Institut für Laser-Physik

Laser Cooling

List of Topics: - Why Laser Cooling?

- Classical Description of Light Forces
- Opical Bloch-Equation for Two-Level Atoms
- Light Shift and Dressed States
- Cooling with Radiation Pressure, Doppler Limit
- Magneto-optic Trap
- Dipole Forces
- Interference Effects in Multiple Beam Geometries
- Polarization Gradient Cooling
- Optical Lattices
- Cooling below the Recoil Limit: VSCPT, Raman Cooling

Textbooks \& Reviews

```
Laser Cooling and Trapping
H. Metcalf, P. van der Straten, Springer Verlag (1999)
Atoms and Molecules Interacting with Light
P. van der Straten, H. Metcalf, Cambridge University Press (2016)
Atomic Physics
M. Inguscio, L. Fallani, Oxford University Press (2013)
Laser Cooling and Trapping of neutral Atoms
C. S. Adams, E. Riis Prog. Quonr. Elecr, Vol. 21, No. 1, pp. 1-79 (1997)
Manipulating atoms with photons
Claude N. Cohen-Tannoudji, Reviews of Modern Physics, Vol. 70, No. 3, (1998)
Electromagnetic trapping of cold atoms
V I Balykin, V G Minogin and V S Letokhov, Rep. Prog. Phys. 63, 1429-1510 (2000)
Cold Atoms in Dissipative Optical Lattices
G. Grynberg, C. Robilliard, Physics Reports 355, 335-451 (2001)
```


Very Cold Atom Samples

- Precision Spectroscopy
- Interferometry
- Lithography
- Time/Length Standards
- Quantum Logic

Novel Quantum Systems

- Trapped Quantum Gases

Textbook Models for Physics of Liquids and Solids at low Temperature

- Theoretical Treatment ab initio
- Precise Control of all System Parameters

Approaching Zero Temperature

Discovery of Light Forces

Albert Einstein 1917: Atomic (molecular) gases thermalize in thermal light fields

Arthur H. Compton 1923: Significance of recoil in photon electron scattering

UH It

Otto R. Frisch 1933: First deflection of atomic beam by light
These experiments were performed in Hamburg, Jungiusstr. 9a, and had to be cut off, when Frisch and Stern (because of their jewish denomination) were expelled from the university.

Theodore Maiman 1960: First laser

1975 Proposals of laser cooling: T. Hänsch, A. Schalow, D. Wineland, H. Dehmelt
1980-1990
1997
Experimental realization
Nobelprize laser cooling: S. Chu, C. Cohen-Tannoudji, W. Phillips
1995
2001
First Bose-Einstein Condensates: E. Cornell, C. Wieman, R. Hulet, W. Ketterle
Nobelprize Bose-Einstein-Condensation: E. Cornell, W. Ketterle, C. Wieman

Radiation Pressure

Absorption:

$$
\mathrm{a}=\frac{\mathrm{F}}{\mathrm{~m}}=\frac{\Pi_{\mathrm{e}}}{\mathrm{~m}} \hbar \mathrm{k} \Gamma=10^{5} \mathrm{~g}
$$

Cooling with Radiation Pressure

Resting Atom: radiation pressure cancels

Moving Atom: atoms tunes into resonance with counter-propagating beam
\longrightarrow force decelerates atom proportional to its velocity
\rightarrow faster atom experience stronger force: velocity spread is reduced

Classical Description of Light Forces

Lorentz Model:

dipole moment: $\mathrm{P}(\mathrm{t})=\mathrm{e}\left(\mathrm{r}(\mathrm{t})-\mathrm{r}_{0}\right)$

$$
\text { 0, } 0
$$

Oscillating electron at position $r(t)=r_{0}+e^{-1} P(t)$ and proton at position r_{0} experience time-averaged Coulomb-force:

$$
\begin{array}{cc}
F_{C}=\left\langle e E(r(t), t)-e E\left(r_{0}, t\right)\right\rangle \underset{4}{\approx}\langle(P \nabla) E\rangle & \langle A\rangle \equiv \frac{1}{T} \int_{0}^{T} A(t) d t \\
\vec{E}(\vec{r}+\overrightarrow{\delta r})=E(\vec{r})+(\vec{\delta} r \vec{\nabla}) \vec{E}+O\left(\delta r^{2}\right) &
\end{array}
$$

Induced dipole $P(t)=\left(r(t)-r_{0}\right)$ e yields time-averaged Lorentz-force:

Total Force: $\quad \mathrm{F}=\mathrm{F}_{\mathrm{C}}+\mathrm{F}_{\mathrm{L}}=\langle\nabla(\mathrm{PE})\rangle$
$\Rightarrow \quad$ Same expression as known for static dipoles in static electric fields

Consider Harmonic Field: $\quad E(r, t)=\frac{1}{\sqrt{2}}\left(E(r) e^{i \omega t}+E(r)^{*} e^{-i \omega t}\right)$

$$
\begin{array}{ll}
\mathrm{P}(\mathrm{t})=\frac{1}{\sqrt{2}}\left(P \mathrm{e}^{\mathrm{i} \omega \mathrm{t}}+\mathrm{P}^{*} \mathrm{e}^{-\mathrm{i} \omega \mathrm{t}}\right) \quad \mathrm{E}(\mathrm{r}), \mathrm{P}=\text { complex } \\
& \text { time-independent vectors }
\end{array}
$$

Express complex polarization P by means of polarizability tensor $\alpha(E): P=\varepsilon_{0} \alpha(E) E$

$$
\alpha(E)=\text { complex } 3 \times 3 \text { Matrix }
$$

Choose basis such that $\alpha(E)$ diagonal, with $\alpha_{v v} \equiv \alpha_{v}+i \beta_{v}, \quad E_{v} \equiv \sqrt{\frac{I_{v}}{\varepsilon_{0}}} e^{-i \psi_{v}}$

$$
\begin{gathered}
\mathrm{F}=\frac{1}{2} \sum_{v=1}^{3} \alpha_{v} \nabla \mathrm{I}_{v}-\sum_{v=1}^{3} \beta_{v} \mathrm{I}_{v} \nabla \psi_{v} \\
\text { dipole force } \\
\text { radiation pressure }
\end{gathered}
$$

detailed calculation of force:

$$
\begin{aligned}
& \nabla \text { acts on E only } \\
& F=\frac{1}{2}\left(\overparen{\nabla\left(P E^{*}\right)}+\overparen{\nabla\left(P^{*} E\right)}\right)=\frac{1}{2} \sum_{n=1}^{3} P_{n} \nabla E_{n}^{*}+P_{n}^{*} \nabla E_{n}=\frac{\varepsilon_{0}}{2} \sum_{n=1}^{3} \sum_{m=1}^{3} \alpha_{n m} E_{m} \nabla E_{n}^{*}+\alpha_{n m}^{*} E_{m}^{*} \nabla E_{n} \\
& =\frac{\varepsilon_{0}}{2} \sum_{n=1}^{3} \alpha_{n n} E_{n} \nabla E_{n}^{*}+\alpha_{n n}^{*} E_{n}^{*} \nabla E_{n}=\frac{\varepsilon_{0}}{2} \sum_{n=1}^{3}\left(\alpha_{n}+i \beta_{n}\right) E_{n} \nabla E_{n}^{*}+\left(\alpha_{n}-i \beta_{n}\right) E_{n}^{*} \nabla E_{n} \\
& =\frac{\varepsilon_{0}}{2} \sum_{n=1}^{3} \alpha_{n}\left(E_{n} \nabla E_{n}^{*}+E_{n}^{*} \nabla E_{n}\right)+i \beta_{n}\left(E_{n} \nabla E_{n}^{*}-E_{n}^{*} \nabla E_{n}\right)=\frac{\varepsilon_{0}}{2} \sum_{n=1}^{3} \alpha_{n} \nabla\left(E_{n} E_{n}^{*}\right)+i \beta_{n}\left(E_{n} \nabla E_{n}^{*}-E_{n}^{*} \nabla E_{n}\right) \\
& E_{n} \equiv \sqrt{I_{n} / \varepsilon_{0}} e^{-i \psi_{n}} \quad \Rightarrow \quad E_{n} \nabla E_{n 1}^{*}+E_{n}^{*} \nabla E_{n_{1}}=\frac{1}{\varepsilon_{0}} \nabla I_{n 1} \\
& E_{n} \nabla E_{n}^{*}-E_{n}^{*} \nabla E_{n}=2 i \nabla \psi_{n} \frac{I_{n}}{\varepsilon_{0}} \\
& \Rightarrow \quad F=\left.\frac{1}{2} \sum_{n=1}^{3} \alpha_{n} \nabla\right|_{n}-\left.\sum_{n=1}^{3} \beta_{n}\right|_{n} \nabla \psi_{n}
\end{aligned}
$$

Example: linear polarization along z-axis $\quad E \equiv \hat{z} \sqrt{\frac{I(x, y, z)}{\varepsilon_{0}}} e^{-i \psi(x, y, z)}$
$I(x, y, z)$ energy density, $\psi(x, y, z)$ local phase

$$
\Rightarrow \quad \mathrm{F}=\frac{1}{2} \alpha_{\mathrm{z}} \nabla \mathrm{I}-\beta_{\mathrm{z}} \mathrm{I} \nabla \psi
$$

plane travelling wave:

$$
\begin{aligned}
& \mathrm{I}=\mathrm{I}_{0}=\text { constant, } \psi=\mathrm{kr} \quad \Rightarrow \quad \nabla \mathrm{I}=0, \nabla \psi=\mathrm{k} \\
& \Rightarrow \mathrm{~F}=\quad-\beta_{\mathrm{z}} \mathrm{I}_{0} \nabla \psi=-\beta_{\mathrm{z}} \mathrm{I}_{0} \mathrm{k} \\
&=\hbar \mathrm{k} \Gamma \Pi_{\mathrm{e}}
\end{aligned}
$$

plane standing wave:

$$
\begin{aligned}
\mathrm{I}=\mathrm{I}_{0} \cos ^{2}(\mathrm{kr}), \psi=\mathrm{constant} & \Rightarrow \nabla \mathrm{I}=-\mathrm{k} \mathrm{I}_{0} \sin (2 \mathrm{kr}), \quad \nabla \psi=0 \\
\Rightarrow \quad \mathrm{~F}=\frac{1}{2} \alpha_{\mathrm{z}} \nabla \mathrm{I} & =-\frac{1}{2} \alpha_{\mathrm{z}} \mathrm{I}_{0} \mathrm{k} \sin (2 \mathrm{kr}) \\
& =-\hbar \mathrm{k} \delta \Pi_{\mathrm{e}} \sin (2 \mathrm{kr})
\end{aligned}
$$

Conclusion: general structure of light forces follows from classical treatment of the light, however, we need to treat internal atomic degrees of freedom quantum mechanically in order to calculate polarizability tensor $\alpha_{v v} \equiv \alpha_{v}+\mathrm{i} \beta_{v}$

Concept of density matrix

Physical states are described by quantum mechanics as elements $|\psi\rangle$ of a Hilbert-space \mathcal{H}.
Physical quantities are implemented as self-adjoint operators (Observables) $A \in O(\mathcal{H})$.
The most significant property of quantum states is the superposition principle, i.e., we may compose any state via basis states $|v\rangle, v=0,1, \ldots$.

$$
|\psi\rangle=\sum_{v=1}^{N} \psi_{v}|v\rangle \quad \text { with complex numbers } \psi_{v}
$$

Any state $|\psi\rangle$ is fully determined by knowing the statistical weights $\left|\psi_{v}\right|^{2}$ of the states $|v\rangle$ and the relative phases $\frac{\psi_{v}{ }^{*} \Psi_{\mu}}{\left|\psi_{v}{ }^{*} \Psi_{\mu}\right|}$ between states $|v\rangle$ and $|\mu\rangle$.

Can we describe a physical state with these phases not entirely fixed or not known, for example, because we consider a statistical ensemble ?

