the May campaign only the AHCAL engineering prototype itself was tested.
Multiple particle types and energies as well as the power pulsing mode were tested. A
difficulty in the May test beam was a large electron contamination in the low energetic
pion beams due to far from optimal beam line settings. This problem was resolved
in the later campaigns. Further details will be given in the next section as the data
analysis in this thesis mainly deals with data taken during the May campaign.

For the June campaign a former AHCAL prototype with only 12 layers with each
1 HBU and 7.4 cm steel absorbers was used as tail catcher. The purpose of the tail
catcher is to capture a part of the shower that is not contained in the main AHCAL
itself (shower leakage) and is therefore positioned centred behind the main AHCAL.
Additionally a ’pre-shower’ layer consisting of 1 HBU was glued in front of the
detector to potentially reject showering particles that interact before they enter the
main AHCAL.

Furthermore an additional active layer was added after the May campaign: The
’Tokyo layer’ was positioned in layer 37 resulting in a total of 39 layers for the enhanced
AHCAL engineering prototype. This layer was developed in Tokyo and offers a
larger tile size with a surface area of 60x60 mm2. With this layer a mixed calorimeter
granularity is tested. Preliminary results from this study can be found in [28].

Having successfully tested the power pulsing mode in May, the later test beam
studies were mostly performed in power pulsing mode.

The October campaign was undertaken together with the Compact Muon Solenoid
(CMS) collaboration and their prototype for a High Granularity Calorimeter (HGCAL)
as a replacement for the endcap calorimeters in the CMS detector during the High-
Luminosity upgrade to the LHC (HL-LHC) [29]. The CMS HGCAL boasts a similar
SiPM-on-tile technology as the CALICE AHCAL, but with a finer granularity. In this
test beam the AHCAL was used as a tail catcher for the HGCAL and was placed
centred behind the HGCAL. The data acquisition systems for both calorimeters were
fully integrated into a common framework.

After the October campaign the AHCAL prototype was shipped back to DESY to
undergo further test beams and studies in 2019 and onwards. The analysis efforts for
all test beam campaigns are ongoing.

4.2.1 Test Beam Campaign in May 2018 at SPS

The studies in this thesis were performed with test beam data taken during the
campaign at SPS between May 9-23, 2018. The photo 4.6 shows the AHCAL setup.
The 38 layers are placed in a specially designed metal box of the size of a possible ILD
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Figure 4.6: May 2018 test beam setup at SPS north area, beam line H2. The covered
AHCAL prototype on a movable stage with DAQ system and cooling behind the detector.
Beam incident is in the front of the detector from this point of view.

module. A water cooling system for the power interfaces and the data acquisition
electronics are placed behind the calorimeter. The AHCAL sits on a movable stage that
can be moved in x- and y-direction. With the movable stage a full detector scan could
be performed. This was especially important for muon calibration runs as enough
statistics for every single cell to be calibrated has to be recorded.

During the two weeks of test beam a great number of runs were performed,
including LED calibration runs and standard test beam runs with negative muon,
electron or negative pion beams of different beam energies, detector positions and
powering mode. The total number of events recorded per particle type and energy
can be found in the appendix under B. However, the numbers given do not account
for different particle type contamination, noise triggered events and double particle
events.

To choose the particle type several beam instruments such as absorbers, bend-
ing magnets and collimators can be adjusted upstream of the beam line. The SPS
accelerates a primary proton beam to about 400 GeV, part of which is directed onto
a target which results in the production of various particle types. From this target a
secondary beam is channelled off that can be purified by usage of beam instruments.
Muons are obtained by stopping a pion beam with a concrete absorber block as the
muon cross section is very low. Hence all pion runs include muons, too. For pions an
additional contamination through electrons is possible if they are not filtered correctly.
This appears to have lead to additional electron contamination in low energy pion
runs (< 20 GeV) as is shown in section 4.2.2.
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4.2.2 Data Quality Analysis

Basic data quality checks for the pion test beam data for the May and June campaign
were performed by the author of this thesis. The goal of the data quality analysis was
to check the quality and correct labelling of all pion runs. The analysis of data quality
and quantity was already started during the test beam campaigns itself including the
continuous update of a spread sheet with all relevant run information in addition to
the standard electronic log book. For the May and June campaigns the data quality
analysis was finished during the CALICE AHCAL Tokyo Analysis Workshop in August
2018. In the following results for pion runs of the May campaign are presented.

For all runs the labelling was checked and they were sorted into three categories
and flagged accordingly: good, check, and bad. The goal was to easily screen the runs
for good runs that can be used for further analysis. Runs were marked as check if it was
believed that further calibrations or an accurate particle selection could make the run
usable. Bad runs were flagged if the runs were not usable for detailed analysis due to
an error in the experimental setup.

Figure 4.7: Energy sum (∑ Ei) distributions for all 40 GeV pion runs measured during the
May test beam campaign. Power-pulsing mode specific calibration constants are applied.
The peak bin position is marked on the x-axis for all runs.

The following variables were compared for all standard runs: energy sum (∑ Ei),
number of hits (nHits) and centre of gravity in X and Y direction. All runs with
common beam settings without any beam optimization or other detector tests are
used. Those were marked in the log book accordingly. The comparison plot for 40 GeV
pion runs is shown in figure 4.7. Further comparison plots can be found in the annex
under C.

In the histograms a peak is observed around 60 MIP. This peak is due to muon
contamination and ’punch-through’ pions, which do not start a hadronic shower in the
AHCAL. The most probable energy deposition for muons is calibrated to 1 MIP, but
on average a muon deposits more energy per layer as the energy deposition follows a
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Landau distribution. Therefore the ’muon peak’ is above 38 MIP. Pions that shower in
the calorimeter deposit all or a large part of their energy in the calorimeter. This leads
to a second peak in the Esum distribution at a larger energy than the ’muon peak’.

The position of the peak bin position of this second ’pion peak’ is marked on the
x-axis and compared with same beam energy runs. This way outliers could be easily
spotted. Outliers were defined by a deviation of about 5 %. Additionally the peak bin
positions were plotted against the run number which increased with every new run
to be able to spot systematic differences that occurred over time.

During the quality analysis a few features were noticed:

• One 100 GeV run was marked as an outlier which is visible from the broader
energy sum distribution. According to the log book this run was taken without
one specific absorber upstream of the beam line. Therefore the broader distribu-
tion can be explained due to a larger electron contamination. It was additionally
noticed that one specific collimator (XCHV.021.133) was fully opened for all
100 GeV runs recorded resulting in a smeared nHits distribution. This collimator
is of importance to define the exact beam momentum. As this collimator was
opened one cannot be confident that all events recored are actually 100 GeV
events. The runs could be usable once a suitable particle and momentum identi-
fication algorithm is developed and are therefore all 12 runs labelled check to be
reviewed in a later analysis. In this thesis the 100 GeV runs were not considered
further. The number of hits histograms for all 100 GeV runs can be found in C.1.

• A systematic difference in the energy sum between runs with and without power
pulsing mode of about 2 %. This difference is due to usage of the same MIP
calibration constants for both modes although the temperature of the AHCAL
is lower in power pulsing mode. In later calibrations this difference could be
resolved by applying power-pulsing mode specific calibrations (see section
4.1.3.1). An example for the energy sum histograms of all 40 GeV runs with and
without power mode specific calibrations can be found in C.2.

• A large electron contamination of the 10 and 15 GeV runs. This was already
noticed during the test beam campaign and was resolved with optimized beam
line settings in later campaigns. As this is a systematic issue for all low energy
May runs, all those runs were flagged as good and were used in this thesis. A
comparison between May and June pion runs of 10 GeV is shown in C.3. Electron
rejection cuts are discussed in section 6.1.

• One 80 GeV run was flagged as a check run to be reviewed later as a shifted
energy sum distribution was noticed. The outlier can be seen in plot C.4.

Overall the data quality of 137 out of 150 pion runs of the May test beam are marked
as good. Therefore for the rest of the analysis in this thesis there is no differentiation
between data of runs with the same beam energy made as only ’good’ runs are
considered as data. The same analysis has been performed for the pion data taken
during the June campaign, but is not subject of this thesis.
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4.2.3 Monte Carlo Simulation

A Monte Carlo (MC) simulation of the AHCAL and the test beam setup has been de-
veloped by members of the CALICE AHCAL group using Geant4 with the simplified
scripting interface DD4hep. Simulation parameters such as additional material in
front of the calorimeter, detector position shifts, the influence of the choice of Birks’
constant and exact material compositions are still under investigation and further
improvement of the simulation accuracy is possible.

The simulation takes into account the geometry of the prototype and its materials.
Realistic detector effects need to be applied hence a digitalization step is introduced.
This step is performed on the simulated samples to bring them into the same uncali-
brated state as the data samples with channel-wise irregularities and hit energies in
values of ADC instead of GeV. Exactly like the real AHCAL, the simulation needs to
be calibrated as well, i.e. with MC muon runs and the same Landau-Gaussian convo-
lution fit to tune the MPV to 1 MIP. Further details can be found in [30] Afterwards the
digitalized MC samples are reconstructed with the same energy calibration software
as discussed in section 4.1.4. Detailed steps of the digitalization process can be found
in [27].

For the production of the simulation samples in this thesis the most recent version
as of March 2019 has been used. As simulation samples negative pions were simulated
in the energy range from 10 - 80 GeV with a 1 GeV spacing. The simulation needs
extensive computing resources, especially disk space, nevertheless 100k events per
energy were produced. After cuts applied (see section 6.1) this leaves more than 32k
events per energy.

Additional material is added in the front of the detector to tune the response
to electrons of the AHCAL in comparison to data. The material is 8.785 mm steel
which corresponds to ≈ 1

2 X0. The beam is positioned 1 m away from the centre of the
AHCAL with an offset to the centre by 15 mm in x and y direction. This means the
beam is aiming in the middle of tiles next to the AHCAL centre.
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Figure 4.8: Normed histograms of 40 GeV pion samples for data and for Monte Carlo
simulation.
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However, the Monte Carlo simulation in its current implementation deviates from
data. Figure 4.8 shows a comparison for the number of hits and the energy sum per
event for both data and Monte Carlo. For both figures of merits the peak value in
the simulation is approximately 15 % larger than in data. Hence also the 15 % larger
fMIPtoGeV for MC (see section 4.1.3.1). Therefore a good comparison between data and
simulated samples cannot be made in this thesis.

