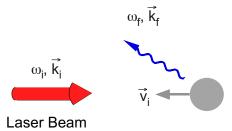
Energy and Momentum Transfer of Radiation Pressure



Consider an atom moving with a velocity \vec{v}_i in a laser beam of frequency ω_i and wave vector \vec{k}_i . Now transfer into the rest frame. The photon absorbed by the atom is thus shifted in frequency by the Doppler effect to have the energy $\hbar \left(\omega_i - \vec{k}_i \vec{v}_i \right)$. The resting atom thereby gets a momentum kick $\hbar \vec{k}_i$ such that its center of mass velocity after absorbing the photon is $\hbar \vec{k}_i / m$ and its kinetic center of mass energy is $\left(\hbar \vec{k}_i \right)^2 / 2m$. This energy is paid for by the photon energy $\hbar \left(\omega_i - \vec{k}_i \vec{v}_i \right)$ received. Hence, the internal energy of the atom is $\hbar \left(\omega_i - \vec{k}_i \vec{v}_i \right) - \frac{\left(\hbar \vec{k}_i \right)^2}{2m}$.

Next we transfer again to the rest frame and consider the emission of a photon with wave vector $\vec{k}_{\rm f}$ and frequency $\omega_{\rm f}$ by the resting atom. This emission will lead to a momentum kick $-\hbar \vec{k}_{\rm f}$ such that its center of mass velocity after emitting the photon is $-\hbar \vec{k}_{\rm f} / m$ and its kinetic center of mass energy is $(\hbar \vec{k}_{\rm f})^2 / 2m$. This kinetic energy must result from the internal energy $\hbar (\omega_{\rm i} - \vec{k}_{\rm i} \vec{v}_{\rm i}) - \frac{(\hbar \vec{k}_{\rm i})^2}{2m}$, such hat the energy of the emitted photon is $\hbar \omega_{\rm f} = \hbar (\omega_{\rm i} - \vec{k}_{\rm i} \vec{v}_{\rm i}) - \frac{(\hbar \vec{k}_{\rm i})^2}{2m}$.

Finally, we return to the laboratory frame again, where the velocity of the atom is $\vec{v}_i + \frac{1}{m}\hbar\vec{k}_i$. This leads to a Doppler shift $\hbar\vec{k}_f(\vec{v}_i + \frac{1}{m}\hbar\vec{k}_i)$, which has to be added to $\hbar\omega_f$ thus leading to $\hbar\omega_f = \hbar(\omega_i - \vec{k}_i\vec{v}_i) - \frac{(\hbar\vec{k}_i)^2}{2m} - \frac{(\hbar\vec{k}_f)^2}{2m} + \hbar\vec{k}_f(\vec{v}_i + \frac{1}{m}\hbar\vec{k}_i)$.

Therefore, we obtain:

$$\begin{split} \hbar\omega_{\rm f} - \hbar\omega_{\rm i} &= -\hbar\vec{k}_{\rm i}\vec{v}_{\rm i} - \frac{(\hbar\vec{k}_{\rm i})^2}{2m} - \frac{(\hbar\vec{k}_{\rm f})^2}{2m} + \hbar\vec{k}_{\rm f}\left(\vec{v}_{\rm i} + \frac{1}{m}\hbar\vec{k}_{\rm i}\right) \\ &= \hbar\left(\vec{k}_{\rm f} - \vec{k}_{\rm i}\right)\vec{v}_{\rm i} - \frac{\hbar^2\left(\vec{k}_{\rm f} - \vec{k}_{\rm i}\right)^2}{2m} \end{split}$$