Extension of the concept of a quantum mechanical state:

$$
\mathrm{P}_{\psi} \equiv|\psi\rangle\langle\psi| \quad \text { projector with respect to }|\psi\rangle:
$$

$$
\begin{gathered}
\mathrm{P}_{\psi} \mathrm{P}_{\psi}=\mathrm{P}_{\psi} \\
\mathrm{P}_{\psi}|\psi\rangle=|\psi\rangle \\
\mathrm{P}_{\psi}|\phi\rangle=0 \quad \text { if }|\phi\rangle \perp|\psi\rangle \\
\mathrm{A} \in \mathrm{O}(\mathscr{H}) \quad \Rightarrow \quad\langle\psi| \mathrm{A}|\psi\rangle=\text { Trace }\left[\mathrm{A} \mathrm{P}_{\psi}\right]
\end{gathered}
$$

pure states and mixed states
pure state: $\quad|\psi\rangle \equiv \sum_{v=1}^{N} \psi_{v}|v\rangle \Rightarrow$ projector $\quad P_{\psi} \equiv|\psi\rangle\langle\psi|=\sum_{v, \mu=1}^{N} \psi_{v} \psi_{\mu}^{*}|v\rangle\langle\mu|$
matrix elements: $\langle v| P_{\psi}|\mu\rangle=\psi_{v} \psi_{\mu}^{*} \quad \Rightarrow \quad \begin{aligned} & \text { non-zero off-diagonal elements provide } \\ & \text { complete phase information with respect to any basis }\end{aligned}$
mixed state: density operator $\quad \rho \equiv \sum_{k=1}^{K} \Pi_{k}\left|\psi^{(k)}\right\rangle\left\langle\psi^{(k)}\right| \quad$ with $\Pi_{k} \in[0,1]$ and $\quad \sum_{k=1}^{K} \Pi_{k}=1$

$$
\begin{aligned}
& \rho=\rho^{+}, \operatorname{Trace}[\rho]=1 \\
& \mathrm{~A} \in \mathrm{O}(\mathcal{H}) \quad \Rightarrow \quad\langle\mathrm{A}\rangle_{\rho} \equiv \sum_{\mathrm{k}=1}^{\mathrm{K}} \Pi_{\mathrm{k}}\left\langle\psi^{(k)}\right| \mathrm{A}\left|\psi^{(k)}\right\rangle=\operatorname{Trace}[\mathrm{A} \rho]
\end{aligned}
$$ matrix elements: $\quad\langle v| \rho|\mu\rangle=\sum_{k=1}^{K} \Pi_{k}\left\langle v \mid \psi^{(k)}\right\rangle\left\langle\psi^{(k)} \mid \mu\right\rangle$

off-diagonal elements $v \neq \mu$ (coherences): $\langle v| \rho|\mu\rangle$ can be zero, although some $\left\langle v \mid \psi^{(k)}\right\rangle\left\langle\psi^{(k)} \mid \mu\right\rangle$ are non-zero. i.e., mixed states are characterized by reduced phase information

Evolution of density matrix (von Neumann)

$$
\begin{aligned}
& i \hbar \frac{\partial}{\partial t}|\psi\rangle\langle\psi|=i \hbar[|\dot{\psi}\rangle\langle\psi|+|\psi\rangle\langle\dot{\psi}|]=H|\psi\rangle\langle\psi|-|\psi\rangle\langle\psi| H=[H,|\psi\rangle\langle\psi|] \\
& \rho \equiv \sum_{n=1}^{N} \Pi_{n}\left|\psi^{(n)}\right\rangle\left\langle\psi^{(n)}\right| \Rightarrow \quad \Rightarrow \quad \frac{\partial}{\partial t} \rho=[H, \rho]
\end{aligned}
$$

Two-Level Atom:

Atomic Hamiltonian: $\quad \mathrm{H}_{\mathrm{A}}=\hbar \omega_{0} \mathrm{~b}^{+} \mathrm{b} \quad \Rightarrow \quad \mathrm{H}_{\mathrm{A}}|\mathrm{g}\rangle=0|\mathrm{~g}\rangle, \mathrm{H}_{\mathrm{A}}|\mathrm{e}\rangle=\hbar \omega_{0}|\mathrm{e}\rangle$
$b \equiv|g\rangle\langle e|$ anihilation of excitation

Atomic Dipole Operator: d must not have diagonal elements \rightarrow no permanent dipole moment

$$
d \equiv \mu b+\mu^{*} b^{+} \quad \text { with } \quad \mu \quad \equiv\langle g| d|e\rangle
$$

Interaction Operator:

$$
W(t)=d E(r, t), \quad E(r, t)=\frac{1}{\sqrt{2}}\left(E(r) e^{-i \omega t}+E(r)^{*} e^{i \omega t}\right)
$$

$$
\Rightarrow \quad W=v b+v^{\star} b^{+} \quad \text { with } \quad v \equiv\langle g| W(t)|e\rangle=\frac{1}{\sqrt{2}}\left(\mu E e^{-i \omega t}+\mu E^{\star} e^{\text {int }}\right)
$$

Evaluate evolution equation for $H=H_{A}+W$ in Basis $\left.\{|g\rangle, l e\rangle\right\}, \rho_{n m} \equiv\langle n| \rho|m\rangle$:

$$
\begin{align*}
& \frac{\partial}{\partial \mathrm{t}} \rho_{\mathrm{eg}}=-\mathrm{i} \omega_{0} \rho_{\mathrm{eg}}-\mathrm{i} \frac{\mathrm{v}^{*}}{\hbar}\left(\rho_{\mathrm{gg}}-\rho_{\mathrm{ee}}\right) \\
& \frac{\partial}{\partial \mathrm{t}} \rho_{\mathrm{ee}}=\mathrm{i} \frac{\mathrm{v}}{\hbar} \rho_{\mathrm{eg}}-\mathrm{i} \frac{\mathrm{v}^{*}}{\hbar} \rho_{\mathrm{ge}} \tag{*}\\
& \frac{\partial}{\partial \mathrm{t}} \rho_{\mathrm{gg}}=\mathrm{i} \frac{\mathrm{v}^{\star}}{\hbar} \rho_{\mathrm{ge}}-\mathrm{i} \frac{\mathrm{v}}{\hbar} \rho_{\mathrm{eg}}
\end{align*}
$$

Damping of $\rho_{\mathrm{nm}} \equiv\langle\mathrm{n}| \rho|\mathrm{m}\rangle$ by spontaneous emission:

$$
\begin{aligned}
\langle\mathrm{e}| \rho|\mathrm{e}\rangle & \frac{\partial}{\partial \mathrm{t}} \rho_{\mathrm{eg}}=-\gamma \rho_{\mathrm{eg}} \\
\frac{1}{2}\left(\Gamma_{\mathrm{e}}+\Gamma\right)-\frac{1}{2}\left(\Gamma_{\mathrm{e}}+\Gamma\right) & \frac{\partial}{\partial \mathrm{t}} \rho_{\mathrm{ee}}=-\left(\Gamma_{\mathrm{e}}+\Gamma\right) \rho_{\mathrm{ee}} \\
\langle\mathrm{~g}| \rho|\mathrm{g}\rangle & \frac{\partial}{\partial \mathrm{t}} \rho_{\mathrm{gg}}=
\end{aligned}
$$

$$
\frac{1}{2} \Gamma_{g} \xlongequal{\langle\mathrm{~g}| \rho|\mathrm{e}\rangle}<\frac{1}{2}\left(\Gamma_{\mathrm{e}}+\Gamma\right)
$$

$$
\text { Damping of coherence: } \quad \gamma=\gamma_{\mathrm{coh}}+\left(\Gamma_{\mathrm{g}}+\Gamma_{\mathrm{e}}+\Gamma\right) / 2
$$

$$
\gamma_{\text {coh }} \text { can result from dephasing by collisions etc. }
$$

Evaluation of evolution equation (*)

$$
\begin{aligned}
& \partial_{t} \rho=\frac{1}{i \hbar}[H, \rho] \\
& \rho=\left(\begin{array}{cc}
\rho_{\mathrm{gg}} & \rho_{\mathrm{ge}} \\
\rho_{\mathrm{eg}} & \rho_{\mathrm{ee}}
\end{array}\right), \mathrm{H}=\left(\begin{array}{cc}
\mathrm{H}_{\mathrm{gg}} & \mathrm{H}_{\mathrm{ge}} \\
\mathrm{H}_{\mathrm{eg}} & \mathrm{H}_{\mathrm{ee}}
\end{array}\right)=\left(\begin{array}{cc}
0 & \mathrm{v} \\
\mathrm{v}^{*} & h \omega_{0}
\end{array}\right) \\
& {[H, \rho]=\left(\begin{array}{cc}
H_{g g} & H_{\mathrm{ge}} \\
\mathrm{H}_{\mathrm{eg}} & \mathrm{H}_{\mathrm{ee}}
\end{array}\right)\left(\begin{array}{cc}
\rho_{\mathrm{gg}} & \rho_{\mathrm{ge}} \\
\rho_{\mathrm{eg}} & \rho_{\mathrm{ee}}
\end{array}\right)-\left(\begin{array}{cc}
\rho_{\mathrm{gg}} & \rho_{\mathrm{ge}} \\
\rho_{\mathrm{eg}} & \rho_{\mathrm{ee}}
\end{array}\right)\left(\begin{array}{cc}
\mathrm{H}_{\mathrm{gg}} & \mathrm{H}_{\mathrm{ge}} \\
\mathrm{H}_{\mathrm{eg}} & \mathrm{H}_{\mathrm{ee}}
\end{array}\right)=} \\
& \left(\begin{array}{cc}
\mathrm{H}_{\mathrm{gg}} \rho_{\mathrm{gg}}+\mathrm{H}_{\mathrm{ge}} \rho_{\mathrm{eg}}-\rho_{\mathrm{gg}} \mathrm{H}_{\mathrm{gg}}-\rho_{\mathrm{ge}} \mathrm{H}_{\mathrm{eg}} & \mathrm{H}_{\mathrm{gg}} \rho_{\mathrm{ge}}+\mathrm{H}_{\mathrm{ge}} \rho_{\mathrm{ee}}-\rho_{\mathrm{gg}} \mathrm{H}_{\mathrm{ge}}-\rho_{\mathrm{ge}} \mathrm{H}_{\mathrm{ee}} \\
\mathrm{H}_{\mathrm{eg}} \rho_{\mathrm{gg}}+\mathrm{H}_{\mathrm{ee}} \rho_{\mathrm{eg}}-\rho_{\mathrm{eg}} \mathrm{H}_{\mathrm{gg}}-\rho_{\mathrm{ee}} \mathrm{H}_{\mathrm{eg}} & \mathrm{H}_{\mathrm{eg}} \rho_{\mathrm{ge}}+\mathrm{H}_{\mathrm{ee}} \rho_{\mathrm{ee}}-\rho_{\mathrm{eg}} \mathrm{H}_{\mathrm{ge}}-\rho_{\mathrm{ee}} \mathrm{H}_{\mathrm{ee}}
\end{array}\right)= \\
& \left(\begin{array}{cc}
\rho_{e g} H_{g e}-\rho_{g e} H_{e g} & \rho_{g e}\left(H_{g g}-H_{e e}\right)+\left(\rho_{e e}-\rho_{g g}\right) H_{g e} \\
\rho_{e g}\left(H_{e e}-H_{g g}\right)+\left(\rho_{g g}-\rho_{e e}\right) H_{e g} & \rho_{g e} H_{e g}-\rho_{e g} H_{g e}
\end{array}\right)= \\
& \frac{1}{i \hbar}[H, \rho]=\left(\begin{array}{cc}
i \frac{v^{*}}{\hbar} \rho_{\mathrm{ge}}-\mathrm{i} \frac{\mathrm{v}}{\hbar} \rho_{\mathrm{eg}} & \mathrm{i} \omega_{0} \rho_{\mathrm{ge}}+\mathrm{i} \frac{\mathrm{v}}{\hbar}\left(\rho_{\mathrm{gg}}-\rho_{\mathrm{ee}}\right) \\
-\mathrm{i} \omega_{0} \rho_{\mathrm{eg}}+\mathrm{i} \frac{\mathrm{v}^{*}}{\hbar}\left(\rho_{\mathrm{ee}}-\rho_{\mathrm{gg}}\right) & \mathrm{i} \frac{\mathrm{v}}{\hbar} \rho_{\mathrm{eg}}-\mathrm{i} \frac{\mathrm{v}^{*}}{\hbar} \rho_{\mathrm{ge}}
\end{array}\right)
\end{aligned}
$$

Evolution equation with damping:

$$
\begin{aligned}
& \frac{\partial}{\partial t} \rho_{\mathrm{eg}}=-\mathrm{i} \omega_{0} \rho_{\mathrm{eg}}-\mathrm{i} \frac{\mathrm{v}^{*}}{\hbar}\left(\rho_{\mathrm{gg}}-\rho_{\mathrm{ee}}\right)-\gamma \rho_{\mathrm{eg}} \\
& \frac{\partial}{\partial \mathrm{t}} \rho_{\mathrm{ee}}=\mathrm{i} \frac{\mathrm{v}}{\hbar} \rho_{\mathrm{eg}}-\mathrm{i} \frac{\mathrm{v}^{\star}}{\hbar} \rho_{\mathrm{ge}}-\left(\Gamma_{\mathrm{e}}+\Gamma\right) \rho_{\mathrm{ee}} \\
& \frac{\partial}{\partial \mathrm{t}} \rho_{\mathrm{gg}}=\mathrm{i} \frac{\mathrm{v}^{*}}{\hbar} \rho_{\mathrm{ge}}-\mathrm{i} \frac{\mathrm{v}}{\hbar} \rho_{\mathrm{eg}}+\Gamma \rho_{\mathrm{ee}}-\Gamma_{\mathrm{g}} \rho_{\mathrm{gg}}
\end{aligned}
$$

Equation is time-dependent via $e^{-i \omega t}$ and $e^{i \omega t}$ terms of $v(t)$
co-rotating basis:
physical significance of co-rotating basis:
simplest radially symmetric atomic dipole transition: $\mathrm{J}=0 \rightarrow \mathrm{~J}=1$ transition
quantization axis $=z$-axis, light circularly polarized in $x y$-plane couples $\lg , 0>\rightarrow l e,+1>$
angular momentum:

$$
\begin{aligned}
& J_{z}|e, v\rangle=v \hbar|e, v\rangle, v=-1,0,1 \\
& J_{z}|g, 0\rangle=0
\end{aligned}
$$

rotation operator with respect to z-axis: $R(z, \alpha) \equiv \exp \left(\frac{-i}{\hbar} \alpha J_{z}\right) \quad \Rightarrow \quad R(z, \omega t+\phi)|g, 0\rangle=|g, 0\rangle$

$$
R(z, \omega t+\phi)|e,+1\rangle=e^{-i(\omega t+\phi)}|e,+1\rangle
$$

$$
\begin{aligned}
& |\mathrm{g}\rangle \rightarrow|\mathrm{g}\rangle \quad \text { equivalent to } \quad-\omega_{0} \rightarrow \delta \equiv \omega-\omega_{0} \\
& |e\rangle \rightarrow|e\rangle e^{-i(\omega t+\phi)} \\
& \Rightarrow \quad \frac{\partial}{\partial t} \rho_{\mathrm{eg}}=\quad \mathrm{i} \delta \rho_{\mathrm{eg}} \quad-\quad \mathrm{i} \frac{\mathrm{u}^{*}}{\hbar}\left(\rho_{\mathrm{gg}}-\rho_{\mathrm{ee}}\right)-\gamma \rho_{\mathrm{eg}} \\
& \frac{\partial}{\partial t} \rho_{\mathrm{ee}}=i \frac{\mathrm{u}}{\hbar} \rho_{\mathrm{eg}}-i \frac{\mathrm{u}^{*}}{\hbar} \rho_{\mathrm{ge}}-\left(\Gamma_{\mathrm{e}}+\Gamma\right) \rho_{\mathrm{ee}} \\
& \frac{\partial}{\partial t} \rho_{\mathrm{gg}}=\quad \mathrm{i} \frac{\mathrm{u}^{*}}{\hbar} \rho_{\mathrm{ge}}-i \frac{\mathrm{u}}{\hbar} \rho_{\mathrm{eg}}+\Gamma \rho_{\mathrm{ee}}-\Gamma_{\mathrm{g}} \rho_{\mathrm{gg}}
\end{aligned}
$$

rotating wave approximation (RWA):

$$
\begin{aligned}
u \equiv v \mathrm{e}^{-i(\omega t+\phi)} & =\frac{1}{\sqrt{2}} \mu \mathrm{E} \mathrm{e}^{-\mathrm{i}(2 \omega t+\phi)}+\frac{1}{\sqrt{2}} \mu \mathrm{E}^{\star} \mathrm{e}^{-\mathrm{i} \phi} \\
& \approx \frac{1}{\sqrt{2}} \mu \mathrm{E}^{\star} \mathrm{e}^{-\mathrm{i} \phi}=\frac{\hbar}{2} \omega_{1}
\end{aligned}
$$

cf. Cohen Tannoudji QM II, Chap.XIII, Sec.C
Rabi-frequency: $\quad \omega_{1} \equiv \frac{\sqrt{2}}{\hbar} \mu E^{*} e^{-\mathrm{i} \phi} \quad$ choose ϕ such that ω_{1} real \& positive