To improve the simulation, several effects are currently under investigation by
members of the collaboration. This includes the influence of the exact constant used
in Birk’s law, a comparison of different physics lists in Geant4 and detector effects
such as the SiPM saturation model in the digitization step.

4.3 Calculating the energy resolution

Ideally the energy distribution for one energy is of Gaussian shape. In that case one
can determine a resolution σ/E by calculating E as the mean energy and σ as the
standard deviation of the energy distribution. Approximately same values could be
taken from the fitting parameters of a scaled Gaussian distribution

f (x; µ, σ, a) = a · e
− (x−µ)2

2∗σ2 (4.2)

with a as a scaling factor and the height of the distribution.
However, the energy distributions might not be Gaussian shaped, but rather have

a tail towards lower and/or higher energies. A low energy tail can be caused by not
fully containing all showers in the calorimeter which results in a lower total energy
of the measured event (shower leakage). A high energy tail can be caused by multi
particle events that occur during test beam, but are not modeled in the simulation.

For Monte Carlo samples, this tail is mainly due to shower leakage. If one cuts
this distributions with requiring no hits in the first and last layer, fully in the AHCAL
contained showers, this tail towards lower energies almost completely disappears.
However, by requiring a particle shower fully contained in the calorimeter, one
significantly reduces the number of available events as well as biasing the hit energy
distribution. This bias is due to a higher electromagnetic content of the hadronic
shower when one requires a shorter longitudinal shower expansion.

For quoting an ’energy resolution’ in the following chapters we will not perform a
cut on the shower end because of the bias on the electromagnetic shower fraction as
well as the limited statistics that would be left from the available data and MC samples.
Hence we want to determine the ’mean’ and the ’width’ of energy distributions with a
tail towards lower energies. Multiple options to determine these parameters have been
considered and will be outlined in the following. It is important to state that because
of the non-Gaussian shape of the energy distributions in this thesis the resulting
’energy resolution’ cannot be easily compared to other calorimeters. The metric chosen
here should only be used to compare results for the same calorimeter and the same
method as well as for comparing different reconstruction algorithms on the same
event samples as is done in this thesis.

The following options were considered:

• RMS
Using the mean and the standard deviation of the whole distribution. Here the
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whole distribution including the low energy tail and potential fluctuations are
taken into account. For consistency with the root software framework standard
deviation and RMS (Root Mean Squared) are used in this thesis synonymously.
The standard error of the mean is estimated with σ/

√
N and of the RMS with

σ/
√

2N with σ as the standard deviation and N as the number of events.

• RMS90
Using the mean and the standard deviation of 90 % of the distribution. Those
90 % are chosen by the smallest energy / x-axis window in which 90 % of all
events are contained. The reasoning behind mean90 and RMS90 is that one
would like to show parameters unaffected by high- or low-energy fluctuations
that usually limit the resolution of any hadronic calorimeter. As no fitting
procedure is involved quoting these numbers is very robust no matter how the
distributions look. Furthermore for a Gaussian distribution the RMS can be
estimated by approximately 1.26 x RMS90. [6]

In practice this smallest window can be found by sorting the values of the
distribution and calculating the RMS of all any continuous window in which
90 % of events are contained. The window with the smallest RMS is picked
accordingly. The exact implementation as Python code can be found in A.

• 2-stage Gaussian fit in ±2σ

Here a Gaussian function (equation 4.2) is fitted to a part of a histogram of the
distribution. This in done in two stages. In the first stage the fitting range of
the Gaussian function is chosen in x − 2σ < x < x + 2σ. Afterwards the fitted
parameters µGaussian, σGaussian of the first stage Gaussian are used to determine
the fitting range for the second stage fit in µGaussian − 2σGaussian < x < µGaussian +
2σGaussian. The fitted parameters µGaussian,stage2 and σGaussian,stage2 are used to
quote the mean and width of the distribution. This way the low energy tail of
the distribution is only partly taken into account and very high- or low-energy
fluctuations are neglected. Furthermore µGaussian,stage2 represents very good the
position of the peak of the distribution.

This fitting procedure was used in previous CALICE studies such as [21]. The
exact fitting range can be optimized i.e. by fitting in an asymmetric range around
the mean. In general, for Gaussian distributions it is expected to have 95 % of all
data within the ±2σ interval.

• GaussExp function
This function is a convolution of a Gaussian function and an exponential one. It
is introduced in [31] and is a simplified version of the Crystal Ball function. The
GaussExp function with the exponential tail towards lower values is given by

f (x; µ, σ, k, a) = a · e−
1
2 (

x−µ
σ )

2

, for
x − µ

σ
≥ −k

= a · e
k2

2 +k( x−µ
σ ), for

x − µ

σ
< −k

(4.3)

with µ and σ as the mean and the standard deviation of the Gaussian, k describes
the transition point between the Gaussian function and the exponential tail, and
a is a scaling factor that gives the height of the distribution. More specifically the
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transition point is given by µ − kσ. This function can describe the distributions
very well, but it might be misleading if the k parameter is low as the Gaussian
width σ is here fitted in the range µ − kσ < x < ∞. This way depending on the
k parameter as large part of the distribution is neglected when quoting the σ.

The resulting fits and the fit parameters can be found in figure 4.9. Comparing the
σ parameters it is apparent that the GaussExp function gives the lowest width due
to the low k value. The mean of 90 % of the distribution is comparable to the µ from
the Gaussian fit within ±2σ, but the width σ is a bit smaller. For this distribution the
estimation 1.26 x RMS90 ≈ σGaussian,stage2 does not hold true.
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Figure 4.9: Histogram of a 60 GeV pion Monte Carlo sample. A Gaussian (equation 4.2)
and a GaussExp function (equation4.3) is fitted to the histogram. Additionally the RMS
and the RMS90 is stated, here µ and σ denote the mean and the standard deviation. A
detailed explanation can be found in the text. The sample was prepared with shower
start cut that requires the shower start in the first five layers and at least 60 hits per event.
A binning width of 50 MIP was chosen.

The final choice of metric is arbitrary. RMS90 has been chosen as it is easily
to replicate and was used already in former studies of members of the CALICE
collaboration and the wider PandoraPFA community such as [6]. It gives an estimate
of the distributions width without overemphasizing the shower leakage or fluctuations
that limit the resolution. Furthermore the method is very robust as no fit is involved
and even can applied to predicted distributions of neural networks that exhibit non-
physical features as can be found in chapter 6. Hence, in this thesis RMS90 is used to
determine E and σ in the energy resolution to which henceforth is refereed to without
quotation marks.



Chapter 5

Machine Learning

Physicist have been using machine learning algorithms already for the past two
decades to analyse the large data sets emerging from high-energy physics experi-
ments. These algorithms include boosted decision trees (BDTs) as well as neural
networks (NNs). The improved data analysis capabilities of trainable algorithms
made contributions to finding the Higgs boson in 2012 [1, 2]. The reliance on data
analysis with machine learning algorithms in high-energy physics is likely to grow
even further in the future [32].

In the following chapter, some general concepts of machine learning are intro-
duced, as well as specific architectures of neural networks used for the physics analysis
in this thesis. Section 5.1 introduces the basic ingredients one needs to train a algo-
rithm. The concepts behind the minimization of the loss function with an optimizer
as well as the terminology of Deep Learning are explained. Basic layers in a neural
network, such as fully connected layers and convolutional layers are introduced in
section 5.2. The software frameworks used for the implementation of the algorithms
in this thesis are explained in section5.3.

5.1 Machine Learning Basics

Machine Learning (ML) referees in general to any kind of algorithm with variables that
are optimized using data to make predictions. With increasing data storage capabilities
and high performance computing infrastructures becoming widely available, ML is
evolving as a common tool for statisticians and scientists in many industries and
scientific fields. Often ML is refereed to as a subfield of artificial intelligence (AI)
although the term is loosely defined.

In high-energy physics ML has been used to optimize (or train) algorithms for
many years since large labelled datasets are available which improves their capability.
ML is usually applied to complex, high-dimensional problems that cannot be solved
by traditional statistical methods. However, conceptionally ML is very similar to
’fitting’ a function to a dataset via a χ2 minimization. The same is done in ML where a
metric, the loss, is minimized during the training and the parameters are optimized
with an algorithm referred to as optimizer.

With modern optimization algorithms and simple programming implementations
(see section 5.3) it has become technically straightforward to train algorithms with a

40
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very high number of parameters up to several millions.
To perform supervised ML one needs a couple of ingredients [33]:

• A dataset D(X, y) with X as a matrix of independent variables and an obser-
vation or ’truth’ label y per set entry. Generally the dataset is split into two
statistically independent sets, a training Dtrain(X, y) and a testing Dtest(X, y) set.
Only Dtrain(X, y) is used to optimize the model that predicts y from the X. After
the training the model performance is evaluated based on its ability to predict y
on Dtest(X, y). Often the D(X, y) is split into a very large portion Dtrain (≈ 80 %)
and a much smaller part Dtest (≈ 20 %). This mutual exclusive splitting of the
dataset is called cross-validation. Additionally one might choose to evaluate the
performance of the model already during the training by splitting from Dtrain

another validation set Dvalidation that is used to validate the models performance
after each training step.

• A model f (x, w) which is a function f : x → ŷ of parameters or weights w. The
model is a fitted to the training data to describe y by optimizing the weights w.
The model f is defined by the user prior to training. Usually f is a non-linear
model due to the introduction of non-linear functions, i.e. activation functions
(see section 5.2.2). The exact layout of its functional relationship is called model
architecture for neural networks and examples are given in section 5.2.

