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Exercise 22. Double-well tunneling

By superimposing a harmonic trap with a narrow blue-detuned laser beam of Gaussian profile, it
is possible to create a symmetric double-well potential like (here for a one-dimensional setting):

V (x) =
mω2
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x2 + b e−

x2

2w2 . (1)

Setting ~ = 1, let us assume that we have found the ground and first excited state of the cor-
responding one-body problem ĥ|ψ±〉 = ε0/1|ψ±〉 with ĥ = − 1

2m∂
2
x + V (x) and ψ+(x) (ψ−(x))

denoting the symmetric (antisymmetric) ground (first excited) state. It is well known that for high
enough barriers, the eigenenergies happen to be pairwise quasi-degenerate up to a certain energy.
In particular, we would like to focus on a regime where the level splitting ε1 − ε0 � ε2. Now
let us consider a BEC in this trap at such low temperatures and with such a low strength U0 of
the repulsive interaction that essentially no boson can thermally or via the interaction be excited
into higher single particle states than the first excited one. Thus we may restrict ourselves to a
so called two-mode approximation. Rather than taking the single-particle eigenstates |ψ±〉 as the
two modes for building up the many-body Fock-space, we consider the linear combinations:

|φ1/2〉 =
1√
2

(|ψ+〉 ± |ψ−〉) , (2)

which are quite localized in the left (right) well for high enough barriers, i.e. |φ1(x)φ2(x)| ≈
0. Please note that these states are exactly orthonormal. Associating the annihilation/creation

operators â
(†)
i with the states |φi〉, we may write for the bosonic field operators:

ψ̂(x) = φ1(x) â1 + φ2(x) â2 + ..., (3)

where “...” represents energetically frozen out modes.

(a) Use the inverse relation âi =
∫

dxφ∗i (x)ψ̂(x) and the commutation relations for the bosonic

field operators [ψ̂(x), ψ̂(y)†] = δ(x− y), [ψ̂(x), ψ̂(y)] = 0 to show that

[âi, â
†
j ] = δij , [âi, âj ] = 0.

(b) For high enough barriers, show that the exact many-body Hamiltonian:

ˆ̃H =

∫
dx

(
ψ̂†(x) ĥ ψ̂(x) +

U0

2
ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x)

)
(4)

can be approximated by:

ˆ̃H =
ε0 + ε1 − U

2
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)
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U

2
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N̂2

1 + N̂2
2

)
, (5)

with N̂i = â†i âi being the occupation number operator of the i-th well. Determine the parame-
ters U and J , interpret them and discuss their signs. Finally, we renormalize the Hamiltonian
with respect to the system’s energy (for definite particle number) in case of J = U = 0:

Ĥ := ˆ̃H(U, J)− ˆ̃H(0, 0) = −U
2
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)
, (6)

which is the famous two-site Bose-Hubbard model Hamiltonian of the lecture.

Please turn the page.



(c) Based on the Hamiltonian of Eq. (6), find the equations of motion for the annihilation oper-
ators in the Heisenberg picture.

(d) Now we assume that the creation and annihilation operators can be approximated by classical
fields and replace

âj(t)→ aj(t) =
√
Nj(t)e

iθj(t), j = 1, 2. (7)

Find the ensuing classical equations of motion for the population imbalance n := (N1−N2)/2
and the relative phase θ := θ1 − θ2.

(e) Show that the classical approximation can also be made on the level of the Hamiltonian:

Plug the transformation from Eq. (7) into the Hamiltonian (6) and check that taking (n, θ)
to be conjugate variables, the correct equations of motion follow from

ṅ =
∂H

∂θ
, θ̇ = −∂H

∂n
.

(f) Find the fixed points of this dynamical system, i.e. points (n0, θ0) for which ṅ(n0, θ0) = 0 and
θ̇(n0, θ0) = 0.

Does the number of these fixed points depend on the parameters N , J and U?
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