Evolution equation in rotating frame:

$$
\begin{aligned}
\Rightarrow \quad \frac{\partial}{\partial t} \rho_{\mathrm{eg}} & =\mathrm{i} \delta \rho_{\mathrm{eg}}-\mathrm{i} \frac{\omega_{1}}{2}\left(\rho_{\mathrm{gg}}-\rho_{\mathrm{ee}}\right)-\gamma \rho_{\mathrm{eg}} \\
\frac{\partial}{\partial \mathrm{t}} \rho_{\mathrm{ee}} & =\mathrm{i} \frac{\omega_{1}}{2} \rho_{\mathrm{eg}}-\mathrm{i} \frac{\omega_{1}}{2} \rho_{\mathrm{ge}}-\left(\Gamma_{\mathrm{e}}+\Gamma\right) \rho_{\mathrm{ee}} \\
\frac{\partial}{\partial \mathrm{t}} \rho_{\mathrm{gg}} & =\mathrm{i} \frac{\omega_{1}}{2} \rho_{\mathrm{ge}}-\mathrm{i} \frac{\omega_{1}}{2} \rho_{\mathrm{eg}}+\Gamma \rho_{\mathrm{ee}}-\Gamma_{\mathrm{g}} \rho_{\mathrm{gg}}
\end{aligned}
$$

Optical Bloch-Equation

define:

$$
\left.\begin{array}{rlrl}
\mathrm{u} & \equiv \rho_{\mathrm{eg}}+\rho_{\mathrm{ge}} & & \text { real part of coherence } \\
\mathrm{v} & \equiv \mathrm{i}\left(\rho_{\mathrm{eg}}-\rho_{\mathrm{ge}}\right) & & \text { imaginary part of coherence } \\
\mathrm{w} & \equiv \rho_{\mathrm{ee}}-\rho_{\mathrm{gg}} & & \text { inversion } \\
\mathrm{z} & \equiv \rho_{\mathrm{ee}}+\rho_{\mathrm{gg}} & & \text { total population }
\end{array} \quad(\mathrm{u}, \mathrm{v}, \mathrm{w}) \equiv \text { Bloch-vector }\right)
$$

$$
\Rightarrow \quad \frac{\partial}{\partial t}\left(\begin{array}{c}
u \\
v \\
w \\
z
\end{array}\right)=\left(\begin{array}{cccc}
-\gamma & -\delta & 0 & 0 \\
\delta & -\gamma & -\omega_{1} & 0 \\
0 & \omega_{1} & -\frac{\Gamma_{g}+\Gamma_{\mathrm{e}}+2 \Gamma}{2} & \frac{\Gamma_{g}-\Gamma_{\mathrm{e}}-2 \Gamma}{2} \\
0 & 0 & \frac{\Gamma_{g}-\Gamma_{e}}{2} & -\frac{\Gamma_{\mathrm{g}}+\Gamma_{e}}{2}
\end{array}\right)\left(\begin{array}{l}
u \\
v \\
w \\
z
\end{array}\right)
$$

Closed Two-Level System:

$$
\begin{aligned}
\Gamma_{\mathrm{g}}=\Gamma_{\mathrm{e}}=0, \mathrm{z}=1 & \Rightarrow \\
\frac{\partial}{\partial t}\left(\begin{array}{l}
u \\
v \\
w
\end{array}\right) & =\left(\begin{array}{ccc}
-\gamma & -\delta & 0 \\
\delta & -\gamma & -\omega_{1} \\
0 & \omega_{1} & -\Gamma
\end{array}\right)\left(\begin{array}{l}
u \\
v \\
w
\end{array}\right)-\left(\begin{array}{l}
0 \\
0 \\
\Gamma
\end{array}\right)
\end{aligned}
$$

Elementary Solutions of Optical Bloch-Equation

no damping $(\gamma, \Gamma=0)$:

- Bloch-vector precesses around \vec{f} with angular frequency $\Omega=|\vec{f}|=\sqrt{\omega_{1}^{2}+\delta^{2}}$
- for pure states, Bloch vector has constant length 1 and points onto Bloch-sphere
- for mixed states, constant length of Bloch vector <1 lies within Bloch-sphere

special cases:
light off, i.e., $\quad f^{\prime}=(0,0, \delta) \rightarrow \quad$ for $W\left(t_{u}\right)=-1$ follows $W(t)=-1$ for all later times t
resonance, i.e., $\vec{f}=\left(\omega_{1}, 0,0\right) \quad \Rightarrow \quad$ Bloch-vector travels on great circle within the yz-plane with angular frequency ω_{1}. System is periodically inverted.
- evolution of excited state population (Initial condition $W\left(\mathrm{t}_{0}\right)=-1$):

$$
\begin{aligned}
\rho_{\mathrm{ee}} & =\frac{\omega_{1}^{2}}{\omega_{1}^{2}+\delta^{2}} \sin ^{2}\left(\frac{1}{2} \sqrt{\omega_{1}{ }^{2}+\delta^{2}} t\right) \\
& =\frac{1}{4} \omega_{1}^{2} t^{2}+O\left(t^{4}\right)
\end{aligned}
$$

damping:

Bloch-vector shrinks and approaches steady state:

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=0 \quad \Rightarrow\left(\begin{array}{c}
\bar{u} \\
\bar{v} \\
\bar{w}
\end{array}\right)=M^{-1}\left(\begin{array}{c}
0 \\
0 \\
\Gamma
\end{array}\right)=\frac{1}{1+s}\left(\begin{array}{c}
-s \frac{\Gamma \delta}{\gamma \omega_{1}} \\
s \frac{\Gamma}{\omega_{1}} \\
-1
\end{array}\right) \\
& \text { resonant saturation parameter: } \quad s_{0} \equiv \frac{\omega_{1}^{2}}{\gamma \Gamma}=\frac{1}{I_{\text {sat }}} \\
& \text { saturation parameter: } \quad s \equiv s_{0} \frac{1}{1+(\delta / \gamma)^{2}}
\end{aligned}
$$

cases \& comments:

- population of excited state: $\rho_{\mathrm{ee}}=\frac{1}{2}(1+\overline{\mathrm{w}})=\frac{1}{2} \frac{\mathrm{~s}}{1+\mathrm{s}}=\frac{1}{2} \frac{\mathrm{~s}_{0} \gamma^{2}}{\delta^{2}+(\widetilde{\Gamma} / 2)^{2}}$
power broadened linewidth (FWHM): $\tilde{\Gamma} \equiv 2 \gamma \sqrt{1+\mathrm{s}_{0}}=2 \gamma \sqrt{1+\mathrm{I} / \mathrm{I}_{\text {sat }}}$

- resonance, i.e., $\delta=0 \Rightarrow s=s_{0}, \bar{u}=0, \quad \bar{v}=\frac{1}{1+s_{0}} \frac{\omega_{1}}{\gamma}, \bar{w}=\frac{-1}{1+s_{0}}$
- light off. i.e., $\omega_{1}=0 \Rightarrow s=0, \quad(\bar{u}, \bar{v}, \bar{w})=(0,0,-1)$
- steady state Bloch-vector lies within southern hemisphere with length: $\sqrt{\overline{\mathrm{u}}^{2}+\overline{\mathrm{v}}^{2}+\overline{\mathrm{w}}^{2}}=\frac{1+\mathrm{s} \Gamma / \gamma}{1+2 s+\mathrm{s}^{2}}<1$ if $2 \gamma>\Gamma$

stationary polarizability

calculate expectation value of polarization

$$
P=\operatorname{Trace}\left(\rho\left[\mu|g\rangle\langle e|+\mu^{*}|e\rangle\langle g|\right]\right)=\rho_{g e} d_{e g}+\rho_{e g} d_{g e}
$$

matrix element in co-rotating basis

$$
=\frac{1}{2} \mu^{*} e^{i(\omega t+\phi)}(\bar{u}+i \bar{v})+c . c
$$

$$
\mathrm{d}_{\mathrm{eg}} \equiv \mu^{*} \mathrm{e}^{\mathrm{i}(\omega t+\phi)}
$$

saturation parameter
\qquad
$s \equiv \frac{\omega_{1}{ }^{2}}{\gamma \Gamma} \frac{1}{1+\delta / \gamma^{2}}$

Rabi-frequency

$$
=\frac{1}{\sqrt{2}}|\mu|^{2} E^{\star} e^{i \omega t} \frac{1}{\hbar}\left[-\frac{\delta}{\delta^{2}+\gamma^{2}}+i \frac{\gamma}{\delta^{2}+\gamma^{2}}\right] \frac{1}{1+s}+\text { с.с }
$$

$$
\omega_{1} \equiv \frac{\sqrt{2}}{\hbar} \mu \mathrm{E}^{\star} \mathrm{e}^{-\mathrm{i} \phi}
$$

$$
=\frac{1}{\sqrt{2}} E^{*} e^{i \omega t}(\alpha-i \beta)+c . c
$$

$$
\alpha \equiv-\frac{|\mu|^{2}}{\hbar} \frac{\delta}{\delta^{2}+\gamma^{2}} \frac{1}{1+s}
$$

$$
\beta \equiv-\frac{|\mu|^{2}}{\hbar} \frac{\gamma}{\delta^{2}+\gamma^{2}} \frac{1}{1+s}
$$

Universität Hamburg

Coherent and incoherent scattering rate

Total rate ($\boldsymbol{\Gamma}_{\text {tot }}$) of radiation energy emitted by atom in steady state can be split into a coherent $\left(\boldsymbol{\Gamma}_{\text {coh }}\right)$ and an incoherent ($\Gamma_{\text {inc }}$) part:
Expand $\mathrm{b} \equiv|\mathrm{g}\rangle\langle\mathrm{e}|$ according to $\mathrm{b}=\langle\mathrm{b}\rangle+\delta \mathrm{b}$ with $\langle\delta \mathrm{b}\rangle=0 \quad$ mean value plus fluctuations

$$
\Gamma_{\text {tot }} / \Gamma \equiv \rho_{\mathrm{ee}}=\left\langle\mathrm{b}^{+} \mathrm{b}\right\rangle=\left\langle\left(\left\langle\mathrm{b}^{+}\right\rangle+\delta \mathrm{b}^{+}\right)(\langle\mathrm{b}\rangle+\delta \mathrm{b})\right\rangle=\left\langle\mathrm{b}^{+}\right\rangle\langle\mathrm{b}\rangle+\left\langle\delta \mathrm{b}^{+} \delta \mathrm{b}\right\rangle \equiv \Gamma_{\mathrm{coh}} / \Gamma+\Gamma_{\mathrm{inc}} / \Gamma
$$

Total rate:

$$
\Gamma_{\mathrm{tot}} / \Gamma=\frac{\mathrm{s}}{2(1+\mathrm{s})} \quad \text { monotonously increases and saturates for large } \mathrm{s} \text { at } 1 / 2
$$

Coherent rate:

$$
-2 \rho_{\mathrm{ge}}=u+i v
$$

$$
\begin{aligned}
& \Gamma_{\mathrm{coh}} / \Gamma \equiv\left\langle\mathrm{b}^{+}\right\rangle\langle\mathrm{b}\rangle=\underbrace{\left|\rho_{\mathrm{ge}}\right|^{2}=\frac{1}{4}\left(\bar{u}^{2}+\overline{\mathrm{v}}^{2}\right)=\frac{\mathrm{s}}{2(1+\mathrm{s})^{2}} \frac{\Gamma}{2 \gamma} \quad \text { relative maximum at } \mathrm{s}=1 \text {, zero bandwidth }} \begin{array}{l}
\operatorname{Trace}[|\mathrm{g}\rangle\langle e| \rho]=\langle\mathrm{g} \mid \mathrm{g}\rangle\langle\mathrm{e}| \rho|\mathrm{g}\rangle+\langle\mathrm{e} \mid \mathrm{g}\rangle\langle\mathrm{e}| \rho|\mathrm{e}\rangle=\langle\mathrm{e}| \rho|\mathrm{g}\rangle=\rho_{\mathrm{ge}}
\end{array}
\end{aligned}
$$