• A loss function L( f (x, w), y) (also called cost function) is a metric to evaluate the
performance of the model. This could be for example mean squared error LMSE =
1
N ∑( f (x, w)− y)2, with the sample size N. The model is optimized by minimiz-
ing the loss function with the Dtrain(X, y) = D(Xtrain, ytrain) training set. The
optimized weights ŵ are determined by ŵ = arg minw{L( f (xtrain, w), ytrain)}.
An overview on different loss functions is given in section 5.1.1.

• An initializer w0 that sets the initial values of the weights w before the model
training is started. The values are randomly chosen based on the type of initial-
izer. A recommendable initializer depends on the layer type and the activation
function used in a neural network. A popular choice is a weights initialization
with values randomly chosen from a Gaussian distribution with a mean zero
[34].

• An optimizer that is used to find the weights w that minimize the loss function.
This is basically done by adjusting w in the direction where the gradient of
loss ∇wL(w) is large and negative (’gradient decent’). Due to this constant
adjustment of w by the optimizing algorithm the training is an iterative process.
For a more detailed discussion see section 5.1.2.

Current uses of ML in particle physics can roughly be separated into three different
task: classification, regression and generation. Classification tasks involve the model to
separate the data into different classes. A popular example is an image classification
algorithm that can distinguish between pictures of cats and dogs. A more physics
relevant tasks could be top-tagging [35] or separation of particles in a calorimeter
(see section ??). Regression tasks involve the prediction of a continuous number such
as the age of a person or the energy of a high-energetic particle. Most of the results
of this thesis were produced with a regression ML algorithm and a discussed in



42 CHAPTER 5. MACHINE LEARNING

detail in chapter 6. Generation involves the training of an algorithm that can produce
similar, but not identical examples of the training set. A fun example is the automatic
generation of internet memes [36]. In physics generation networks can be used to
create a fast alternative for Monte Carlo simulations [37].

5.1.1 Loss Functions

The loss function L( f (x, w), y) gives a metric to evaluate the performance of the model
f (x, w) in predicting the observation y. For regression problems a widely used loss
function is mean squared error (MSE):

LMSE =
1

N ∑( f (xi, w)− yi)
2, (5.1)

with the sample size N. Alternatively variations of this error estimator, such as the
relative error, can be used for the performance estimation. The right loss function
used depends highly on the task the model is supposed to fit.

In this case these loss functions apply to supervised learning which implies that for
each data entry the truth observable y is given to the model optimizer.

5.1.2 Optimizers

The optimizing algorithm (called optimizer) is used to find the weight values ŵ which
minimize the loss function. This is basically done by adjusting w in the direction
where the gradient of the loss function is large and negative. Such an optimizer
ensures that a local minima of the loss function is found.

The optimizer algorithm and its settings have to be set before the training begins.
During the training the loss is evaluated in specific intervals. Usually these intervals
are set by the batch size which defines how many data samples are computed in the
loss function before the optimizer changes the weights. This optimizing of weights to
find the minimum loss is an iterative process that ends once an end condition is met.
Usually these end conditions are either a certain amount of iterations over the whole
training set (called epochs) or when the loss of the validation sample reaches a plateau;
this is called convergence of the model.

The difficulty in optimizing the model lies in the high-dimensional parameter
space that is possible. Modern models have often a very high amount of weights
(sometimes tens of millions) and the function the model is supposed to approximate
is learned from data samples with hundreds of thousands or even millions of entries.
Furthermore, many local minima are possible to reach for the loss function in such
a high dimensional space. Therefore it needs a sophisticated optimizer to achieve a
good model performance.

The simplest gradient decent (GD) algorithm updates the weights w according to
the equation

vt = ηt∇wL(wt)

wt+1 = wt − vt.
(5.2)

This equation introduces the learning rate ηt that determines the step size in the
direction of the gradient with which wt is updated at time step t. For a sufficiently
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small ηt L(wt) converges to a local minima. For ML the choice of the learning rate
is an important consideration as a small ηt likely reaches a local minima, but at a
great computational cost, while a large ηt might not be able of find a local minimum.
Therefore one might start with a large ηt and reduces it after a certain amount of time
t. This process could be automated like in Newton’s method.

The GD optimizer implies that the weights are updated based on the whole dataset.
One can improve the algorithm by stochastically choose a small subset and apply
GD to many of those data subsets, called minibatches. This leads to an optimizer
called Stochastic Gradient Descent (SGD). With SGD it is less likely that the optimizer
gets stuck in a local minima (due to introduction of the stochastic selection of the
minibatch) and it is computationally much less heavy.

A popular optimizer that adapts the learning rate without calculating the exact
Hessian (like in Newton’s methode) is called Adam [38]. Adam has been used in this
thesis as optimizer for all models. The default starting parameters suggested in [38]
were employed including a learning rate ηAdam = 0.001.

To calculate the gradients the optimizer uses another set of algorithms called
backpropagation. Basically the backpropagation is an implementation of the chain
rule for partial differentiation. A nice and simple explanation of backpropagation
can be found in [39]. A more detailed explanation of the optimizers as well as
backpropagation can be found in [33].

5.1.3 Deep Learning

With the development of modern optimizers such as Adam and high performance
computers and GPUs becoming cost effective is became possible to effectively train
deep neural networks (DNN). These machine learning algorithms consists of many
layers stacked onto each other, hence the term deep. These are very successful ML
algorithms that are becoming popular in many fields. This lead to deep learning (DL)
as a subfield of machine learning.

In DL the algorithmic approach is moving towards high dimensional data sets
with little preprocessing and sophisticated deep machine learning architectures. The
basic idea is that the algorithm shall receive all the available information to solve
a given problem. The statistician is thinking more about how the architecture can
be designed from a tool box of layers and functions. In the following section ML
architectures are introduced.

5.2 Machine Learning Architectures

Today’s advanced machine learning algorithms are often variations of artificial neural
networks (ANNs). A basic ANN consists of one or multiple layers of ’artificial neurons’
stacked onto each other. A basic distinction is made between visible and hidden layers.
The visible layers are the input and output layers, basically the first and the last layer
of the model. All layers that are in between are ’hidden’ inside the model. This
hierarchical structure of network layers is called model architecture.

With complex problems to predict it is often not known a-priori which model
architecture leads to the best performance result. Therefore in many studies (as well
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as in this thesis) multiple models are compared. Usually the figure of merit for this
comparison is the loss on the test sample.

In the following sections commonly used machine learning layers are introduced.

5.2.1 Fully Connected Layer

A basic representation of an artificial neural network (ANN) is shown in figure 5.1.
The ANN is inspired by biology in the sense that it consists of artificial neurons and
connections (synapses) in between those. The neurons are connected to all other
neurons of the neighbouring layers. The strength of these connections are trainable
parameters called weights. The neurons itself perform a very simple computation as
each neuron (sometimes called node) computes a weighted sum of the neurons in the
previous layer it is connected to. An additional trainable parameter, called bias, is
added to to each neuron.

input	layer hidden	layer output	layer

weights weights

bias bias

BA BB

wA
1,1

wA
2,1

wA
1,2

wA
2,2

wB
1,1

wB
2,1

I1

I2

O1

N1

N2

bA1

bA2

bB1

Figure 5.1: Illustration of a simple artificial neural network with two input values, one
hidden layer with two neurons, one output node and bias nodes. The information flow
from the input to the output is depicted with arrows.

The calculation performed in each neuron is defined by the equation

f (xi, wi, b) = b + wi · xi (5.3)

with xi as the values of the neurons in the last layer, wi as the trainable weights
connected to xi and b as the trainable bias node. The operation · implies the dot
product in vector multiplication.

For the practical example in figure 5.1 this implies that the following computations
are performed in neuron N1 and N2 of the hidden layer and in O1 as the output value



5.2. MACHINE LEARNING ARCHITECTURES 45

of the ANN:

N1 = bA
1 + (I1wA

1,1 + I2wA
2,1)

N2 = bA
2 + (I1wA

1,2 + I2wA
2,2)

O1 = bB
1 + (N1wB

1,1 + N2wB
2,1)

(5.4)

The example here is given with one hidden layer of two neurons. This one hidden
layer is called a fully connected layer. A larger ANN might consists out of multiple
fully connected layers stacked behind each other in information flow direction with
each layer consisting out of several or even hundreds of neurons. If many layers are
stacked onto each other we speak of a deep neural network (DNN).

Following the linear equation 5.3 a model consisting of only these layers could
but model a linear function. To introduce non-linearities into the model activation
functions are used. These functions are applied to each neuron and are therefore
affecting the next layer. One can write the operation of each neuron with an activation
as fact( f (xi, wi, b)). Commonly used activation functions are introduced in the next
section.

Furthermore, the layers can be connected to layers with different computations
performed, such as convolutional layers or locally-connected layers introduced below.

5.2.2 Activation Functions

With an activation function (AF) in between layers a non-linearity can be introduced
into the model. This way the model can be fitted as a non-linear function to a dataset.
Usually activation functions are simple non-linear functions without any trainable
parameters. A few popular activation functions are presented in figure 5.2.

For many machine learning tasks the activation function of choice is the Rectified
Linear Unit (ReLU) function (figure 5.2a) as it is very easy to compute. With a enough
neurons in a layer and a ReLU activation function any (non-)linear function can be
modelled. A visual proof of this statement can be found in [39]. An alternative is the
Leaky ReLU function (figure 5.2b) which has non-vanishing gradients over the full
space of possible inputs. Whenever Leaky ReLU was used in this thesis, the parameter
is set to α = 0.01.

The Sigmoid function (figure 5.2c) can be used in the last network layer for a
binary classification. For completion a linear activation function (figure 5.2d) is men-
tioned which basically corresponds to no activation function use at all. For regression
problems the last layer often should be a linear function.

For classification problems one additional function is worth mentioning: The
Softmax function, that is defined by

f (xi) =
exi

∑i exi
(5.5)

for i categories. This function computes a normalized probability distribution for each
input value xi.

