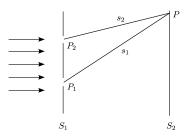
Excercise Sheet 5, Lecture Theoretical Quantum and Atom Optics

University of Hamburg, Prof. P. Schmelcher

To be returned on 14/05/2012, in the tutorials

Exercise 9. Young's double-slit experiment



Consider the positive frequency part of the field operator at a point P on the screen S_2 at time t as a linear superposition of the field operators present at P_1 and P_2 (position vectors \mathbf{r}_1 and \mathbf{r}_2 , respectively) of screen S_1 at earlier times:

$$E^{(+)}(\mathbf{r},t) = K_1 E^{(+)}(\mathbf{r}_1, t - t_1) + K_2 E^{(+)}(\mathbf{r}_2, t - t_2),$$

where $t_i = s_i/c$ is the traveling time from each pinhole (see figure) and K_1, K_2 are imaginary coefficients that depend on the pinhole size and geometry.

Show that, for statistically stationary fields, i.e. only the time dependence on $\tau = t_1 - t_2$ survives on average, the intensity $\langle I(\mathbf{r},t) \rangle = \text{Tr}[\rho E^{(-)}(\mathbf{r},t) E^{(+)}(\mathbf{r},t)]$ measured at P is given by

$$\langle I(\boldsymbol{r},\tau)\rangle = \langle I^{(1)}(\boldsymbol{r})\rangle + \langle I^{(2)}(\boldsymbol{r})\rangle + 2[\langle I^{(1)}(\boldsymbol{r})\rangle\langle I^{(2)}(\boldsymbol{r})\rangle]^{1/2}\operatorname{Re}[g^{(1)}(\boldsymbol{r}_1,\boldsymbol{r}_2;\tau)],$$

where $\langle I^{(i)}(\boldsymbol{r})\rangle = |K_i|^2 G^{(1)}(\boldsymbol{r}_i, \boldsymbol{r}_i; 0)$ and $g^{(1)}$ is the normalized first-order correlation function $G^{(1)}$.

Exercise 10. Visibility

Show that the visibility of the interference fringes in Young's experiment (Ex. 9) is given by:

$$U = \frac{2[\langle I^{(1)}(\boldsymbol{r})\rangle\langle I^{(2)}(\boldsymbol{r})\rangle]^{1/2}}{\langle I^{(1)}(\boldsymbol{r})\rangle + \langle I^{(2)}(\boldsymbol{r})\rangle} |g^{(1)}(\boldsymbol{r}_1, \boldsymbol{r}_2; \tau)|.$$

Hint: Use $g^{(1)}$ in its polar representation $g^{(1)}(\boldsymbol{r}_1, \boldsymbol{r}_2; \tau) = |g^{(1)}(\boldsymbol{r}_1, \boldsymbol{r}_2; \tau)|e^{i\alpha(\boldsymbol{r}_1, \boldsymbol{r}_2; \tau)-i\nu_0\tau}$, where the phase factor α varies slowly in space and ν_0 is the field frequency.

3 Points

Exercise 11. Atom-field interaction Hamiltonian

Consider the minimal-coupling Hamiltonian for an electron in an external electromagnetic field,

$$H = \frac{1}{2m} [\mathbf{p} - e\mathbf{A}(\mathbf{r}, t)]^2 + eU(\mathbf{r}, t) + V(r),$$

where the potentials U, A produce the external field, while V binds the electron to a nucleus at \mathbf{r}_0 . Show that, in the radiation gauge: $U(\mathbf{r},t)=0, \nabla \cdot \mathbf{A}(\mathbf{r},t)=0$, and in the dipole approximation: $\mathbf{k} \cdot \mathbf{r} \ll 1$, so that $\mathbf{A}(\mathbf{r}_0+\mathbf{r},t) \approx \mathbf{A}(t) \exp(i\mathbf{k} \cdot \mathbf{r}_0) \Longrightarrow \mathbf{A}(\mathbf{r},t) \equiv \mathbf{A}(\mathbf{r}_0,t)$, H can be written in the following forms, where $H_0 = \frac{p^2}{2m} + V(r)$ is the Hamiltonian in the absence of the external field:

(a) $H_r = H_0 - e\mathbf{r} \cdot \mathbf{E}(\mathbf{r}_0, t)$

Hint: Gauge-transform the electronic wave function ψ into $\phi(\mathbf{r},t) = \exp\left[-\frac{ie}{\hbar}\mathbf{A}(\mathbf{r}_0,t)\cdot\mathbf{r}\right]\psi(\mathbf{r},t)$.

(b) $H_p = H_0 - \frac{e}{m} \boldsymbol{p} \cdot \boldsymbol{A}(\boldsymbol{r}_0, t)$

Hint: Use the fact that the commutator [p, A] vanishes in the radiation gauge, and neglect quadratic terms $\sim A^2$.