Incoherent rate $=$ total rate - cherent rate:

$$
\Gamma_{\mathrm{inc}} / \Gamma \equiv\left\langle\delta \mathrm{b}^{+} \delta \mathrm{b}\right\rangle=\Gamma_{\mathrm{tot}} / \Gamma-\Gamma_{\mathrm{coh}} / \Gamma=\frac{\mathrm{s}}{2(1+\mathrm{s})}-\frac{\mathrm{s}}{(1+\mathrm{s})^{2}} \frac{\Gamma}{4 \gamma}=\frac{\mathrm{s}}{2(1+\mathrm{s})^{2}}\left(\mathrm{~s}+1-\frac{\Gamma}{2 \gamma}\right)
$$

Significance of coherent rate: $\quad \mu=|\mu| e^{i \xi}, \chi=\phi-\xi$

$$
\begin{aligned}
& P=\frac{1}{2} \mu^{\star} \mathrm{e}^{\mathrm{i}(\omega t+\phi)(\bar{u}+\mathrm{iv})+c . c . \quad=\frac{1}{2}|\mu| \mathrm{e}^{\mathrm{i}(\omega t+\chi)}(\overline{\mathrm{u}}+\mathrm{i} \bar{v})+\mathrm{c} . \mathrm{c} .} \\
& =|\mu|(\bar{u} \cos (\omega t+\chi)-\bar{v} \sin (\omega t+\chi))=P_{\max } \cos (\omega \mathrm{t}+\theta) \text { with } P_{\max } \equiv|\mu|\left(\bar{u}^{2}+\bar{v}^{2}\right)^{1 / 2} \\
& \Gamma_{\text {coh }}=\frac{1}{4}\left(\bar{u}^{2}+\bar{v}^{2}\right) \Gamma=\frac{\left|P_{\max }\right|^{2}}{4|\mu|^{2}} \Gamma=\underbrace{\frac{1}{\hbar \omega} \frac{\omega^{4}\left|P_{\max }\right|^{2}}{12 \pi \varepsilon_{0} \mathrm{c}^{3}}=\frac{\mathrm{W}}{\hbar \omega}} \text { use } \Gamma=\frac{\omega^{3}|\mu|^{2}}{3 \pi \varepsilon_{0} \mathrm{c}^{3} \hbar} \\
& \mathrm{~W}=\frac{\omega^{4}\left|P_{\max }\right|^{2}}{12 \pi \varepsilon_{0} \mathrm{c}^{3}}=\text { power radiated by classical dipole with polarization amplitude } P_{\max }
\end{aligned}
$$

coherent and incoherent scattering rate

for $\delta \rightarrow 0$:

$$
\begin{aligned}
& \Gamma_{\mathrm{inc}} / \Gamma=\frac{\mathrm{s}_{0}}{2\left(1+\mathrm{s}_{0}\right)^{2}}\left(1+\mathrm{s}_{0}-\frac{\Gamma}{2 \gamma}\right) \\
& \Gamma_{\mathrm{coh}} / \Gamma=\frac{\mathrm{s}_{0}}{2\left(1+\mathrm{s}_{0}\right)^{2}} \frac{\Gamma}{2 \gamma}
\end{aligned}
$$

$$
\text { for } \delta \rightarrow \infty \text { : }
$$

$$
\Gamma_{\mathrm{inc}} / \Gamma=\frac{\mathrm{s}_{0}}{2 \delta^{2}}\left(1-\frac{\Gamma}{2 \gamma}\right)
$$

$$
\Gamma_{\mathrm{coh}} / \Gamma=\frac{\mathrm{s}_{0}}{2 \delta^{2}} \frac{\Gamma}{2 \gamma}
$$

coherent and incoherent scattering rate

Quantum mechanical model of two-level-atoms in a monochromatic light field

(Jaynes Cummings Model: E. Jaynes and F. Cummings, Proc. IEEE 51, 89 (1963))

1) Coupling to electromagnetic field, i.e., laser mode:

Interaction is conservative. Energy is periodically exchanged between atom and laser mode at characteristic frequencies (Rabi oscillations).
2) Coupling to the vacuum modes (Spontaneous decay):

A finite number of discrete states is coupled to infinitely many states with continuous energy spectrum. Dynamics has dissipative character: damping of Rabi-oscillations

Two-Level Atom:
$|\mathrm{e}\rangle \underset{ }{\hbar \omega_{0} \uparrow} \mathrm{E}_{\mathrm{e}}$

Atomic Hamiltonian: $\quad \mathrm{H}_{\mathrm{A}}=\hbar \omega_{0} \mathrm{~b}^{+} \mathrm{b}$
b $\equiv|g\rangle\langle e|$ ground state projector

Atomic Dipole Operator: $\quad d=\mu b+\mu^{*} b^{+}$with $\quad \mu \equiv\langle g| d|e\rangle$

Monochromatic Light Field:

Classical Electric Field:

$$
\mathrm{E}(\mathrm{x}, \mathrm{t})=\mathrm{i} \sqrt{\frac{\hbar \omega_{\mathrm{L}}}{2 \varepsilon_{0}}}\left[\hat{\varepsilon}(\mathrm{x}) \alpha(\mathrm{t})-\hat{\varepsilon}^{*}(\mathrm{x}) \alpha(\mathrm{t})^{*}\right], \quad \dot{\mathrm{B}}(\mathrm{x}, \mathrm{t})=-\nabla \times \mathrm{E}(\mathrm{x}, \mathrm{t})
$$

$\left[\Delta-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right] E(x, t)=0 \quad \begin{cases}{\left[\Delta+\left(\frac{\omega_{L}}{c}\right)^{2}\right] \hat{\varepsilon}(x)=0} & \text { Normalization: } 1=\int \hat{\varepsilon}(x) \hat{\varepsilon}^{*}(x) d^{3} x \\ {\left[\frac{\partial^{2}}{\partial t^{2}}+\omega_{L}^{2}\right] \alpha(t)=0} & \Rightarrow \quad \alpha(t)=\alpha e^{-i \omega_{L} t}\end{cases}$

$$
H=\frac{\varepsilon_{0}}{2} \int E(x, t)^{2} d^{3} x+\frac{1}{2 \mu_{0}} \int B(x, t)^{2} d^{3} x=\hbar \omega_{\mathrm{L}} \alpha(t)^{\star} \alpha(t)=\hbar \omega_{\mathrm{L}} \alpha^{\star} \alpha=\frac{1}{2} \hbar \omega_{\mathrm{L}}\left(\alpha^{\star} \alpha+\alpha \alpha^{\star}\right)
$$

Quantization:

$$
\alpha \rightarrow a, \alpha^{*} \rightarrow a^{+},\left[a, a^{+}\right]=1
$$

$$
\text { Hamiltonian: } \quad \mathbf{H}_{\mathrm{L}}=\hbar \omega_{\mathrm{L}}\left(\mathrm{a}^{+} \mathrm{a}+\frac{1}{2}\right)
$$

Fock-states:

$$
|n\rangle=\frac{a^{+}}{\sqrt{n!}}|0\rangle, \quad a|n\rangle=n^{1 / 2}|n-1\rangle, \quad a^{+}|n\rangle=(n+1)^{1 / 2}|n+1\rangle
$$

Electric Field: $\quad\langle\mathrm{n}| \mathrm{E}|\mathrm{n}\rangle=0$, phase of Fock-states is undetermined

$$
\begin{aligned}
& \langle n| E^{2}|n\rangle=\frac{\hbar \omega_{L}}{2 \varepsilon_{0}} \hat{\varepsilon}(x) \hat{\varepsilon}^{*}(x)(2 n+1) \neq 0 \text { even for } n=0! \\
& \left(\langle 0| E^{2}|0\rangle \neq 0 \rightarrow \text { Vacuum Fluctuations }\right)
\end{aligned}
$$

Energy:

$$
\mathbf{H}_{\mathrm{L}}|\mathrm{n}\rangle=\hbar \omega_{\mathrm{L}}\left(\mathrm{n}+\frac{1}{2}\right)|\mathrm{n}\rangle
$$

Quasi-Classical States (Coherent States, Glauber States):

Find States such that:

$$
\langle\alpha| \mathbf{H}_{\mathrm{L}}|\alpha\rangle=\mathrm{H}
$$

$$
\langle\alpha| \mathbf{E}_{\mathrm{L}}|\alpha\rangle=\mathrm{E} \text { (Schrödinger Picture) }
$$

$$
\text { Solution: } \quad a|\alpha\rangle=\alpha|\alpha\rangle \quad|\alpha\rangle=\exp \left(-\frac{|\alpha|^{2}}{2}\right) \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle
$$

Photon Satistics: Probability to measure n photons in state $|\alpha\rangle \rightarrow$ Poisson Distribution

$$
P(n)=|\langle\alpha \mid n\rangle|^{2}=\exp \left(-|\alpha|^{2}\right) \frac{|\alpha|^{2 n}}{n!}
$$

$$
N \equiv a^{+} a \Rightarrow
$$

$$
\langle\mathrm{N}\rangle=|\alpha|^{2} \quad \text { mean photon number }
$$

$$
\Delta N=\sqrt{\left\langle N^{2}\right\rangle-\langle N\rangle^{2}}=\sqrt{\langle N\rangle}=|\alpha| \text { shot noise }
$$

Completeness: $\quad 1=\frac{1}{\pi} \int \mathrm{~d}^{2} \alpha|\alpha\rangle\langle\alpha| \quad$ the set of coherent state is over-complete
Orthonormality: $\quad\langle\alpha \mid \beta\rangle=\exp \left(-|\alpha-\beta|^{2}\right) \quad$ coherent states are nearly orthogonal

Other Properties: minimum uncertainty states, non-dispersive time-evolution, i.e., $\Delta \mathrm{N}=$ constant

Thermal States:

Find State $\rho_{\text {th }}$ such that:

- No ability for interference is maintained, i.e., $\langle E\rangle=0$
- Probability to measure n photons in state ρ is given by a Boltzmann factor

$$
P_{\mathrm{th}}(\mathrm{n}) \equiv\langle\mathrm{n}| \rho|\mathrm{n}\rangle=\left(1-\mathrm{e}^{-\beta}\right) \mathrm{e}^{-\mathrm{n} \beta} \quad, \quad \beta \equiv \frac{\hbar \omega_{\mathrm{L}}}{\mathrm{k}_{\mathrm{B}} T}, \quad \sum_{\mathrm{n}=0}^{\infty} \mathrm{P}_{\mathrm{th}}(\mathrm{n})=1
$$

Solution: $\quad \rho_{\mathrm{th}}=\sum_{\mathrm{n}=0}^{\infty} \mathrm{P}_{\mathrm{th}}(n)|n\rangle\langle n|$

Mean Photon Number:
$\langle N\rangle=\sum_{n=0}^{\infty} n P_{\text {th }}(n)=\frac{1}{e^{\beta}-1} \quad \Rightarrow \quad \beta=\ln \left(1+\langle N\rangle^{-1}\right) \quad$ Planck-Distribution!
$\Delta N=\sqrt{\left\langle N^{2}\right\rangle-\langle N\rangle^{2}}=\sqrt{\langle N\rangle+\langle N\rangle^{2}} \approx\langle N\rangle$

Electric Field:
$\langle E\rangle=\operatorname{Trace}\left(\rho_{\mathrm{th}} E\right)=0,\left\langle E^{2}\right\rangle \neq 0$

Atom + Laser (without Interaction)

> Hamiltonian: $H_{A L}=\hbar \omega_{0} b^{+} b+\hbar \omega_{L}\left(a^{+} a+1 / 2\right)$
> Eigen-Basis of $H_{A L}:\{|g\rangle \otimes|n\rangle,|e\rangle \otimes|n\rangle: n=0,1 \ldots\}$

Atom interacting with monochromatic light field

Atom Interacts with Light Field via Dipole Coupling:

$$
\begin{gathered}
W=-d E=-\sqrt{\frac{\hbar \omega_{L}}{2 \varepsilon_{0}}} i\left[\mu \hat{\varepsilon}(x) b a-\mu^{*} \hat{\varepsilon}^{*}(x) b^{+} a^{+}-\mu \hat{\varepsilon}^{*}(x) b a^{+}+\mu^{*} \hat{\varepsilon}(x) b^{+} a\right] \\
\\
\quad \approx W A \sqrt{\frac{\hbar \omega_{L}}{2 \varepsilon_{0}}}\left[i^{*} \mu \hat{\varepsilon}^{*}(x) b a^{+}+i \mu^{*} \hat{\varepsilon}(x) b^{+} a\right]
\end{gathered}
$$

Rotating Wave Approximation: Neglect fast oscillatory terms
Free evolution of $\left.\left.\mathrm{ab}: \propto \overline{\exp (-i}+\omega_{0}\right) t\right)$
Free evolution of $a b^{+}: \propto \exp (-i \delta t)$

New Basis:

$$
|e\rangle \rightarrow|e\rangle e^{-i \psi}, b \rightarrow b e^{i \psi}, \quad e^{i \psi} \equiv \frac{-i \mu^{*} \hat{\varepsilon}(x)}{\left|\mu^{*} \hat{\varepsilon}(x)\right|} \quad \Rightarrow \quad W=\quad \frac{1}{2} \hbar \omega_{1}\left[b a^{+}+b^{+} a\right]
$$

Rabi-frequency per photon: $\quad \omega_{1} \equiv \sqrt{\frac{2 \omega_{\llcorner }}{\hbar \varepsilon_{0}}}|\mu * \widehat{\varepsilon}(\mathrm{x})|$

W has non-vanishing matrix elements only within subspaces $\{|e\rangle \otimes|n\rangle,|g\rangle \otimes|n+1\rangle\}$
\Rightarrow
Matrix of Hamiltonian $H=H_{A L}+W$ with respect to product basis is composed of 2×2-matrices

$$
\begin{aligned}
& H=\left(\begin{array}{lllllll}
E_{g, 0} & & & & & & \\
& & H[1] & & & & \\
& & & & & \\
& & & & & & \\
& & & \ddots & & & \\
& & & & H[n] & \\
& & & & \ddots & \\
& & & & &
\end{array}\right) \\
& \begin{aligned}
H[n] & \equiv\left(\begin{array}{cc}
E_{e, n-1} & \frac{1}{2} \hbar \omega_{n} \\
\frac{1}{2} \hbar \omega_{n} & E_{g, n}
\end{array}\right) \\
\omega_{n} & \equiv \omega_{1} \sqrt{n} \quad n=1,2, \ldots \quad n \text {-photon Rabi-frequencies }
\end{aligned}
\end{aligned}
$$