5.2.3 Convolutional Layer

Many datasets, such as images of real world objects, posses symmetries and inherent
structure. These symmetries can be exploited by specific layers structures. In com-
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Figure 5.2: Four activation functions used in neural network architectures.

parison to fully-connected layers, the number of weights in a layer can be reduced by
using translational invariances. This way a neural network is easier to train. One layer
type that uses spatial information is a convolutional layer. These layers can learn spe-
cial features in the data. They are especially useful for image recognition. Networks
employing convolutional layers are called Convolutional Neural Nets (CNNs).

In CNNs the locality of the input data is preserved, in opposition to fully connected
networks that see all input data as 1D vectors. A CNN is built basically from two
kinds of layers: Convolutional layers which calculate a convolution of a spatial part
of the data set with a set of filters (also called kernels) and Pooling layers which reduce
the information in the data set while keeping its spatial structure.

For 2D data, such as images, a layer l is expressed with three dimensional infor-
mation: hight Hl , width Wl and depth Dl . The height and width correspond to the
spatial dimensions of the filter in the 2D data plane. The depth gives the number of
filters used in layer l. The depth is also called channel or colour dimension as the layer
can be thought of as multiple filters of different colours.

In a convolutional layer every filter consists of trainable weights giving one layer
a total number of weights equal to Hl x Wl x Dl . Additionally one bias node is added
to each filter. In each filter the weights are the same at each spatial position, hence
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they are shared weights and bias. The convolution of filters with the input data implies
running the filter over the data on every possible position and the output neuron is
calculating the dot product between input data and (Hl , Wl)-neuron plane. Afterwards
a non-linearity in the form of activation functions is usually applied to the output
neuron. The convolution leads to a reduction in the spacial dimension of the image
which can be countered by enhancing its dimensions with zeros around the image
before the convolution is applied. This method is called zero padding.

Pooling layers are used to reduce the spatial dimensions of a data set and filter the
important parts. In CNNs pooling layers are often used behind convolutional layers.
A popular pooling layer is consists just of 2x2 neurons and output the maximum value
in the applied area. This is called maximum pooling (max pool). A modern CNN consists
of multiple convolutional and pooling layers often in alternating order. These layers
might then be followed by multiple fully connected layers ending in the output.

Here the examples for convolutional layers were given for a set of 2D data, but the
convolutional filters can be expanded to cover any dimension, i.e. 3D images. A more
detailed discussion on CNNs and the corresponding equations can be found in [33]
and [39].

5.2.4 Locally Connected Layer

Convolutional layers have been proven to be very powerful when it comes to detection
of objects in images. CNNs might be trained to find cats and dogs in images. In this
case it does not matter where in the image the animal is located and it makes senses
to use a convolutional filter for this task as the cats pixels are localized together.
However, if the task requires that the exact location of an object in the image is known,
a generalization of convolutional layers can be used: locally connected layers. With
locally connected layers an independent set of weights are trained for each filter
position. This means that a specific set of weights would be trained to detect an cat in
the upper left corner of an image and another set of weights to find one in the lower
right corner. This is called unshared weights and bias. As in physical problems often
the location of a feature is equally important as the feature itself, it might be useful to
employ locally connected layers instead of convolutional ones. However, as a new
set of weights are trained at each filter position, the amount of weights per layer are
much higher for locally connected layers than for convolutional ones of the same filter
size.

Multiple layers of locally connected layers with a 1D filter size of 1, but with a
depth of several filters can be used to virtually create independent fully connected
networks for every data point. Each output neuron Oi,b follows a very similar function
as equation 5.3, but includes a channel dimension:

Oi,b = bi
i + Ii,a · wb

i,a (5.6)

with Ii,a as the input neurons in a input channels and weights wb
i,a and bias bi

i with b
output channels.
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5.3 Software Implementations

There are several convenient software implementations of the concepts discussed
above. A popular scripting language for neural network implementations is Python.
For Python several libraries have been developed to make model creations and its
input and output very easy. Examples are Tensorflow developed by Google[40], Theano
developed by the University of Montreal [41] and PyTorch by Facebook [42]. For the
model implementations in this thesis the Python high-level API Keras [43] was used
with a backend of Tensorflow.



Chapter 6

Energy Reconstruction with Neural
Networks

In this chapter the main results of this thesis are presented. The goal of this analysis
is the improvement of the energy resolution of the AHCAL by employing offline
software algorithms for the energy reconstruction of an event. The basic energy
reconstruction of an event in the AHCAL is the summation over all hit energies
Esum = ∑i Ei. Additionally a linear fit is performed to calibrate the Esum to a scale
in GeV (see section 4.1.3.1). This reconstructed energy will be referred to as Esum

or standard energy reconstruction in the following chapter. From a large number of
events with the reconstructed Esum for one beam energy the energy resolution for this
beam energy can be calculated. For this the metric RMS90 is chosen and the energy
resolution is defined as σ90/Esum,90 (see section 4.3).

To enhance the resolution, the energy reconstruction needs to be improved mean-
ing the reconstructed energy Ereco should be as close as possible to the beam energy
Ebeam. This could be done i.e. by introducing energy dependent weighting factors that
weight the electromagnetic content of the shower lower and the hadronic component
higher. This method is called software compensation or offline compensation and was suc-
cessfully applied to former CALICE prototype data. Details can be found in [21] and
[7]. There are two kinds of software compensation methods: global and local software
compensation. The terms refer to the way the weighting factors are chosen: either on
an event basis (global), or on a hit energy basis (local). The software compensation
can be seen as another calibration step that should lead to a compensating calorimeter
with e/h ≈ 1 (see section 3.3.2) although the actual AHCAL is non-compensating.

In this thesis machine learning learning algorithms including deep neural network
architectures are employed to study how a better performance than software compen-
sation can be reached. For this purpose two approaches have been explored: cell-wise
weighing factors and a deep neural network (DNN) architecture. The cell-wise weight-
ing is essentially a recalibration of the calorimeter and is able to compensate for shower
leakage. For a DNN architecture a generic fully connected network (FCN) was tested
as well as a second architecture with a convolutional layer in front of the FCN.

The training of the network was done with data samples and with Monte Carlo
simulated samples. In most high-energy physics ML tasks the labelled data can only
be acquired through simulation. With the CALICE test beam data this labelling can
be done for data, too - in this case the known beam energy is to assumed to be exact.

49
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Table 6.1: Selection criteria applied to data samples.

Ebeam [GeV] nHits Esum [GeV] Shower start

10 60 - 200 < 20 4 - 7
15 60 - 200 < 25 4 - 7
20 60 - 250 < 35 4 - 7
30 60 - 350 < 50 4 - 7
40 60 - 450 < 70 4 - 7
50 60 - 500 < 70 4 - 7
60 60 - 600 < 80 4 - 7
80 60 - 700 < 100 4 - 7
120 60 - 900 < 150 4 - 7
160 60 - 1100 < 200 4 - 7

Hence a fully supervised training on experimental data is possible with the test beam
data. However, the data taken has limitations due to the limited amount of beam
energies recorded. Hence the studies presented here were also performed with MC
samples with narrow beam energy steps.

In this chapter first the sample preprocessing is introduced in section 6.1. After-
wards the loss function and the network architectures tested are explained in section
6.2 and 6.4. In section 6.5 the results for data samples can be found and in section 6.6
the results for MC samples. In section 6.6.5 a comparison is made to local software
compensation. This comparison summarizes the main results of this thesis and are
outlined in section 6.7.

6.1 Sample Preprocessing

Following the event reconstruction (see section 4.1.4) both data and Monte Carlo
samples are processed with certain selection criteria applied and images are created
for each event. The selection applied to the data samples are energy dependent and
listed in table 6.1. The number of hits (nHits) cut > 60 hits per event is applied to reject
muons. The maximum nHits and maximum Esum cuts are applied to reject double
particle events. The shower start, namely the first hadronic interaction, is required to
happen in layer 4 to 7, this way electrons are rejected since their shower starts mainly
in the first three layers.

The following cuts were applied on an event basis to the Monte Carlo samples
regardless of energy:

• shower start in the first five layers

• number of hits ≥ 60 (to reject ’muon-like’ events)

Figure 6.1 shows histograms of the energy sum with and without these cuts
applied to the 60 GeV pion data and MC sample. 2D histograms of the number of hits
against the centre of gravity in z direction for the 60 GeV data sample can be found in
the annex in figure D.1.

After cuts are performed an image is created for each individual event. These
’images’ are python arrays with the dimension (24,24,38,2). The first three dimension
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Figure 6.1: Histograms of Esum for the 60 GeV pion data and MC sample. The histograms
are shown with cuts applied and without.

are the geometric position of a given hit in the event; the i, j, k coordinates. The last
dimensions are the energy and time dimension. For each hit at a given (i, j, k) position
in the python array the hit energy and the hit time were written. The energy and time
for all position where a hit was not recorded in the given event was set to zero. Such
an image for a 60 GeV pion event is shown in figure 6.2.

Figure 6.2: Eventdisplay image of a 60 GeV pion event measured during the test beam in
May 2018. The colour scale corresponds to the hit energy.
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Furthermore, the training was performed in the TeV energy range. The label of
the true beam energy is given in TeV and the hit energies were divided by a factor
40,000 (≈ fMIPtoGeV x 1,000). This was done because neural networks perform best in
the range xout ∈ (−1, 1) and because the locally connected network (see below) with
weights = 1 should approximately reproduce Esum.

The time dimension has only been utilized for studies with the Monte Carlos
samples, because the timing calibration was not concluded by the time this thesis
was finished. A scaling is applied to the time values as well by converting the values
simulated in nanoseconds to microseconds.

To test if the proposed algorithms can reconstruct energies they are not trained
on, the samples were split into two sets according to their beam energy labelling.
Every second beam energy is stored in a different data set. Afterwards each set is
shuffled and split again to create the three data sets used in training and evaluation.
The samples were split into three statistically independent data sets according to this
splitting: 50 % training set, 20 % validation set, and 30 % testing set. The testing set is
larger than the validation set as it is used to determine the performance and the energy
resolution for the given beam energy. The performance evaluation is performed with
both data sets: the set with the beam energies used for training as well as the set with
beam energies the algorithm was not trained on (interpolation set).

For data 120k events were chosen for each beam energy. The 10 usable beam
energies recorded during the May 2018 test beam campaign were: 10 GeV, 15 GeV,
20 GeV, 30 GeV, 40 GeV, 50 GeV, 60 GeV, 80 GeV, 120 GeV, and 160 GeV. Hence the
training data set consists of 6 beam energies: 10 GeV, 20 GeV, 40 GeV, 60 GeV, 120 GeV,
and 160 GeV. And the interpolation set consists of the remaining 4 beam energies:
15 Gev, 30 GeV, 50 GeV, and 80 GeV. For the training set this is a total number of events
of 6 x 120k x 0.5= 360k.

For the MC sample a total of 32k events remain after cuts applied for each beam
energy. The beam energies simulated are 10 to 80 GeV in 1 GeV steps (see section
4.2.3); a total of 71 beam energies. Following the same procedure as with data the
sample was split into two sets of beam energies: one training set with every even
value beam energy and a interpolation set (only for testing) with every odd value
beam energy. Hence the training set consists of 36 beam energies with a total number
of events of 36 x 32k x 0.5 = 576k.

Histograms of the training samples for both data and MC are presented in the
annex in figure G.1. For the supervised learning approach followed in this thesis the
individual events are labelled with the true beam energy Ebeam.

The technical implementation is done in Python. The reconstructed root files
are first converted into pandas dataframes stored in the HDF file format to be easily
imported into Python. In a second step the HDF files are loaded into another pandas
dataframe and the cuts discussed above are applied. The whole data set is than split
into the three sets (training, validation, testing) and stored as another HDF file. These
files are finally loaded into the RAM for the training of the algorithms. The image
creation is done batch-wise in a generator on the CPU before loading them into the
GPU to save RAM.
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6.2 Energy Resolution with Standard Energy Reconstruction

As mentioned above the standard energy reconstruction of an event is Esum = ∑ Ei,
the summation over all hit energies Ei in one event. Additionally a linear fit to reach
the GeV scale needs to be performed (see section 4.1.3.1). Using the metric RMS90
the energy resolution with Esum can be calculated for each beam energy. The energy
resolution and the linearity plotted against the beam energy Ebeam for the events in
both test samples are shown in figure 6.3 for data and Monte Carlos samples. The
cuts discussed above were applied and the statistical error on Esum is propagated. In
addition to the energy resolution the linearity of the calorimeter response E90/Ebeam

needs to be observed and should be around 1 for a linear response. A strong variation
from this ratio would lead to a different energy resolution RMS90/E90.
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Figure 6.3: The energy resolution and linearity of the AHCAL test samples calculated
with RMS90 for both data and MC simulation.

For the MC samples the the resolution is degrading above 50 GeV. This behaviour
is due to longitudinal shower leakage. Furthermore the linearity for MC simulation is
observed to be within 2 %. For data an increasing resolution due to shower leakage
can be seen for the 60 and 80 GeV runs. However, the beam energies 120 and 160 GeV
exhibit a lower energy resolution as well as an underestimated mean energy. This
might be due to the desaturation function in the energy calibration not appropriately
correcting the non-linear response of the SiPM for high energetic hits.

6.3 Loss Function and Performance Evaluation

The loss function chosen for all network types in this chapter is mean absolute relative
error (MARE):

L(Ereco,i, Ebeam,i) =
1

N ∑
i

∣

∣

∣

∣

Ereco,i − Ebeam,i

Ebeam,i

∣

∣

∣

∣

(6.1)

with Ereco,i as reconstructed energy and the networks’ output, Ebeam,i the true beam
energy label and N as the sample size or batch size. In many regression problems
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the loss function chosen is the mean squared error (MSE) 1
N ∑i (Ereco,i − Ebeam,i)

2.
However, for the distributions in this thesis MSE is not optimal as thy are get wider
with increasing energy. Therefore the relative error is used to roughly weight the
error in each beam energy similar in the overall loss. Additionally events with a large
invisible energy due to hadronic interactions should not have a much higher impact
on the loss than events with visible energy closer to the true beam energy. Therefore
the absolute relative error is chosen over the squared relative error. A similar case for
MARE is made in [44].

The performance of each network was evaluated based on the test sample (see
section 6.1). However the test loss is not necessarily the only figure of merit to judge a
’good’ network performance. It is important for an energy reconstruction algorithm
to conserve or optimize the linearity of the calorimeter response. Additionally a low
energy resolution is important especially for low energies. Therefore for each tested
network architecture a plot equivalent to figure 6.3 and a comparison to the standard
energy reconstruction is made (see section 6.5 and 6.6).

6.4 Network Architectures

In the following the network architectures evaluated in this thesis are presented.
Designing suitable neural network architecture does involve a fair amount of experi-
menting with different layer structure. Additionally, hyperparameters (see section
6.4.4) can be optimized for each investigated architecture.

Two different types of neural network architectures have been evaluated. They
are categorized as locally connected networks (LCN) and deep neural networks (DNN).
Although a deep LCN can be considered as a DNN, this terminology is used in this
thesis to distinguish the two architecture approaches. The LCN architecture is based
on a channel-wise energy calibration of the calorimeter. The LCN is built from one or
multiple layers of 1-dimensional locally connected layers with a filter size of 1 and a
depth of one or multiple filters per layer. This is equivalent to training independent
fully connected networks for each calorimeter cell to perform a MIP to GeV calibration
(see section 5.2.4). The DNN architectures investigated include a standard fully
connected network (FCN) with multiple layers and a second architecture with an
added convolutional layer in front of the fully connected layers (CNN).

Multiple experiments were performed with each architecture type. For each archi-
tecture many layer configurations were tested before deciding on the ones presented.
Two configurations for each type were evaluated to be representative for the architec-
ture type. Those configurations performed best than similar types tested. This means
that the list given in the following is not extensive, but can be seen as a guideline for
the choice of an architecture for further energy reconstruction studies.

Additionally, a merged architecture is presented that combines the LCN and the
DNN approach into a single architecture.

6.4.1 Locally Connected Networks Architectures

The Locally Connected Network (LCN) approaches are based on a cell-wise re-
calibration of the calorimeter to improve the energy reconstruction. The network
should learn a (non-)linear MIP to GeV conversion function for each individual
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Table 6.2: Network architecture of LC1

Layer Type Size Parameters Initializer Comment

LC layer 1x(1) 21,888 ones no bias
Summation layer - - -

Total parameters: 21,888

channel based on how important the channels’ hit energy is in the overall energy
reconstruction. The basis are one or multiple layers of 1-dimensional locally connected
(LC) layers with a filter size of 1 and a depth of one or multiple filters per layer. The
last layer of this stack of LC layers is always a layer with a depth of just one filter to
generate one output per calorimeter cell value. This way the LCN can be thought of
as a individually trained fully connected network for every calorimeter cell with one
input and one output node (see section 5.2.4). The reconstructed energy as the output
is given by the summation over all output nodes of the last LC layer.

Two types of LCNs are discussed in the following. A LCN with only one LC
layer with one filter and no bias that can train exactly one weight per calorimeter cell.
This way the network can learn a linear cell-wise calibration function for every cell.
The amount of weights equals the number of channels in the AHCAL. This way the
network resembles exactly the standard reconstruction if all weights are set to one
and the appropriate fMIPtoGeV factor is applied. Therefore, the weights in the LC layer
are initialized with the exact value one. A kernel constraint was added such that the
weights cannot be negative which would imply an unphysical subtraction of a hit
energy from the event energy. This network is henceforth called LC1. An overview of
the LC1 network can be found in table 6.2.

The second LCN type consists of four LC layers with 16 filters in the first three. In
between the layers a leaky ReLU activation function is added, therefore this network
can learn a non-linear cell-wise calibration function. However, the LC layers do not
include a bias as in the experiments run it was not possible to make the network
converge with a bias. The training without bias is already a bit sophisticated. To make
the network converge the layers need to be trained first with convolutional layers
(shared weights) in the same configuration until it reaches the same performance
as the standard reconstruction. The calibration hence equals one for each cell. The
weight initialization is performed according to [34] (’he_normal). The LCN (unshared
weights) is afterwards initialized with the trained weights from the convolutional lay-
ers. This way the network can be optimized from the baseline standard reconstruction.
This network is henceforth called LC4. An overview of the LC4 network can be found
in table 6.3.

A third LCN type was applied only to the MC sample as the time dimension was
added. The basis is the LC1 architecture, but timing information was added in the
form of three convolutional layers with kernel size of 1 that are only attached to the
time dimension of the input images. This way, similar to the first training stage of
LC4, a cell-wise time calibration function can be learned that is the same for every
channel. The cell-wise LC1 output is multiplied with the time calibration factor from
the timing convolutional network. The overall output, the reconstructed energy, is
again the summation over all calibrated channels. This network was named LC1+time.
An overview of the LC1+time structure can be found in table 6.4.
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Table 6.3: Network architecture of LC4

Layer Type Size Parameters Initializer Comment

LC layer 16x(1) 350,208 he_local_normal no bias
Leaky ReLU - - - α = 0.01
LC layer 16x(1) 5,603,328 he_local_normal no bias
Leaky ReLU - - - α = 0.01
LC layer 16x(1) 5,603,328 he_local_normal no bias
Leaky ReLU - - - α = 0.01
LC layer 16x(1) 350,208 he_local_normal no bias
Summation layer - - -

Total parameters: 11,907,072

Table 6.4: Network architecture of LC1+time

Layer Type Size Parameters Initializer Comment

For energy channel:
LC layer 1x(1) 21,888 ones no bias

For time channel:
Convolutional layer 128x(1) 256 he_normal
Leaky ReLU - - - α = 0.01
Convolutional layer 64x(1) 8,256 he_normal
Leaky ReLU - - - α = 0.01
Convolutional layer 1x(1) 64 he_normal no bias

Merge energy & time:
Multiplication layer - - -
Summation layer - - -

Total parameters: 30,464
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Table 6.5: Network architecture of FCN

Layer Type Size Parameters Initializer Comment

FC layer 32 700,448 he_normal
Leaky ReLU - - - α = 0.01
FC layer 32 1,057 he_normal
Leaky ReLU - - - α = 0.01
FC layer 32 1,057 he_normal
Leaky ReLU - - - α = 0.01
FC layer 32 1,057 he_normal
Leaky ReLU - - - α = 0.01
FC layer 32 33 he_normal no bias

Total parameters: 703,649

The standard implementation in Keras for LC layers was deemed to be insufficient
as it is comparably slow and does not allow sufficient flexibility. Therefore a custom
layer for a 1-dimensional LC layer with a kernel size of 1 was written to be used in
Keras. Apart from running much faster than the standard Keras layer, the layer allows
to set weights and bias to be (non-)trainable parameters and to create shared weights
making the layer applicable as a convolutional layer. Furthermore the Keras imple-
mentation of the weight initialization according to [34] (in Keras called ’he_normal’)
was modified to allow proper application in case of a kernel size of 1 and multiple
filters. This modified initializer is given the name he_local_normal.