Diagonalization of $\mathrm{H} \rightarrow$ Dressed States

New Eigen-States: photon states and atomic states are entangled
(Dressed States)

$$
\begin{aligned}
|2, n\rangle & =\cos \left(\theta_{n}\right)|e\rangle \otimes|n-1\rangle-\sin \left(\theta_{n}\right)|g\rangle \otimes|n\rangle \\
|1, n\rangle & =\sin \left(\theta_{n}\right)|e\rangle \otimes|n-1\rangle+\cos \left(\theta_{n}\right)|g\rangle \otimes|n\rangle
\end{aligned} \quad n=1,2, \ldots .
$$

$|g\rangle \otimes|n+1\rangle$
Interaction Angle: $\quad \theta_{\mathrm{n}} \equiv \frac{1}{2} \arctan \left[\frac{\omega_{\mathrm{n}}}{\delta}\right]$

New Eigen-Energies: $\mathrm{E}_{2, \mathrm{n}}=\mathrm{E}_{\mathrm{e}, \mathrm{n}-1}-\hbar \Delta_{\mathrm{n}}$

$$
\mathrm{E}_{1, \mathrm{n}}=\mathrm{E}_{\mathrm{g}, \mathrm{n}}+\hbar \Delta_{\mathrm{n}}
$$

Light Shift:

$$
\begin{aligned}
\Delta_{n} & =\frac{\delta}{2}\left[\sqrt{1+\frac{\omega_{n}^{2}}{\delta^{2}}}-1\right] \\
& \approx \frac{\omega_{n}^{2}}{4 \delta} \text { if } \quad \omega_{n} \ll|\delta|
\end{aligned}
$$

$|\mathrm{g}\rangle \otimes|\mathrm{n}\rangle$
$|1, n+1\rangle$
$|e\rangle \otimes|n\rangle$

$|e\rangle \otimes|n-1\rangle$
ω_{0}

Case of Resonance: In Resonance ($\delta=0$) mixing becomes maximal: $\theta_{\mathrm{n}}=\pi / 4$

$$
\begin{aligned}
\Rightarrow \quad \cos \left(\theta_{n}\right) & =\sin \left(\theta_{n}\right)=\frac{1}{\sqrt{2}} \\
\Delta_{n} & =\frac{\omega_{n}}{2}
\end{aligned}
$$

Selection rules:
Matrix Elements of Dipole-Operator for Dressed Atom:

```
dij}=\langlei,n-1|d|j,n\rangle\not=0 for all i,
```


Excitation probability for Fock-state $|\mathrm{g}\rangle \otimes|\mathrm{n}\rangle$:

(stimulated absorption and emission)
General solution of Schrödinger equation within n-th family
$|\psi(\mathrm{t})\rangle \equiv \mathrm{A}_{1} \exp \left(-\mathrm{i} \mathrm{E}_{1, \mathrm{n}} \mathrm{t} / \hbar\right)|1, \mathrm{n}\rangle+\mathrm{A}_{2} \exp \left(-\mathrm{i} \mathrm{E}_{2, \mathrm{n}} \mathrm{t} / \hbar\right)|2, \mathrm{n}\rangle$
special solution with $|\psi(0)\rangle=|\mathrm{g}\rangle \otimes|\mathrm{n}\rangle$:
$|\psi(\mathrm{t})\rangle \equiv \cos \left(\theta_{\mathrm{n}}\right)|1, \mathrm{n}\rangle-\exp \left(-\mathrm{i} \Omega_{\mathrm{n}} \mathrm{t}\right) \sin \left(\theta_{\mathrm{n}}\right)|2, \mathrm{n}\rangle$
$|g\rangle \otimes|n\rangle$

$|2, n\rangle=\cos \left(\theta_{n}\right)|e\rangle \otimes|n-1\rangle-\sin \left(\theta_{n}\right)|g\rangle \otimes|n\rangle$
$|1, \mathrm{n}\rangle=\sin \left(\theta_{\mathrm{n}}\right)|e\rangle \otimes|\mathrm{n}-1\rangle+\cos \left(\theta_{\mathrm{n}}\right)|\mathrm{g}\rangle \otimes|\mathrm{n}\rangle$
after half of a Rabi-cycle:

$$
\left|\psi\left(\Omega_{n} \mathrm{t}=\pi\right)\right\rangle=\sin \left(2 \theta_{\mathrm{n}}\right)|\mathrm{e}\rangle \otimes|\mathrm{n}-1\rangle+\cos \left(2 \theta_{\mathrm{n}}\right)|\mathrm{g}\rangle \otimes|\mathrm{n}\rangle=\frac{\omega_{\mathrm{n}}}{\Omega_{\mathrm{n}}}|\mathrm{e}\rangle \otimes|\mathrm{n}-1\rangle-\frac{\delta}{\Omega_{\mathrm{n}}}|\mathrm{~g}\rangle \otimes|\mathrm{n}\rangle
$$

(resonance \rightarrow complete inversion)
population of excited state:

$$
\rho_{e e}(n)=|\langle e, n-1 \mid \psi(t)\rangle|^{2}=\left|\sin \left(\theta_{n}\right) \cos \left(\theta_{n}\right)\left(1-\exp \left(-i \Omega_{n} t\right)\right)\right|^{2}=\frac{\omega_{n}^{2}}{\Omega_{n}^{2}} \sin ^{2}\left(\frac{1}{2} \Omega_{n} t\right)
$$

$$
=\frac{n \omega_{1}^{2}}{n \omega_{1}^{2}+\delta^{2}} \sin ^{2}\left(\frac{1}{2} \sqrt{n \omega_{1}^{2}+\delta^{2}} t\right)
$$

Atoms dressed by a coherent state or a thermal state:

Excitation probability for coherent state: $\quad|\mathrm{g}\rangle \otimes|\alpha\rangle=\exp \left(-\frac{|\alpha|^{2}}{2}\right)^{\infty} \sum_{\mathrm{n}=0}^{\infty} \frac{\alpha^{\mathrm{n}}}{\sqrt{\mathrm{n}!}}|\mathrm{g}\rangle \otimes|\mathrm{n}\rangle:$

$$
\begin{aligned}
& \rho_{\mathrm{ee}}=\sum_{n=0}^{\infty} P_{\mathrm{coh}}(n) \rho_{\mathrm{ee}}(n), \quad P_{\mathrm{coh}}(n)=\exp \left(-|\alpha|^{2}\right) \frac{\alpha^{2 n}}{n!} \\
& =\exp \left(-|\alpha|^{2}\right) \quad \sum_{n=0}^{\infty} \frac{|\alpha|^{2 n}}{n!} \frac{n \omega_{1}{ }^{2}}{n \omega_{1}{ }^{2}+\delta^{2}} \sin ^{2}\left(\frac{1}{2} \sqrt{n \omega_{1}{ }^{2}+\delta^{2}} t\right)
\end{aligned}
$$

Revivals in ρ_{ee} are a signature of field quantization.
They can only occur because the sum over $\rho_{\mathrm{ee}}(\mathrm{n})$ is discrete.

Excitation probability for thermal state: $\quad|g\rangle\langle g| \otimes \rho_{\text {th }}=|g\rangle\langle g| \otimes \sum_{n=0}^{\infty} P_{\text {th }}(n)|n\rangle\langle n|$

$$
\begin{aligned}
& \rho_{\mathrm{ee}}=\sum_{n=0}^{\infty} P_{\mathrm{th}}(n) \rho_{\mathrm{ee}}(n), P_{\mathrm{th}}(n)=\left(1-e^{-\beta}\right) e^{-n \beta}, \beta=\ln \left(1+\langle N\rangle^{-1}\right) \\
& =\quad\left(1-e^{-\beta}\right) \sum_{n=0}^{\infty} e^{-n \beta} \frac{n \omega_{1}^{2}}{n \omega_{1}^{2}+\delta^{2}} \sin ^{2}\left(\frac{1}{2} \sqrt{n \omega_{1}^{2}+\delta^{2}} t\right)
\end{aligned}
$$

Two-level system = two electronic levels of an ion Harmonic Oscillator = vibrational mode in RF-trap

Absorption and Fluorescence Spectrum of Atoms coupled to a Laser Field

Probe Transmission

D. Grison et al., Europhys. Lett. 15, 149 (1991).

Fluorescence

Grove et al., Phys. Rev. A15, 227 (1977).

Radiation Pressure: Energy-Momentum Budget

single absorption emission cycle:

$$
\begin{aligned}
\hbar \omega_{f}-\hbar \omega_{i} & =-\frac{\hbar^{2}\left(\overrightarrow{\mathrm{k}}_{\mathrm{f}}-\overrightarrow{\mathrm{k}}_{\mathrm{i}}\right)^{2}}{2 \mathrm{~m}}+\hbar\left(\overrightarrow{\mathrm{k}}_{\mathrm{f}}-\overrightarrow{\mathrm{k}}_{\mathrm{i}}\right) \vec{v}_{\mathrm{i}} \\
\vec{v}_{\mathrm{f}}-\vec{v}_{\mathrm{i}} & =-\frac{\hbar\left(\overrightarrow{\mathrm{k}}_{\mathrm{f}}-\overrightarrow{\mathrm{k}}_{\mathrm{i}}\right)}{m}
\end{aligned}
$$

time-averaged for $\left|\overrightarrow{\mathrm{k}}_{\mathrm{i}}\right| \approx\left|\overrightarrow{\mathrm{k}}_{\mathrm{f}}\right|: \quad \begin{aligned}\left\langle\hbar \omega_{\mathrm{f}}-\hbar \omega_{\mathrm{i}}\right\rangle & =-\frac{\hbar^{2} \mathrm{k}_{\mathrm{i}}{ }^{2}}{\mathrm{~m}}-\hbar \overrightarrow{\mathrm{k}}_{\mathrm{i}} \overrightarrow{\mathrm{v}}_{\mathrm{i}} \\ \left\langle\overrightarrow{\mathrm{v}}_{\mathrm{f}}-\vec{v}_{\mathrm{i}}\right\rangle & =\frac{\hbar \overrightarrow{\mathrm{k}}_{\mathrm{i}}}{\mathrm{m}}\end{aligned}$

$\left\langle\hbar \omega_{\mathrm{f}}-\hbar \omega_{\mathrm{i}}\right\rangle>0 \quad$ if atomic velocity exceeds recoil-velocity $\&$ laser beam counterpropagates atomic motion

Radiation Pressure Cooling
Resting Atom:

Force $=\hbar \mathbf{k} \Gamma \Pi_{\mathrm{e}} \quad$ typical acceleration: $\frac{\hbar \mathbf{k} \Gamma}{\mathrm{m}}=10^{5} \mathrm{~g}$

$\frac{\Pi_{e}}{2} \hbar \delta$

Moving Atom:

$$
\begin{aligned}
& \text { Laser Beam } \\
& \delta^{\prime}=\delta+\mathrm{kv}
\end{aligned}
$$

Force $=\hbar \mathbf{k} \Gamma\left(\Pi_{e}(\delta+k v)-\Pi_{e}(\delta-k v)\right) \approx \alpha v+O\left(v^{2}\right)$
$\alpha=\frac{16 \omega_{1}{ }^{2} \delta \Gamma}{\left(4 \delta^{2}+\Gamma^{2}+2 \omega_{1}{ }^{2}\right)^{2}} \hbar \mathbf{k}^{2}$
Friction coefficient α has a maximum for $\omega_{1}=\Gamma, \delta=-\Gamma / 2: \quad \alpha_{\max }=-\frac{1}{2} \hbar \mathbf{k}^{2}$

Energy Budget for Heating and Cooling

Heating: 1. Random Direction of Spontanous Emission (1 Beam):
Assume atom initially at rest. Random momentum kicks accelerate atom.
This yields random walk in momentum space with an increase of kinetic energy linear in time.

$$
P_{1}(t)=\sum_{i=1}^{N=\Pi_{e} \Gamma t} \hbar \mathbf{k}_{\mathrm{i}} \quad \Rightarrow \quad P_{1}(t)^{2}=\sum_{i=1, j=1}^{N=\Pi_{e} \Gamma t} \hbar^{2} \mathbf{k}_{i} \mathbf{k}_{j}=\Pi_{e} \hbar^{2} \mathbf{k}^{2} \Gamma t
$$

2. Absorption Shot Noise (1 Beam): Number of absorption events is $N \pm \Delta N, \Delta N=\sqrt{N}$

Different atoms experience different momentum transfer per time \rightarrow velocity distribution spreads out

$$
P_{2}(t)=\hbar k \Delta N=\hbar k \sqrt{N} \Rightarrow P_{2}(t)^{2}=\Pi_{e} \hbar^{2} \mathbf{k}^{2} \Gamma t
$$

Total change of kinetic energy after time t (n Beams):

$$
\Rightarrow\left(\frac{\partial}{\partial \mathrm{t}}\right)_{\text {diff }} \mathrm{E}_{\mathrm{kin}}=\frac{\mathrm{D}}{\mathrm{~m}}, \quad \mathrm{D}=\mathrm{n} \Pi_{\mathrm{e}} \hbar^{2} \mathrm{k}^{2} \Gamma \quad \text { Diffusion constant }
$$

Cooling: Radiation Pressure Damping:

$$
\left(\frac{\partial}{\partial t}\right)_{\text {fric }} E_{\text {kin }}=\frac{P}{m} \frac{\partial P}{\partial t}=\frac{P}{m} \alpha \frac{P}{m}=\frac{2 \alpha}{m} E_{\text {kin }}
$$

Doppler Limit

in Steady State: $\quad\left(\frac{\partial}{\partial t}\right)_{\text {diff }} E_{\text {kin }}+\left(\frac{\partial}{\partial t}\right)_{\text {fric }} E_{\text {kin }}=0 \quad \Rightarrow \quad \overline{E_{\text {kin }}}=\frac{D}{2 \alpha}$

$$
\Rightarrow \quad \mathrm{k}_{\mathrm{B}} T=\frac{\mathrm{n}}{4 \mathrm{~d}} \frac{\left(\delta^{2}+\left(\frac{\Gamma}{2}\right)^{2}+\frac{\omega_{1}^{2}}{2}\right)}{|\delta| \Gamma} \hbar \Gamma \quad d \equiv \text { number of degrees of freedom }
$$

Minimum with Respect to $\delta: \quad|\delta|=\frac{\Gamma}{2} \sqrt{1+2\left(\frac{\omega_{1}}{\Gamma}\right)^{2}} \quad \Rightarrow \quad \mathrm{k}_{\mathrm{B}} T=\frac{\mathrm{n}}{4 \mathrm{~d}} \sqrt{1+2\left(\frac{\omega_{1}}{\Gamma}\right)^{2}} \hbar \Gamma$

- Temperature acquires minimum value at vanishing laser intensity ($\omega_{1}=0$).