6.4.2 Deep Neural Network Architectures

Results for two deep neural network (DNN) architectures are presented in this thesis.
The first architecture is a fully connected network (FCN) with multiple layers and
the second one a convolutional neural network (CNN) as an extension of the first
architecture. Other similar architectures were experimented with, too, but these
two are representative for the possible performance found with an FCN or CNN
architecture.

The FCN consists of five fully connected layers (also called dense layers) with the
first four made up of 32 neurons each and the last layer with one output neuron. In
between the layers a non-linearity is introduced with leaky ReLU activation function.
Experiments with more or less layers as well as wider layers have not resulted in
significant performance difference. The exact network architecture is presented in
table 6.5.

The CNN evaluated adds one convolutional layer before the FCN. This way it
consists of six layers in total. An overview of the network can be found in table 6.6.
The convolutional layer consists of 3-dimensional kernels with a size of (7,7,38). This
way the kernels x- and y-dimension mirror those of a typical hadronic shower core,
while the depth equals the number of calorimeter layers. As no zero-padding is used,
the output of the filter is a 2D representation of the 3D calorimeter image - excluding
the channel dimension. Trainings were run with different kernel sizes, but less wide
as well as shorter kernels show a worse performance. The same is true for multiple of
these layers as well as 2D convolutional layers in between the 3D layer and the FCN.
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Table 6.6: Network architecture of CNN

Layer Type Size Parameters Initializer Comment

Convolutional layer 128x(7,7,38) 238,464 he_normal no padding
Leaky ReLU - - - α = 0.01
FC layer 32 1,327,136 he_normal
Leaky ReLU - - - α = 0.01
FC layer 32 1,057 he_normal
Leaky ReLU - - - α = 0.01
FC layer 32 1,057 he_normal
Leaky ReLU - - - α = 0.01
FC layer 32 1,057 he_normal
Leaky ReLU - - - α = 0.01
FC layer 32 33 he_normal no bias

Total parameters: 1,568,801

6.4.3 Merged Architecture

Finally both approaches, the LCN and the DNN approach were merged into a single
architecture by stacking them and removing the last summation layer in LC1+time.
This way the timing information is utilized by the CNN architecture and the CNN
can improve upon the channel wise energy calibration trained in the LC1 architecture.
To make this improvement directly possible the weights in the LC1+time part of the
network are initialized with already trained weights; only the weights in the CNN
part are random initialized. The fully merged architecture is named LC1+time+CNN
and its structure is presented in table 6.7.

6.4.4 Hyperparameters

As hyperparameters one describes the non-trainable parameters in the neural network
setup. These parameters need to be set before the training is performed. For all net-
works in this thesis the following hyperparameters have been applied if not otherwise
stated:

• batch size = 128

• learning rate in Adam = 0.001

• maximum number of epochs = 200

• early stopping epochs = 5

(if in a window of five epochs the validation loss is not decreasing, the training
is stopped)

6.5 Results for Data Samples

In the following the results from the energy reconstruction for data samples with
the described neural network architectures are presented. The test loss for both test
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Table 6.7: Network architecture of LC1+time+CNN

Layer Type Size Parameters Initializer Comment

For energy channel:
LC layer 1x(1) 21,888 pre-trained no bias

For time channel:
Convolutional layer 128x(1) 256 pre-trained
Leaky ReLU - - - α = 0.01
Convolutional layer 64x(1) 8,256 pre-trained
Leaky ReLU - - - α = 0.01
Convolutional layer 1x(1) 64 pre-trained no bias

Merge energy & time:
Multiplication layer - - -
Convolutional layer 128x(7,7,38) 238,464 he_normal
Leaky ReLU - - - α = 0.01
FC layer 32 1,327,136 he_normal
Leaky ReLU - - - α = 0.01
FC layer 32 1,057 he_normal
Leaky ReLU - - - α = 0.01
FC layer 32 1,057 he_normal
Leaky ReLU - - - α = 0.01
FC layer 32 1,057 he_normal
Leaky ReLU - - - α = 0.01
FC layer 32 33 he_normal no bias

Total parameters: 1,599,265
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Table 6.8: Test loss for all network architectures for the data samples.

Architecture Loss (trained) Loss (not trained)

LC1 0.116 0.114
LC4 0.118 0.115

FCN 0.051 0.243

samples for the given network architectures can be found in table 6.8. The test loss
for LC1 and LC4 are comparable with the loss for LC1 being slightly lower. For both
architectures there is but a slight difference for the two test samples. The test loss
for the FCN architecture however is very different for the two test samples, much
lower for the trained on sample and much higher for the not trained on sample in
comparison to the LCN architectures. This difference is explained below.

6.5.1 Locally Connected Architectures

The energy linearity and resolution for the energy reconstruction with both LCN
architectures, LC1 and LC4, are shown together with the standard reconstruction
Esum in figure 6.4a. It is apparent that both architectures show no to systematic
differences between the ’trained on’ and ’not trained on’ test samples. Furthermore,
both networks lead to an improved energy linearity and resolution over the whole
energy range. This improved resolution is compared with Esum and shown in figure
6.4b. The LC1 architecture shows a better resolution with an improvement over Esum

of about 6 % for low energies and up to 24 % for 160 GeV (where the performance of
LC1 and LC4 is the same). The histograms of the reconstructed energy by network
LC1 for all energies in either test sample is shown in the annex in figure G.2. No
systematic difference in the histogram shape is visible for the two test samples.

The slightly worse performance for LC4 is likely due to the non-linear cell-wise
calibration functions the network is able to learn. It appears that the simple linear cell-
wise calibration in LC1 is easier to optimize resulting in a lower test loss. In general the
improvement over Esum can be explained by the cell-wise hit energy weighting that is
performed by the networks. Some of the weights for LC1 are plotted in figure E.1 in
the annex. The weights are comparatively high for cells in the centre of the detector
in the last two layers. This is understandable as all beams and showers are centred
in the AHCAL’s (i,j)-plane and shower leakage effects can be offset by weighting the
last layers higher than the rest in the overall weighted hit energy summation. This
explains the up to 24 % improved resolution for high energies in comparison to the
standard reconstruction as well as the general trend that the energy resolution of the
reconstructed energies improves with the beam energy Ebeam.

6.5.2 Deep Neural Network Architecture

The fully connected network (FCN) architecture cannot be used to reconstruct the
event energy properly. Figure 6.5 shows the histograms for the reconstructed energy
for both test samples. It shows that the deep network architecture with many weights
leads to overfitting on the limited amount of data beam energies. The ’trained on’
true beam energies are precisely learned while the ’not trained on’ energies cannot
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Figure 6.4: Linearity and resolution for the reconstructed energy with both locally con-
nected networks for data samples. (a) shows the linearity and resolution for Ereco with
LC1 and LC4 for both test samples as well as the standard reconstruction Esum. (b) shows
the resolution improvement in comparison to Esum. The colour coding per network
architecture differentiates the two test samples.

be reconstructed properly. This reconstructed energy structure is the same for other
tested deep neural network architectures as well as the CNN architecture.

This result lead to experiments with training on Monte Carlo simulated samples
with a tight beam energy spacing. With many more and closer spaced beam energies
to train it is possible to utilize the DNN architectures.
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Figure 6.5: Histograms of the reconstructed energy Ereco by the FCN network for all
energies in either data test sample.
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Table 6.9: Test loss for all network architectures for the MC samples.

Architecture Loss (trained) Loss (not trained)

LC1 0.092 0.092
LC4 0.094 0.094

FCN 0.087 0.087
CNN 0.078 0.079

LC1+time 0.089 0.088
LC1+time+CNN 0.076 0.075

6.6 Results for MC Samples

In the following the results from the energy reconstruction for Monte Carlo samples
with the described neural network architectures are presented. The test loss for both
test samples for the given network architectures can be found in table 6.9. The DNN
architectures exhibit lower losses than the LCN ones, with the lowest loss achieved
with the CNN architecture. Adding the timing information improves both the LC1
approach as well as the CNN. In general there is almost no difference between the
two test samples.

6.6.1 Locally Connected Architectures
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Figure 6.6: Linearity and resolution for the reconstructed energy with both locally con-
nected networks for MC samples. (a) shows the linearity and resolution for Ereco with
LC1 and LC4 for both test samples as well as the standard reconstruction Esum. (b) shows
the resolution improvement in comparison to Esum. The colour coding per network
architecture differentiates the two test samples.

The energy linearity and resolution for the energy reconstruction with both LCN
architectures, LC1 and LC4, are shown together with the standard reconstruction
Esum in figure 6.6a. The resolution improvement in comparison to the standard
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reconstruction is plotted in figure 6.6b. The same behaviour as for data is apparent for
the MC sample training: There is no systematic difference between the test samples,
linearity for both networks is within -2 % - 0 %, and the LC1 architecture performs
slightly better than LC4 with an improvement of the resolution between 5 % for 10 GeV
and about 40 % for 80 GeV. The same explanation for this network performance as for
the data results applies (see section 6.5.1).

6.6.2 Deep Neural Network Architectures

Histograms of the reconstructed energy with the CNN architecture are shown in
the annex in figure G.3. In this plot the histograms for each beam energy in the
’trained on’ test sample are shown by plotting Ereco − Ebeam to overlay all histograms.
Five histograms are specifically labelled to show the noticeable feature of the DNN
architectures: overfitting at the edges of the parameter space. The deep networks learn
the beginning and the end of the trained Ebeam space and therefore the events for the
beam energies around 10 GeV and 80 GeV are largely reconstructed at precisely this
energy. Hence for those energies the RMS90 is very low which cannot be considered
a ’good’ reconstruction performance but rather is an artefact of the training. The
histograms between 22 to 68 GeV appear not to show this skewed behaviour. Therefore
the networks reconstruction performance can be evaluated roughly between 20 -
70 GeV. This overfitting feature is the same for both evaluated DNN architectures.

The energy resolution plots for the two DNN architectures, the fully connected
network (FCN) and the convolutional neural network (CNN), can be found in figure
6.7. In the beam energy region between 20 and 70 GeV the calorimeter response is
linear. There is no systematic difference between the two test samples. The DNN
architectures are reconstructing the event energy for ’trained on’ and ’not trained on’
beam energies which is largely due to the low energy spacing of 2 GeV in the training
sample. Especially for low energies, the CNN architecture is clearly superior to the
FCN. While for the FCN the resolution improvement over the standard reconstruction
is between about 15 % for 20 GeV and 50 % for 69 GeV, it is for the CNN between 30 %
and 70 % in the same energy region.

Both DNNs show a better performance than the locally connected networks. This
is understandable as the DNNs have access to global event information as well as
spacial information and in general many more parameters to optimize. The CNN
is superior to the FCN which is due to the simplified input to the fully connected
network that is created by the 3D convolutional layer. The layer produces many
2D images from the 3D event image which appears to support an optimized energy
reconstruction. Of the four network architectures compared with only hit energy
images as the networks input, the CNN shows the best energy resolution and the
lowest test loss.

6.6.3 Application to Data Samples

The LC1 and the CNN architecture were trained on MC samples and show an im-
proved energy reconstruction in comparison to Esum. Here the on MC trained networks
are applied to a data test sample, too. The data test sample consists of 50k events per
energy with all available energies between 10 and 80 GeV. There is a systematic differ-
ence between the MC samples and the data (see section 4.2.3) and hence a correction
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Figure 6.7: Linearity and resolution for the reconstructed energy with both deep neural
networks for MC samples. (a) shows the linearity and resolution for Ereco with FCN and
the CNN for both test samples as well as the standard reconstruction Esum. (b) shows
the resolution improvement in comparison to Esum. The colour coding per network
architecture differentiates the two test samples.

factor fMIPtoGeV,MC/ fMIPtoGeV,data = 1.17 is applied to the networks’ reconstructed
energy. The resulting energy resolution plots are shown in figure 6.8.

For all energies, except for 10 GeV, the energy resolution by the LC1 network is
better than the standard reconstruction. As seen above the resolution improvement
increases to up 20 % at 80 GeV. However, this is a smaller resolution improvement
than for the LC1 network trained and tested on data (see section 6.5.1).

The CNN on the other hand is not straightforward applicable to data. The over-
fitting on the edges of the parameter space is visible in the Ereco histogram for every
energy. The histograms of Ereco − Ebeam for all energies is shown in the annex in figure
G.4. The skewed distributions are especially noticeable for low energies such as 10
and 15 GeV, but a Ereco feature at 10 GeV is visible for all energies. For this reason the
10 GeV values were not plotted in figure 6.8. Interestingly for 80 GeV the distribution
is not as skewed as for the MC sample. In fact the mean energy is reconstructed
very close to the beam energy. However, whether the distributions is affected by the
training overfitting will only be possible to evaluate if the CNN is trained up to higher
energies than 80 GeV.

6.6.4 Including Timing Information

In addition to the hit energy, the MC samples include the hit time information. This
information is used in the network architectures LC1+time and LC1+time+CNN.
The resolution plots for both architectures are shown in figure 6.9. Adding the time
information improves the energy resolution in comparison to the architectures without
time by about 5 % for all energies. The non-linear time calibration function the
convolutional part of the LC1+time network learns is shown in the annex in figure F.1.
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Figure 6.8: Linearity and resolution for the reconstructed energy with the LC1 and CNN
architecture trained on MC, but applied to the data. (a) shows the linearity and resolution
for Ereco with LC1 and the CNN as well as the standard reconstruction Esum. (b) shows
the resolution improvement in comparison to Esum.

For each training run the calibration function looks different, but for all three trainings
shown the factor increases for later hits and the slope changes at about 8 ns and 20 ns.
The increasing factor makes physically sense as late hits indicate a hadronic part of the
shower, i.e. late neutron energy depositions (see section 3.1.2). To compensate this less
measured hadronic part in the under-compensating AHCAL, late hits are weighted
with a higher factor (see section 3.3.2). The slope changes are due to the amount of
statistics available in these timing regions. The overfitting at the beam energy edges is
again apparent for the CNN.

6.6.5 Comparison to Local Software Compensation

The best resolutions are reached with the LC1 and CNN architectures (with timing).
In the following those reconstruction methods are compared with local software com-
pensation. The local software compensation algorithm was developed by the CALICE
collaboration to improve the energy resolution of various prototypes in the past. The
compensation algorithm applies a number of energy-dependent weights to hit ener-
gies in a binned energy spectrum. This way low energetic (and more likely hadronic)
hits are weighted stronger than high energetic (and more likely electromagnetic)
hits in the total energy summation of one event. The implementation here relies on
eight hit energy regions with each weight parametrized by three energy dependent
variables. This results in a total of 24 trainable weights. Their energy dependence is
determined by the standard reconstructed energy Esum. The local software compensa-
tion is explained in more detail in [7] and [21]. The algorithm here was optimized on
the whole MC sample with cuts applied for the beam energies 10, 15, 20, 25, 30, 40,
50, 60, 70, and 80 GeV and 36k events per beam energy. No differentiation between a
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Figure 6.9: Linearity and resolution for the reconstructed energy with the LC1+time and
LC1+time+CNN architecture for both MC test samples. For these networks the hit timing
information is used in addition to the hit energy. (a) shows the linearity and resolution for
Ereco as well as the standard reconstruction Esum. (b) shows the resolution improvement
in comparison to Esum. The colour coding per network architecture differentiates the two
test samples.

training sample and a testing sample is made 1.

The resulting energy linearity and resolution of the reconstructed energy with local
software compensation for the test sample is shown in figure 6.10 plotted together
with both locally connected architecture (LC1 and LC1+time) as well as the convolu-
tional architectures (CNN and LC1+time+CNN). As was described before, the neural
network algorithms utilizing timing reach a better energy resolution than without
timing. Nonetheless, local software compensation reaches a better energy resolution
than both LCN architectures for low energies below 35 GeV. The LCN architectures
reach a lower energy resolution above this energy as those utilize spacial information
and compensate for the shower leakage that limits the standard reconstruction as well
as the local software compensation. While the LCN architectures use spatial shower
information, but with energy independent weights, the local software compensation
with its energy dependent weights is utilizing the event energy to reach a better
energy resolution for low energies. The exact improvement of the resolution for each
algorithm over the standard reconstruction can be found in the annex in figure G.5.
The local software compensation improves the energy resolution by to 25 % over the
Esum, while it improves with LC1 by 5 % (10 % with timing).

A fair comparison between the CNNs and software compensation can only be
made in the beam energy region between 20 and 70 GeV because of the overfitting
outside this range. For these energies the networks’ resolution is improved by a few %
for low energies up to 60 % for high energies in comparison to software compensation.
This improvement is due to the fact that the CNNs utilize global event information as

1private communication with Jack Rolph, University Hamburg; work based on [7] and [21]
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Figure 6.10: Linearity and resolution for the reconstructed energy with different networks
in comparison to local software compensation for the ’trained on’ test sample. LC1+time
and LC1+time+CNN architecture for both MC test samples. (a) shows the linearity and
resolution for the locally connected architectures (with and without timing). (b) shows
the linearity and resolution for the convolutional architectures (with and without timing).

well as spatial shower information to compensate for leakage. This way the CNNs
reach a similar performance to software compensation for low energies (showers
largely contained in the AHCAL) and a much better resolution for higher energies
(where shower leakage limits the resolution).

6.7 Summary and Outlook

Four different network architectures for energy reconstruction were examined and
trained on data and Monte Carlo samples. Only the locally connected architectures are
successfully trained on data, as the beam energies for training are too sparse for deep
neural network architectures not to overfit. Most of the results have been obtained
for the training on MC samples. The training on many beam energies with a spacing
of 2 GeV seems to be successful for interpolating energies in between. In future test
beam campaigns events could be recorded with the same beam energies to perform
a similar study with real data. The sample size of 16k events per beam energies are
sufficient for the training with about 40 beam energies.

In conclusion, a similar or better energy resolution than local software compen-
sation can be reached by using the CNN architecture. A reconstruction algorithm
that includes a shower leakage compensation improves the energy resolution for high
energies, as shown with the locally connected architectures. Furthermore, energy
dependent weights in an algorithm appear to be better than energy independent
ones, as both software compensation and the DNN architectures reach good results
with using event-level information. It was shown that the hit timing information
can be used in neural network architectures to improve the energy resolution. The
exact performance of the CNN approach should be investigated further by extending
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the training energy range as well as the Monte Carlo accuracy. Reconstruction of
data samples was performed with MC trained networks, but the performance might
improve with a closer similarity between MC and data. An uncertainty here is that
the network trained on MC was not trained on exactly the same beam energies as it
was tested on with data.