However, if ω_{1} tends to zero, the time needed to reach the steady state temperature $1 / \Pi_{e} \Gamma$ approaches infinity.

- Dopplerlimit (low saturation): $\quad \frac{\hbar \Gamma}{2 \mathrm{k}_{\mathrm{B}}}=240 \mu \mathrm{~K}$ for Sodium $\quad \frac{\hbar \Gamma}{2 \mathrm{k}_{\mathrm{B}}}=139 \mu \mathrm{~K} \quad$ for Rubidium
- Model does not account for interference and polarization effects.

3D Optical Molasses

- Atoms inside the illuminated volume perform a diffusive motion under strong friction -> optical molasses
- No trapping occurs in optical molasses, however it can take seconds to drift out of the illuminated volume
- Typical Geometry for 3D Optical Molasses: 3 degrees of freedom, 6 beams $->\mathrm{n}=2 \mathrm{~d}$, however, other geometries are possibel, e.g., with four beams.
- Dopplerlimit (low saturation): $\frac{\hbar \Gamma}{2 \mathrm{k}_{\mathrm{B}}}=240 \mu \mathrm{~K}$ for Sodium
- First experimental realization with sodium 1985: S. Chu et al., Phys. Rev. Lett 55, 48 (1985).

Experiment seemed to confirm Doppler theory. However, later experiments (P. Lett et al., Phys. Rev. Lett 61, 169 (1988)) showed much lower temperatures, which could not be explained by Doppler cooling.

Temperature Measurement (Time of Flight Method)

Assumption: $\mathrm{t}=0: \rho(\mathrm{r}, 0)=\rho_{0} \exp \left(-\frac{\mathrm{r}^{2}}{\sigma_{0}{ }^{2}}\right)$

$$
\text { Gaussian density distribution at } t=0
$$

$$
\begin{aligned}
\Rightarrow \quad \rho(r) & =\rho_{0}(t) \exp \left(-\frac{r^{2}}{\sigma(t)^{2}}\right), \rho_{0}(t)=\rho_{0}\left(\frac{\sigma_{0}}{\sigma(t)}\right)^{3} \\
\sigma(t) & =\sqrt{\sigma_{0}^{2}+\bar{v}^{2} t^{2}} \\
\bar{v} & =\sqrt{\frac{2 k_{B} T}{m}}
\end{aligned}
$$

$$
2
$$

Deceleration of fast atoms with Chirp Technique

Problem: During deceleration atoms are tuned out of resonance $\rightarrow>$ velocity capture range $\Delta v=\Gamma / \mathrm{k} \approx 10 \mathrm{~m} / \mathrm{sec}$
Solution: Tune frequency of deceleration laser during deceleration in order to compensate decreasing Doppler-effect.

V. Balykin, et al., Sov. Phys. JETP 53, 919 (1981)
W. Ertmer, et al., Phys. Rev. Lett. 54, 996 (1985)

Deceleration with Zeeman Technique

Problem: During deceleration atoms are tuned out of resonance $\rightarrow>$ velocity capture range $\Delta v=\Gamma / \mathrm{k} \approx 10 \mathrm{~m} / \mathrm{sec}$
Solution: Tune transition frequency of atom (by means of Zeeman-effect) during deceleration in order to compensate Doppler-effect.

Adjusting optimal magnetic field gradient: choose max. velocity $\mathrm{v}_{\max }$ to be decelerated: $\Rightarrow \quad$ stopping distance: $\mathrm{x}_{\max }=\frac{\mathrm{v}_{\max }^{2}}{2 \mathrm{a}} \quad$, $\mathrm{a}=\Pi_{\mathrm{e}} \frac{\hbar \mathrm{k} \Gamma}{\mathrm{m}}$

$$
\begin{aligned}
& x(t)=v_{\max } t-\frac{1}{2} a t^{2} \quad \Rightarrow \quad v(x)=v_{\max } \sqrt{1-x / x_{\max }} \quad \Rightarrow \quad \omega_{L}(x)=\omega_{L, \max } \sqrt{1-x / x_{\max }} \\
& v(t)=v_{\max }-a t
\end{aligned}
$$

max. Lamor-frequency $\omega\left\llcorner\right.$,max $=k v_{\text {max }}$

\qquad

Can Radiation Pressure be Used for Trapping?

radiation pressure and Poynting-vector $\mathbf{S}(\mathrm{r}, \mathrm{t})=\mathbf{E}(\mathrm{r}, \mathrm{t}) \times \mathbf{H}(\mathrm{r}, \mathrm{t})$:

$$
\begin{aligned}
& \mathbf{S} \equiv \frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B}^{*}, \operatorname{Re}(\mathbf{S})=\langle\mathbf{S}(r, t)\rangle \text { time averaged Poynting vector } \\
& \nabla \times \mathbf{E}=-\mathrm{i} \omega \mathbf{B}, \nabla \times \mathbf{B}=\mathrm{i} \frac{\omega}{\mathrm{c}^{2}} \mathbf{E} \quad \Rightarrow \quad \mathbf{S}=\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B}^{*}=\frac{-\mathrm{i}}{\mu_{0} \omega} \mathbf{E} \times\left(\nabla \times \mathbf{E}^{*}\right)
\end{aligned}
$$

$\begin{array}{ll}\text { Assume spatially constant polarization: } E(x)=\widehat{\mathbf{e}} f(x), \hat{\mathbf{e}} \widehat{\mathbf{e}}^{*}=1 \quad \Rightarrow \quad \mathbf{S}=\frac{-\mathrm{i}}{\mu_{0} \omega} f \nabla f^{*} \\ \text { use } f(x)=\sqrt{I(x) / \varepsilon_{0}} e^{-i} \psi(x) \text { and } \nabla E=0 & \Rightarrow S=\frac{c^{2}}{\omega}\left(I \nabla \psi-\frac{i}{2} \nabla I\right)\end{array}$
i.e., for isotropic atoms in light fields with spatially constant polarization: $\quad F_{R A P}=\beta I \nabla \psi=\beta \frac{\omega}{\mathrm{c}^{2}} \operatorname{Re}(\mathbf{S})$
if β is spatially constant: $\quad \nabla \mathbf{F}_{\mathrm{RAP}}=\nabla \mathbf{S}=0 \quad \Rightarrow \quad$ radiation pressure trapping impossible

Traps based upon radiation pressure need spatially varying imaginary part of polarizability $\beta=\beta(r)$

- use fields with spatially varying intensity and make use of the effect of saturation
- use static magnetic field to taylor $\beta(r) \longrightarrow$ Magneto-Optic Trap

Magneto-Optic Trap:

Typical MOT parameters:

Diameter of Laser Beams
Power/Laser Beam
Detuning of Laser Frequency Magnetic Field Gradient

Number of trapped Atoms	10^{9}
Peak Density of trapped Atoms (Limited by Fluorescence)	10^{11} atoms $/ \mathrm{cm}^{-3}$
Temperature (below Doppler Limit)	$10 \mu \mathrm{~K}$
Phase Space Density $\rho \Lambda^{3}$	10^{-6}

Doppler Theory of MOT

Doppler Cooling and Trapping: (Neglecting Interference)

$$
\begin{aligned}
\frac{\mathrm{F}}{\mathrm{~m}} & =\left(\Pi_{+1}(\delta+\mathrm{kv}+\beta z)-\Pi_{-1}(\delta-k v-\beta z)\right) \frac{\hbar \mathrm{k} \Gamma}{\mathrm{~m}} \\
\gamma & =16 \omega_{\mathrm{rec}} \frac{\omega_{1}^{2}}{\widetilde{\Gamma}^{2}} \frac{\Gamma}{\widetilde{\Gamma}} \frac{\tilde{\delta}}{\left(1+\tilde{\delta}^{2}\right)^{2}}, \quad \omega_{\text {vib }}{ }^{2}=\gamma \frac{\beta}{\mathrm{k}}
\end{aligned}
$$

$$
=\gamma v+\omega_{v i b}^{2} z+O\left(v^{2}, z^{2}\right)
$$

damped harmonic oscillator!

$$
\begin{aligned}
\widetilde{\Gamma} & =\Gamma \sqrt{1+2 \frac{\omega_{1}^{2}}{\Gamma^{2}}}=\text { power broadened linewidth } \\
\tilde{\delta} & =\frac{\delta}{\tilde{\Gamma} / 2}, \quad \beta=\frac{\partial \omega_{\mathrm{B}}}{\partial \mathrm{z}} \\
\omega_{\mathrm{rec}} & =\hbar \mathrm{k}^{2} / 2 \mathrm{~m}=\text { recoil frequency, } \omega_{\mathrm{B}}=\text { Larmor frequency }
\end{aligned}
$$

Relative Maximum of γ :

$$
\tilde{\delta}=-\frac{1}{\sqrt{3}}, \omega_{1}=\Gamma
$$

Steady State Temperature:

$$
\mathrm{k}_{\mathrm{B}} \mathrm{~T}=-\frac{\hbar \widetilde{\Gamma}}{4}\left(\widetilde{\delta}+\widetilde{\delta}^{-1}\right)
$$

$$
\text { Minimum: } \quad \tilde{\delta}=-1, \omega_{1}=0
$$

Optimizing MOT parameters: capture radius R_{c}, magnetic gradient, capture veleocity V_{c}
capture radius R_{C} \& magnetic gradient
$2 \beta R_{c}=2|\delta|=\widetilde{\Gamma}|\tilde{\delta}| \quad \Rightarrow \quad \beta=\frac{\widetilde{\Gamma}|\tilde{\delta}|}{2 R_{c}} \approx$ few Gauss/cm

capture velocity v_{C} \& detuning

$$
\mathrm{k} \mathrm{~V}_{\mathrm{c}}=2|\delta|=\widetilde{\Gamma}|\widetilde{\delta}| \quad \Rightarrow \quad \mathrm{V}_{\mathrm{c}}=\frac{\widetilde{\Gamma}|\tilde{\delta}|}{\mathrm{k}} \quad \text { choose large } \tilde{\delta}
$$

Stopping Length $\mathrm{S}_{\mathrm{c}}=\frac{\mathrm{V}_{\mathrm{c}}{ }^{2}}{2 \mathrm{a}}=$ Path Length for Stopping Atoms with velocity v_{c} :

$$
\begin{aligned}
& \frac{\mathrm{S}_{\mathrm{c}}}{\mathrm{R}_{\mathrm{c}}}=\frac{\beta}{\beta_{\max }}, \beta_{\max }=\frac{\omega_{1}^{2}}{\widetilde{\Gamma}^{2}} \frac{\Gamma}{\bar{\Gamma}} \frac{2 \mathrm{k} \omega_{\mathrm{rec}}}{|\tilde{\delta}|} \approx \mathrm{GHz} / \mathrm{cm} \\
& \text { MOT strongly overdamped } \quad \Rightarrow \quad \text { Do not maximize } \gamma \text { but rather } \mathrm{v}_{\mathrm{c}}
\end{aligned}
$$

Number of Trapped Atoms:

$$
\begin{aligned}
& \dot{N}_{2}=R-\gamma N_{2}+\Gamma^{\prime \prime} N_{1}-\Gamma^{\prime} N_{2} \\
& \dot{N}_{1}=-\gamma N_{1}-\Gamma^{\prime \prime} N_{1}+\Gamma^{\prime} N_{2}
\end{aligned}
$$

Steady State Solution:

$$
\begin{aligned}
& N_{2}=R \frac{\gamma+\Gamma^{\prime \prime}}{\gamma\left(\gamma+\Gamma^{\prime}+\Gamma^{\prime \prime}\right)} \\
& N_{1}=N_{2} \frac{\Gamma^{\prime}}{\gamma+\Gamma^{\prime \prime}}
\end{aligned}
$$

Approximation: $\gamma \ll \Gamma^{\prime} \ll \Gamma^{\prime \prime} \quad \Rightarrow \quad N_{2}=800 N_{1}=\frac{R}{\gamma}$
Typical Parameter Values: $\gamma \approx 1 \mathrm{~s}^{-1}, \mathrm{R} \approx 10^{9} \mathrm{~s}^{-1} \quad \Rightarrow \quad \mathrm{~N}_{2}=500 \mathrm{~N}_{1}=10^{9}$

$$
\begin{aligned}
& \text { R = Capture Rate } \\
& \gamma=\text { Hot Background } \\
& \Gamma^{\prime}=\text { Optical Depumping } \\
& \Gamma^{\prime \prime}=\text { Optical Repumping } \\
& \Gamma^{\prime} \approx \Pi(F=2 \rightarrow F=2) \Gamma \approx \Gamma / 1600 \\
& \Gamma^{\prime \prime} \approx \Pi(F=1 \rightarrow F=2) \Gamma \approx \Gamma / 2 \\
& \begin{array}{l}
\Pi(\mathrm{A} \rightarrow \mathrm{~B})=\frac{1}{2} \frac{\mathrm{~s}_{\mathrm{AB}}}{1+\mathrm{s}_{\mathrm{AB}}} \\
\mathrm{~s}=\frac{1}{2} \frac{\omega_{1}^{2}}{(\Gamma / 2)^{2}+\delta^{2}} \quad \begin{array}{c}
\text { Saturation } \\
\text { Parameter }
\end{array} \\
\delta(\mathrm{F}=2 \rightarrow \mathrm{~F}=2)=20 \Gamma \\
\omega_{1}=\Gamma \\
\Rightarrow \Pi(\mathrm{F}=2 \rightarrow \mathrm{~F}=2) \approx 1 / 1600
\end{array} \\
& \delta(F=1 \rightarrow F=2)=0 \\
& \omega_{1}=\Gamma \\
& \Rightarrow \quad \Pi(F=1 \rightarrow F=2) \approx 1 / 2
\end{aligned}
$$

Binary Collision Losses:

linear loss term

- collisions with hot background atoms
- optical pumping losses
quadratic loss term:
binary collisions between trapped atoms

$$
\begin{array}{lcc}
\text { assumption for density profile: } & \rho(r)=\rho_{\text {peak }} \mathrm{e}^{-(r / a)^{2}} \Rightarrow & \text { equation has analytic solutions } \\
\text { decay of trap: } & \frac{N}{N_{\text {max }}}= & \frac{(1-\xi) \mathrm{e}^{-\Gamma t}}{1-\xi \mathrm{e}^{-\Gamma \mathrm{t}}}
\end{array}
$$

$\longrightarrow \quad$ indication of binary collision losses: loading time < decay time, non-exponential dynamics

$$
\begin{aligned}
& \text { no repumping: } \Gamma \approx 44.2 \mathrm{~s}^{-1}, \xi<10^{-4} \\
& \text { repumping: decrease } \Gamma \approx 13.9 \mathrm{~s}^{-1} \Rightarrow \text { increase } \xi \approx 0.32
\end{aligned}
$$

Binary Collisional Loss Processes

Radiative Escape:

(Hyper) Fine-Structure Changing Collisions:

Photo-Association:

Regimes of MOT-Operation, Density Limitations

Constant Volume Regime: at low density consider thermal atoms in harmonic trap potential

$$
\rho(r)=\rho_{\text {peak }} \exp \left(-\frac{m \omega_{\mathrm{Vib}}^{2} r^{2}}{2 \mathrm{k}_{\mathrm{B}} T}\right)
$$

1/e Radius: $\quad R_{e}=\sqrt{\frac{2 k_{B} T}{m \omega^{2}}} \quad \rightarrow$ sample size does not depend on particle number N
\rightarrow peak density $\rho_{\text {peak }}$ increases linearly with N

Constant Density Regime: at higher densities onset of light induced repulsive interaction among atoms

reabsorption of fluorescence photons \rightarrow repulsive force $\sim 1 / r^{2}$:

fluorescence photons involve near resonant contribution (Mollow Triplet) \rightarrow repulsive force exceeds attractive force
\rightarrow sample size increases linearly with N
\rightarrow peak density $\rho_{\text {peak }}$ takes constant maximum value
T. Walker et al., Phys.Rev.Lett 64,408 (1990)
T. Townsend et al., Phys.Rev.A 52, 1423 (1995)

Probe Transmission in a Magneto-Optic Trap

D. Grison et al., Europhys. Lett. 15, 149 (1991).
A. Hemmerich et al., Europhys. Lett. 21, 445 (1993)

Origin of Central Resonance:

- consider local quantization axis along linear MOT polarization
- probe polarization has both circular components
- Zeeman shifts smaller than light shifts for trapped atoms

Dipole Forces

classical viewpoint:

$\delta<0$: atomic dipole moment oscillates in phase with driving field $->$ atom is dragged towards intensity maximum
$\delta>0$: atomic dipole moment oscillates with 180° phase delay $\quad->$ atom is dragged towards intensity minimum
quantum mechanical picture:

$$
\text { Force }=\Pi_{1} \nabla E_{1}(z)+\Pi_{2} \nabla E_{2}(z)=-\nabla U, \quad U(z)=\frac{\hbar \delta}{2} \ln (1+s(z))
$$

$$
\mathrm{s}=\frac{1}{2} \frac{\omega_{1}^{2}}{(\Gamma / 2)^{2}+\delta^{2}}
$$

Saturation
Parameter

Channeling Atoms in a Standing Wave

condition for transverse confinement (channeling): $\frac{1}{2} \mathrm{mV}_{\text {trans }}{ }^{2}<\mathrm{U}_{\text {max }}$

Spectroscopy of channeled atoms:

Non-Dissipative 3D Light Shift Potentials

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{RAP}} \propto \hbar \mathrm{k} \Gamma \Pi_{\mathrm{e}} \\
& \mathrm{~F}_{\mathrm{DIP}} \propto \hbar \mathrm{k} \delta \Pi_{\mathrm{e}} \\
& \delta \gg \Gamma \Rightarrow \Pi_{\mathrm{e}} \propto \mathrm{I} / \delta^{2} \quad \Rightarrow \quad \mathrm{~F}_{\mathrm{RAP}} \propto \mathrm{I} / \delta^{2} \\
& \mathrm{~F}_{\mathrm{DIP}} \propto \mathrm{I} / \delta
\end{aligned}
$$

Large intensity I and detuning δ leads to significant light shift potentials, allthough atomic excitation Π_{e} remains negligible
\rightarrow Trapping atoms in non-dissipative dipole traps
However: temperature reached by Doppler cooling is too high for efficiently
loading atoms into such traps \rightarrow polarization gradient cooling
Simple trapping geometry: strongly focused laser beam, $\delta \ll 0$
A. Ashkin, Phys. Rev. Lett. 40, 729, (1978)

Review: R. Grimm et al., Adv. At., Mol., Opt. Phys. 42, 95 (2000)
Andreas Hemmerich 2024 ©

Typical Parameters:	
power:	several W
detuning:	few 100 nm
focus:	below $100 \mu \mathrm{~m}$
trap depth:	few $100 \mu \mathrm{~K}$
scattering rate:	$1 \mathrm{~s}^{-1}$

Dipole Force Cooling

Positive detuning: $\delta>0$
Limit of well resolved Lines: $\Omega \gg 0$

J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am B 2,1707 (1985).

Interference of two standing waves

$\phi=90^{\circ}$

$\phi=0^{\circ}$

Interference effects and light forces:

$$
E(x, y)=\hat{z} \sqrt{I_{0}}\left(\cos (k x)+\cos (k y) e^{i \phi}\right)
$$

Dipole Force $\sim \nabla \mathrm{I}(\mathrm{x}, \mathrm{y})=\nabla \mathrm{I}_{0}\left(\cos ^{2}(\mathrm{kx})+\cos ^{2}(\mathrm{ky})+2 \cos (\phi) \cos (\mathrm{kx}) \cos (\mathrm{ky})\right)$
Radiation Pressure $\sim \mathrm{I}(\mathrm{x}, \mathrm{y}) \nabla \psi(\mathrm{x}, \mathrm{y})=\nabla \times \hat{\mathrm{z}} \mathrm{I}_{0} \mathrm{k} \sin (\phi) \sin (\mathrm{kx}) \sin (\mathrm{ky})$

Physical explanation of rotating poynting vector:

Observation of radiation pressure vortices

Optical Lattices: $4 \mu \mathrm{~m}$ polysterene spheres in water

M. Burns et al., Science 249, 749 (1990)

- Spheres are dragged towards high intensity: green argon laser beam is red detuned with respect to resonances in the UV.
- Cooling to room temperature by water matrix is sufficient to trap the spheres in the intensity maxima.
- Green argon laser light is visible due to Rayleigh scattering from water molecules.

Cooling below the Doppler-Limit (Ellipticity-Gradient Cooling, Sisyphus-Cooling)

```
Consider atom with J }->\textrm{J}+1\mathrm{ -Transition, e.g., J=1/2 :
radiation selction rules }\quad->\mathrm{ polarization-dependent coupling
    polarization-dependent light-shifts
    polarization-dependent optical pumping
```

$$
m_{e}=-\frac{3 / 2}{-1 / 2} m_{\mathrm{g}=-1 / 2}^{1 / 2} \frac{1 / 2}{1 / 2}
$$

Consider light field with negative detuning δ and polarization gradient, e.g., lin \perp lin:

unshifted ground state

spatial correlation between light shifts and optical pumping: optical pumping populates the most light shifted Zeeman component

Energy Budget in Ellipticity-Gradient Cooling:

$$
m_{e}=\frac{1 / 2}{1 / 3} 2 / 3
$$

Capture Range: $\quad v_{\max } \tau_{\mathrm{p}}=\frac{\lambda}{4} \quad \Rightarrow \quad \mathrm{kv} \mathrm{max} \approx \Gamma_{\mathrm{p}}=\frac{2}{9} \Gamma \frac{\mathrm{~s}}{2} \quad\left(\mathrm{~s} \ll 1 \Rightarrow \Pi_{\mathrm{e}}=\frac{1}{2} \frac{\mathrm{~s}}{1+\mathrm{s}} \approx \frac{\mathrm{s}}{2}\right)$
Friction Coefficient:

$$
v_{\max } F=\frac{\partial W}{\partial t}=-U \Gamma_{p} \Rightarrow F=\gamma v_{\max }, \quad \gamma=-U k^{2} \tau_{p}=3 \hbar k^{2} \frac{\delta}{\Gamma}=6 \gamma_{s p} \frac{|\delta|}{\Gamma}
$$

Diffusion Coefficient: $P(t)=\sum_{i=1}^{N=\Gamma_{p} t} f_{i} \tau_{p}, \quad\left|f_{i}\right|=\hbar \nabla \Omega=k U \quad \Rightarrow \quad P(t)^{2}=\left(f_{i} \tau_{p}\right)^{2} N$

$$
\left(\frac{\partial}{\partial t}\right)_{\text {Diff }} E_{k i n}=\frac{D}{m}, D=\frac{1}{2} \tau_{p} k^{2} U^{2}=\frac{1}{4} \hbar^{2} k^{2} \frac{\delta^{2}}{\Gamma} s=\frac{1}{2} D_{s p}\left(\frac{\delta}{\Gamma}\right)^{2}{ }_{\text {diffusion coefficient of }}
$$

$$
\bar{E}_{k i n}=\frac{D}{2 \gamma}=\frac{1}{4} U \quad \Rightarrow \quad k_{B} T=\frac{1}{2} U
$$

Limitations of semiclassical model, recoil limit:

If U is reduced, capture velocity decreases faster then $R M S$ velocity \Rightarrow Model fails, if optical pumping time exceeds oscillation time
$\mathrm{U} \gtrless 18\left(\frac{\delta}{\Gamma}\right)^{2} \mathrm{E}_{\mathrm{rec}} \Leftrightarrow \mathrm{v}_{\max } \gtrless \mathrm{v}_{\mathrm{rms}} \quad \Leftrightarrow \quad 1 \underset{\mathrm{vib}}{ } \tau_{\mathrm{p}}$
$\Omega_{\text {vib }} \equiv \mathrm{k} \sqrt{\frac{2 \mathrm{U}}{\mathrm{m}}}=$ vibrational frequency

Model can be extended to the oscillatory regime, however other limitations occur:
If U approaches $E_{\text {rec }}$:

- neglection of the optical pumping recoils in the energy budget for cooling is no longer possible
- de Broglie Wavelength of atoms aproaches optical wavelength \Rightarrow atomic motion must be described by quantum mechanics use band structure theory to describe cooling near recoil limit:
$\Rightarrow \quad$ - for shallow potential wells, the temperature is limited to a few recoil temperatures $T_{\text {rec }}$
- for deep wells atoms are trapped in the first few lowest vibrational levels
- atoms are arranged in a periodic structure \rightarrow Optical Lattice

$$
\begin{aligned}
\mathrm{k}_{\mathrm{B}} T_{\text {rec }} & \equiv \mathrm{E}_{\mathrm{rec}} \\
\mathrm{E}_{\mathrm{rec}} & \equiv \frac{(\hbar \mathrm{k})^{2}}{2 \mathrm{~m}}
\end{aligned}
$$

[^0]Polarization Geometry for a 3D Optical Lattice

2D-Field in XY-Plane:

=

1D-Wave along Z-Axis:

Fluorescence in an Optical Lattice

asymmetry of sidebands \rightarrow high population of vibrational ground state vibrational resonances have linewidth far smaller than optical pumping rate for free atoms

P.S. Jessen et al., Phys. Rev. Lett.69,49 (1992)

Why can vibrational resonances be resolved?
Y. Courtois and G. Grynberg, Phys. Rev. A 46, 7060 (1992)

Franck-Condon effect for well bound vibrational modes:

$$
\left.\Gamma_{v, \mu}=\Gamma^{\prime}\left|\langle v| \cos (\mathrm{kz}) \mathrm{e}^{\mathrm{ikz}}\right| \mu\right\rangle\left.\right|^{2}, \cos (\mathrm{kz}) \mathrm{e}^{\mathrm{ikz}}=1+\mathrm{ikz}+\mathrm{O}\left[(\mathrm{z} / \lambda)^{2}\right]
$$

$$
\begin{aligned}
& \Rightarrow \quad \Gamma_{v, v}\left.=\Gamma^{\prime}\left|\langle v| \cos (k z) e^{i k z}\right| v\right\rangle\left.\right|^{2} \approx \Gamma^{\prime}|\langle v \mid v\rangle|^{2}=\Gamma^{\prime} \\
&\left.\left.\Gamma_{v+1, v}=\Gamma^{\prime}\left|\langle v| \cos (k z) e^{i k z}\right| v+1\right\rangle\left.\right|^{2} \approx \Gamma^{\prime}|\langle v| k z| v+1\right\rangle\left.\right|^{2} \\
& \text { for well localized states: take first non-vanishing order }
\end{aligned}
$$