Systematic uncertainties in the calorimeter samples have not been taken into
account. Only the statistical errors were propagated in the results shown above. Un-
certainties that result from the energy and time calibration chain will be subject to
further studies in the collaboration. Another cause of error in the AHCAL samples
presented here are fluctuations in the hadronic content of the shower as well as sam-
pling fluctuation. With the limited sample sizes used in this study these fluctuations
are the cause of small variations in the energy resolution for the MC samples for close
beam energies.

When the neural networks are trained, the weights are random initialized. There-
fore slight variations in the network performance and the test loss can occur over
multiple trainings as the optimizer finds one of multiple local minima of the loss
function. However, the algorithms presented here are deterministic once trained and
applied to reconstruct the energy. Meaning that uncertainties in the sample data is
directly propagated through the network.



Chapter 7

Conclusions & Outlook

An engineering prototype for an fine-granular analogue hadron calorimeter (AHCAL)
was assembled by the CALICE collaboration in 2018. This AHCAL prototype consists
of 38 active layers with each 576 SiPM-on-tile cells of 30 x 30 mm2 size resulting in a
total of 21,888 calorimeter channels. As passive material 2 cm stainless steel absorber
were used in the sandwich structured calorimeter. It is the largest AHCAL prototype
developed to date and was designed for a scalable mass production. Each event
recorded includes 5-dimensional information: the 3D location, energy and timing of a
each calorimeter hit.

The prototype underwent several test beam campaigns at DESY and CERN in
2018 and 2019. In this thesis a focus is on the negative pion test beam data recorded
in May 2018 at SPS. The data includes runs at 11 beam energies between 10 and
160 GeV. A data quality analysis was performed evaluating the overall quality of runs
to be very good, although the 100 GeV runs were not usable for studies of the energy
resolution due to an open collimator in the beam line and the low energy runs suffer
from electron contamination. In addition to the data, a Monte Carlo simulation of the
test beam setup was developed by the collaboration. For both data and simulation
samples a hadronic shower start was required to occur in the early calorimeter layers.
Nonetheless for increasing beam energies the limitation of the energy resolution
through shower leakage is apparent.

The energy resolution of the AHCAL for pion events is under investigation in
this thesis. Several event energy reconstruction algorithms based on neural network
architectures are compared with the standard reconstruction and an established local
software compensation algorithm. The standard energy reconstruction denotes to the
summation over all calibrated cell energies of one event (Esum = ∑ Ei). Local software
compensation is a n algorithm that reconstructs the energy by applying event energy
dependent weighting factors to a binned hit energy spectrum.

The supervised machine learning algorithms explored in this thesis are based on
deep neural network architectures. Four architectures were studied, two with locally
connected layers, one multi layer fully connected network and a convolutional neural
network (CNN). In addition architectures are implemented that apply a cell-wise
weighting factor based on the hit timing. Training of the neural networks is done on
test beam data as well as on Monte Carlo samples. As the data suffers from muon,
electron and multi-particle contamination, basic cuts are applied to reject those events.
For training and testing of the networks two sets of data are used: six beam energies

69
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are used for training and testing, and in addition four different energies are sorted in
a sole testing set. This way it was tested whether the trained networks can reconstruct
energies they were not trained on. The same procedure was undertaken for training
on Monte Carlo samples with a tight energy spacing. The training was performed on
a set of 36 beam energies between 10 and 80 GeV with a 2 GeV spacing, the testing on
71 beam energies with a 1 GeV spacing.

With the locally connected network architecture, which introduces cell-wise energy
independent weighting factors, a better energy resolution than with the standard
reconstruction is achieved. The resolution improvement is between 5 % for 10 GeV
and 40 % for 80 GeV for the Monte Carlo samples. The increasing performance results
from the inherent shower leakage compensation as cells in the last detector layers
are weighted stronger. Above 40 GeV this architecture shows an improved resolution
over local software compensation. Hence in general, event energy dependent weights,
like in software compensation, as well as a shower leakage correction, like in the
locally connected network, are powerful algorithmic tools to improve the energy
reconstruction.

Of the deep neural network architectures explored, the CNN with a large kernel
size offers the most promising results. However, it is not possible to properly train on
the limited beam energies of the data sample due to overfitting. The overfitting occurs
for training on Monte Carlo simulation, too, outside of the 20 to 70 GeV window. Inside
this window the accuracy of the reconstruction is very good. For 20 GeV the CNN
improves the resolution by a few percent in comparison to software compensation, for
70 GeV by 60 % due to additional shower leakage correction. The CNN has access to
spatial and global event information resulting in this large resolution improvement.

Adding the timing information with a 1 ns smearing as a cell-wise calibration
factor to the locally connected architecture increases its resolution performance by 5
- 8 % for all beam energies in the Monte Carlo sample. The CNN can be improved
by merging it with the cell-wise output of the locally connected network including
time. This merged architecture utilizing the whole 5-dimensional event information
achieves the best resolution of all compared reconstruction algorithms.

The exact performance of the CNN approach should be investigated further by
extending the training energy range as well as the Monte Carlo accuracy. The local
software compensation could be improved by combining it with a shower leakage
correction and usage of hit timing information. In future test beam campaigns pion
runs with a tight beam energy spacing could be recorded to perform trainings of
DNNs with data similar to the training performed here with Monte Carlo samples.

In conclusion, a deep learning based energy reconstruction offers a promising
approach to improve the achievable energy resolution in future linear collider facilities.



Appendix A

Code for RMS90

Code A.1: Python code that calculates the mean and the standard deviation/rms and
their errors of the smallest window in which 90 % of the distirbution x is contained.

def c a l c 9 0 ( x ) :
x = numpy . s o r t ( x )
n10percent = i n t ( round ( len ( x ) ∗ 0 . 1 ) )
n90percent = len ( x ) − n10percent
f o r i in range ( n10percent ) :
rms90_i = numpy . std ( x [ i : i +n90percent ] )
i f i == 0 :
rms90 = rms90_i
mean90 = numpy . mean( x [ i : i +n90percent ] )
mean90_err = rms90/numpy . s q r t ( n90percent )
rms90_err = rms90/numpy . s q r t (2∗ n90percent )
e l i f i > 0 and rms90_i < rms90 :
rms90 = rms90_i
mean90 = numpy . mean( x [ i : i +n90percent ] )
mean90_err = rms90/numpy . s q r t ( n90percent )
rms90_err = rms90/numpy . s q r t (2∗ n90percent )
re turn mean90 , rms90 , mean90_err , rms90_err
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Appendix B

May 2018 test beam events
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Figure B.1: Total number of events of muons, pions and electrons recorded during the
May 2018 test beam campaign per particle. Different particle type contamination, noise
triggered events and double particle events are not taken account for.
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Figure B.2: Total number of muon events of recorded during the May 2018 test beam
campaign. Including position scan runs. Different particle type contamination, noise
triggered events and double particle events are not taken account for.
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Figure B.3: Total number of electron events of recorded during the May 2018 test beam
campaign. In red the runs in power pulsing mode are shown. Different particle type
contamination, noise triggered events and double particle events are not taken account
for.
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Figure B.4: Total number of pion events of recorded during the May 2018 test beam
campaign. In red the runs in power pulsing mode are shown. Different particle type
contamination, noise triggered events and double particle events are not taken account
for.



Appendix C

Data Quality Analysis for May 2018
Test Beam Data

Figure C.1: All histograms of the number of hits per event for all standard 100 GeV pion
runs recorded. The outlier (run 60766 in light green) is clearly noticeable.
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(a) same calibration constants for both power modes

(b) power mode specific calibration constants

Figure C.2: Energy sum (∑ Ei) distributions for all 40 GeV pion runs measured during
the May test beam campaign. Figure (a) shows a shift in the energy sum to lower energies
for runs with power pulsing when the same calibrations are applied to all runs. Figure (b)
shows the same runs but with power mode specific calibrations constants applied. The
peak bin position is marked on the x-axis for all runs.
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Figure C.3: All histograms of the number of hits per event for all standard 10 GeV pion
runs recorded in May and June 2018. May runs and June runs and marked accordingly.
The more pronounced peak of the June distributions result from optimized beam line
configurations that minimized electron contamination.

Figure C.4: Overview plot for the data quality analysis. Peak bin position of energy sum
histogram divided by the corresponding beam energy plotted against the beam enery for
all 150 runs taken during the May 2018 test beam. Due to binning effects several data
points overlay in this plot.



Appendix D

Data Cuts for 60 GeV Pions
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Figure D.1: 2D histograms for number of hits plotted against the centre of gravity in z
direction for 60 GeV pion data samples. (a) shows the distribution of all 60 GeV runs
without any cuts applied, figure (b) shows the samples with the cuts applied (see 6.1).
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Appendix E

LC1 weights for data
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(a) Weights of layer 19
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(b) Weights of layer 38
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Figure E.1: Visualizations of the trained LC1 weights. (a) shows the weights in the (i,j)-
plane for detector layer 19 (middle layer) and (b) shows the weights for layer 38 (last
layer). (c) shows weights for all cells in one corner and for the centre of the AHCAL
plotted against the calorimeter depth k.
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Appendix F

Time Calibration Factor
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Figure F.1: Calibration factor based on the hit time learned by the convolutional network
part in LC1+time. The timing calibration function is slightly different with each training.
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Appendix G

Additional Energy Reconstruction
Results
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Figure G.1: Histograms of Esum of the whole training samples for both data and MC
simulation. The bin width was fixed to 1 GeV. The colour coding corresponds to the beam
energy labels of each event (in the text).
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Figure G.2: Histograms of the reconstructed energy Ereco by network LC1 for all energies
in either test sample of data.
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Figure G.3: Histograms of the reconstructed energy Ereco by the CNN network for all
energies in the ’trained on’ test sample for MC.
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Figure G.4: Histograms of the reconstructed energy Ereco − Ebeam by the CNN network
trained on MC but applied to data.
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Figure G.5: Resolution improvement for the reconstructed energy with different networks
and local software compensation for the ’trained on’ MC test sample in comparison to
the standard reconstruction Esum. (a) shows the resolution difference for the locally
connected architectures (with and without timing). (b) shows the resolution difference
for the convolutional architectures (with and without timing).
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