Franck-Condon effect for well bound vibrational modes = Lamb-Dicke effect: R. Dicke, Phys. Rev. 89, 472, (1953)

```
Phase Modulation: }\quadA(t)=\mp@subsup{A}{0}{}\mp@subsup{e}{}{i\phi(t)
    \phi(t)=2\pi(vt + M sin(\Omegat) ) M = modulaton index
    \omega(t)=2\pi(v+M\Omega cos(\Omegat))
```



```
\(\mathrm{M}>1\) : power distributed over many sidebands
```

Atom oscillating in external potential $=$ phase modulated light source:

$$
\begin{aligned}
& \text { position: } \mathrm{z}(\mathrm{t})=\mathrm{z}_{0} \sin (\Omega \mathrm{t}) \\
& \text { velocity: } \mathrm{v}(\mathrm{t})=\mathrm{v}_{0} \cos (\Omega \mathrm{t}), \mathrm{v}_{0}=\mathrm{z}_{0} \Omega \\
&\left.v(\mathrm{t})=v+\mathrm{v}(\mathrm{t}) / \lambda=v+\left(\mathrm{z}_{0} \Omega / \lambda\right) \cos (\Omega \mathrm{t})\right) \\
& \text { modulaton index: } \mathrm{M}=\frac{\mathrm{z}_{0}}{\lambda} \\
& \mathrm{M} \gtrless 1 \Leftrightarrow \mathrm{z}_{0} \gtrless \lambda
\end{aligned}
$$

if particle is trapped in a box smaller than the optical wavelength
\Rightarrow most of the flourescence power is emittted via the carrier which has no Doppler-shift

Probe Transmission in an Optical Lattice with Rubidium

P. Verkerk, et al., Phys. Rev. Lett.68, 3861 (1992)
A. Hemmerich and T. Hänsch, Phys. Rev. Lett.70, 410 (1993)

Bragg-Diffraction in Optical Lattices

- Scattering contrast yields information on atomic localization (Debye-Waller-factor)
- Bragg-angles yield information on separation of lattice planes

Bragg diffraction

diffracted power $\quad P=$ const. $\cdot e^{-2 W}$
Debye-Waller factor $W=1 / 6\left|k_{i}-k_{f}\right|(\delta R)^{2}$

Measure mean spatial atomic extension δR by comparing power P for two different Bragg angles

$$
(\delta R)^{2}=\left|\frac{\ln \left(P_{1}\right)-\ln \left(P_{2}\right)}{\Delta k_{1}^{2}-\Delta k_{2}^{2}}\right|
$$

A. Görlitz, et al., Phys. Rev. Lett 78, 2096 (1997)
G. Raithel, et al., Phys. Rev. Lett 78, 2928 (1997)

Observing position spread oscillations:

Backaction of Atoms upon the Lattice

Increase of Density \rightarrow Increase of Refractive Index

Recall: Debeye-Waller factor for Bragg-scattering:

$$
W_{\delta k}=\frac{1}{3} \delta k^{2} \delta R^{2}
$$

\rightarrow Decrease of Lattice Constant: $d=\frac{\lambda_{L}}{n}$

\rightarrow Increase of Scattering Angle: $\quad \cos (\theta)=\frac{\lambda_{B}}{2 d}$

Dark States:

Consider $\mathrm{J}=1 \rightarrow \mathrm{~J}=1$ level scheme

- for every polarization a dark state exists
- optical pumping populates this dark state
π-light: \quad dark state $=|0\rangle$
σ_{+}-light: \quad dark state $=|+1\rangle$
σ-light: \quad dark state is a superposition of $|-1\rangle$ and $|1\rangle$ such that transition matrix elements destructively interfere
$\left.\left|\psi_{N C}>=\alpha_{-}\right|-1\right\rangle+\alpha_{+}|1\rangle$

Determination of Dark State:

```
Hamiltonian:
\(\mathrm{H}_{0}\left|\mathrm{e}_{v}\right\rangle=\hbar \omega\left|\mathrm{e}_{v}\right\rangle\)
\(H_{0}\left|g_{v}\right\rangle=0\)
\(H=H_{0}+W+P^{2} / 2 m\)
\(J=1\)
\(J=1\)
angular momentum:
\(J_{z}\left|e_{v}\right\rangle=v \hbar\left|e_{v}\right\rangle\)
\(J_{z}\left|g_{v}\right\rangle=v \hbar\left|g_{v}\right\rangle\)
dipole operator:
\(d=d^{-}+d^{+}, \quad d^{+}=P_{e} d P_{g}, \quad d^{-}=P_{g} d P_{e}, \quad P_{e}=\sum_{v}\left|e_{v}\right\rangle\left\langle e_{v}\right|, \quad P_{g}=\sum_{v}\left|g_{v}\right\rangle\left\langle g_{v}\right|\)
interaction (RWA): \(\quad E(r, t)=\frac{1}{\sqrt{2}}\left(E(r) e^{-i \omega t}+E^{\star}(r) e^{i \omega t}\right)\)
\(W=-d^{+} E(r)-d^{-} E^{*}(r)=-\sum_{v, \mu}\left|e_{\nu}\right\rangle\left\langle e_{\nu}\right| d^{+} E(r)\left|g_{\mu}\right\rangle\left\langle g_{\mu}\right|+c . c\)
    \(=-D \sum_{v, \mu, \kappa}\left|e_{v}\right\rangle E_{K}(r) C^{\kappa}{ }_{v \mu}\left\langle g_{\mu}\right|+c . C\)
change to cartesian basis:
    \(\left|g_{x}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|g_{-1}\right\rangle-\left|g_{+1}\right\rangle\right)\)
    \(\left|g_{y}\right\rangle=\frac{i}{\sqrt{2}}\left(\left|g_{-1}\right\rangle+\left|g_{+1}\right\rangle\right)\)
    \(\left|g_{z}\right\rangle=\left|g_{0}\right\rangle\)
    \(\Rightarrow \quad W=-\frac{i}{\sqrt{2}} D \sum_{n, m, k} \varepsilon_{n m k}\left|e_{n}\right\rangle E_{m}(r)\left\langle g_{k}\right| \quad \varepsilon_{n m k}=\) Levi-Civita symbol
```

define dark state: $\quad\left|\psi_{N C}\right\rangle=\sum_{n} G_{n}(r)\left|g_{n}\right\rangle \Rightarrow \quad\left\langle e_{n}\right| W\left|\psi_{N C}\right\rangle=\sum_{m, k} \varepsilon_{n m k} E_{m}(r) G_{k}(r) \quad=\quad[\vec{E} \times \vec{G}]_{n}$
$\left|\psi_{\mathrm{NC}}\right\rangle$ stationary, i.e., Eigen-state of the total Hamiltonian $H=H_{0}+W+P^{2} / 2 m \Leftrightarrow$
A) $\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{G}}=0$

$$
\Leftrightarrow \quad \begin{aligned}
& \vec{G}(r)=f(r) \vec{E}(r) \\
& {\left[\Delta+(p / \hbar)^{2}\right] \vec{G}=0}
\end{aligned}
$$

solution 1: E-field has no polarization gradient: choose $\vec{E}(r)=\vec{E}_{0} \alpha(r)$ with $f(r)=e^{i(p / t) r} / \alpha(r)$ $\Rightarrow \vec{G}(r)=\alpha(r) f(r) \vec{E}_{0}$ and $\left.\left[\Delta+(p / \hbar)^{2}\right] \vec{G}=0 \Rightarrow A\right)$ and $\left.B\right)$
$\left|\psi_{\mathrm{NC}}\right\rangle$ is dark ($\left\langle\mathrm{e}_{\mathrm{n}}\right| \mathrm{W}\left|\psi_{\mathrm{NC}}\right\rangle=0$) and stationary with respect to $\mathrm{P}^{2} / 2 \mathrm{~m}$ independent of the value of p.
solution 2: chose $f(r)=$ constant \Rightarrow because $\left[\Delta+k^{2}\right] \vec{E}=0$ we get $\left[\Delta+k^{2}\right] \vec{G}=0 \quad \Rightarrow \quad$ B) holds if $|p|=|\hbar k|$ $\left|\psi_{N C}\right\rangle$ only remains dark if $|\mathrm{pl}=| \hbar \mathrm{kl}$, otherwise $\left|\psi_{N C}\right\rangle$ is not stationary with respect to $\mathrm{P}^{2} / 2 \mathrm{~m}$ Atoms with $\pm \hbar k$ momentum are decoupled from the light field, while faster atoms may interact.
\rightarrow Velocity selective coherent population trapping VSCPT:
Atoms undergo random walk in momentum space until they incidentally have $\pm \hbar k$ momentum and become trapped in the dark state.

Interaction:

$$
\begin{gathered}
W=\frac{\hbar \omega_{1}}{2} \sum_{p} \frac{1}{\sqrt{2}}\left[\left|e_{0}, p\right\rangle\left\langle g_{+1}, p+\hbar k\right|-\left|e_{0}, p\right\rangle\left\langle g_{-1}, p-\hbar k\right|+c . c\right]=\frac{\hbar \omega_{1}}{2} \sum_{p}\left[\left|e_{0}, p\right\rangle\left\langle\psi_{C}(p)\right|+c . c\right] \\
\\
\left\langle e_{0}, p\right| W\left|\psi_{C}(p)\right\rangle=\frac{\hbar \omega_{1}}{2} \\
\\
\left\langle e_{0}, p\right| W\left|\psi_{N C}(p)\right\rangle=0 \\
\left\langle\psi_{N C}(p)\right| P^{2} / 2 m\left|\psi_{C}(p)\right\rangle=\frac{\hbar k p}{m}
\end{gathered}
$$

VSCPT dynamics

- Bright state $\left|\psi_{\mathrm{C}}(\mathrm{p})\right\rangle$ has spatially constant light shift.
- If $p \neq 0$, the kinetic energy operator induces a Rabi-oscillation with frequency $2 \mathrm{kp} / \mathrm{m}$ between $\left|\psi_{N C}(p)\right\rangle$ and $\left|\psi_{C}(p)\right\rangle$.
- If $p=0, \quad\left|\psi_{N C}(p)\right\rangle$ is stationary and perfectly dark.
- The state $\left|\psi_{\mathrm{NC}}(\mathrm{p})\right\rangle$ is populated via spontaneous emission in a mometum diffusion process
- for moderate interaction times, atoms pile up at momenta $\pm \hbar \mathrm{k}$. For large interaction times the atoms tend to distribute over the entire momentum space \rightarrow no steady state exists.

Monte-Carlo Simulation

A. Aspect et al., Phys. Rev. Lett. 61, 826 (1988)

Combining VSCPT with Sisyphus-Cooling

Problem: VSCPT has no steady state, unefficient loading of |NC〉
Solution: keep atoms within finite fraction of momentum space by sub-Doppler mechanism
Level scheme:

optical potentials: bright state has spatially varying light shift

Temperature in dark optical molasses lower than in conventional optical molasses:

D. Boiron, et al., Phys. Rev. A .53, R3734 (1996)
M.S. Sharhiar, et al., Phys. Rev. A 48, R4035 (1993)
M. Weidemüller, et al., Europhys.Lett. 27, 109 (1994)

Dark Optical Lattice

G. Grynberg and Y. Courtois, Europhys. Lett. 27, 41 (1994)
A. Hemmerich et al., Phys. Rev. Lett. 75, 37 (1995)

Binary Collisional Loss Processes in Optical Lattices

Conventional Optical Lattices

Dark Optical Lattices

Blue detuning: radiative escape and hyperfine changing collisions surpressed -> optical shielding
J. Piilo and K.-A. Suominen, Phys. Rev. A 66, 013401 (2002)

Raman-Cooling

Cooling procedure: successivly apply П Raman pulses and optical pumping pulses
Temperature limit: state selectivity of Raman pulse -> no principle limitation

Preconditions: two stable electronic states (e.g., hyperfine levels or Zeeman levels of ground state)
-> state selective optical pumping (e.g., selectivity via frequency or polarization)
-> nearly equidistant motional states (free or trapped)
M. Kasevich and S. Chu, Phys. Rev. Lett. 69, 1741 (1992)
S. E. Hamann et al., Phys. Rev. Lett. 80, 4149 (1998)

Raman-Cooling

Free atoms, 1D:

M. Kasevich and S. Chu, Phys. Rev. Lett. 69, 1741 (1992)

FIG. 4. (a) The velocity distribution after application of the stimulated Raman cooling pulses. The inset, showing a high resolution scan of the central velocity spike, compares the velocity distribution to the velocity change $\Delta v=3 \mathrm{~cm} / \mathrm{sec}$ from the recoil of a single photon. (b) The initial velocity distribution of sodium atoms due to polarization-gradient cooling. A uniform background signal -3 times the size of the peak signal for curve b has been subtracted from curve a. The background was due to incomplete optical pumping from $F=2 \rightarrow F=1$ during the Raman cooling sequence, and is responsible for the increased noise on curve a.

Far-detuned optical lattice, 3D:

$$
\text { S. E. Hamann et al., Phys. Rev. Lett. 80, } 4149 \text { (1998) }
$$

solid line:
cooled atoms
open circles:
calculation for vibrational ground state

[^0]: Y. Castin and J. Dalibard, Europhys. Lett. 14, 761 (1991)
 V. S. Letokhov et. al., Zh. Eksp. Teor. Fiz. 12,1328 (1977)

