Ultracold Quantum Gases Part 3: Artificial gauge potentials

- Coupling between electromagnetic fields and **charged** particles central for many phenomena:
 - » Integer and fractional Quantum Hall effect
 - » Spin-orbit coupling
 - » Topological insulators
 - »

- Quantum simulation with quantum gases
 - » Well controlled systems to study solid-state models
 - » Neutral atoms (q = 0)

Simulating magnetic effects with quantum gases is a challenge: Requires the creation of "substitutes" to real electromagnetic fields: "Artificial gauge potentials"

Ultracold Quantum Gases Part 3: Artificial gauge potentials

Part 3**3.1 Lorentz force for neutral particles**

3.2 Berry curvature and artificial magnetic field

3.3 Artificial gauge potentials using Raman coupling

3.4 Artificial magnetic field on a lattice

3.5 Engineering and probing topological band structures

Ultracold Quantum Gases 3.1 Lorentz force for neutral particles

- Description of electromagnetic fields in quantum physics
 - » New natural length scale in quantum mechanics
 - » Landau levels
- How to simulate magnetic fields for neutral particle?
 - » Lorentz force for neutral particles

Dalibard, Introduction to the physics of artificial gauge fields, Cours du Collège de France

Motion of a charged particle in a static magnetic field

- Static magnetic field
 - » Divergence free (no magnetic monopole) $B = \nabla \times A$
 - » Gauge freedom: **B** corresponds to a set of vector potentials

$$\mathbf{A}'(\mathbf{r}) = \mathbf{A}(\mathbf{r}) + \nabla \chi(\mathbf{r})$$

» Gauge transformation

$$A(\mathbf{r}) \rightarrow A'(\mathbf{r}) = A(\mathbf{r}) + \nabla \chi(\mathbf{r})$$

- Classical motion of a charged particle
 - » Newtonian equation of motion $m\ddot{r} = q\dot{r} \times B$
 - » Lorentz force $F = q\dot{r} \times B$
 - » Classical cyclotron orbit
 - Cyclotron frequency $\omega_c = \frac{|q|B}{M}$
 - Cyclotron orbit $v_0 = \omega_c r_0$
 - Strong magnetic fields

$$\omega_c \to \infty \Rightarrow r_0 \to 0$$

Motion of a charged particle in a static magnetic field

- Lagrangian mechanics
 - » Lagrange function $L(\mathbf{r}, \dot{\mathbf{r}}) = \frac{1}{2}M\dot{\mathbf{r}^2} + q \dot{\mathbf{r}} \cdot \mathbf{A}(\mathbf{r})$
 - » Newtonian equation of motion obtained via Euler Lagrange equation

$$\frac{\partial L}{\partial r_i} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{r_i}} \right) \qquad \Rightarrow m \ddot{\boldsymbol{r}} = q \dot{\boldsymbol{r}} \times \boldsymbol{B}$$

- Hamiltonian
 - » Legendre transform to obtain the Hamiltonian $p = \nabla_{\dot{r}} L(r, \dot{r})$

$$H(\boldsymbol{r},\boldsymbol{p}) = \boldsymbol{p}\cdot\dot{\boldsymbol{r}} - L(\boldsymbol{r},\dot{\boldsymbol{r}})$$

В

Landau levels

- Energy spectrum of a charged particle in a uniform magnetic field B
 - » Hamiltonian

$$\widehat{H} = \frac{\left(\widehat{p} - q A(\widehat{r})\right)^2}{2M}$$

» Eigenvalues: Landau levels (analog to an harmonic oscillator)

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega_c$$

- Magnetic length
 - » New natural length scale $l_{mag} = \sqrt{\frac{\hbar}{eB}}$
 - » I_{mag} is the minimal cyclotron orbit size (Heisenberg inequality)

$$\Delta \mathbf{r} \Delta p \geq \frac{\hbar}{2} \Rightarrow (\Delta \mathbf{r})^2 \geq \frac{\hbar}{2M\omega_c}$$

» For B = 1 T: *I_{mag}* = 25 nm

Quantum Hall effect:

Direct consequence of the minimal cyclotron orbit size and quantized energies

 $\mathbf{A} = \left(\begin{array}{c} 0\\ Bx\\ 0\end{array}\right)$

Lorentz force for neutral particles

- "Artificial" magnetic field: Lorentz force for neutral particles
- Rotation of the trap around the z axis
 - » Coriolis force appearing in the rotating frame

 $\mathbf{F}_{\text{Coriolis}} = 2M\mathbf{v} \times \mathbf{\Omega}$

$$\mathbf{F}_{\text{Lorentz}} = q\mathbf{v} \times \mathbf{B}$$

» Rotating superfluid: vortex lattice

7

Lorentz force for neutral particles

• Rotation of the trap
$$\hat{H} = \frac{\hat{\mathbf{p}}^2}{2M} + V(\hat{\mathbf{r}}) - \Omega \hat{L}_z$$

• Effective vector potential

$$\hat{H} = \frac{(\hat{\mathbf{p}} - q\mathbf{A})^2}{2M} + V(\hat{\mathbf{r}}) + V_{\text{centrif.}}(\hat{\mathbf{r}})$$
$$q\mathbf{A} = M\Omega(x\mathbf{u}_y - y\mathbf{u}_x)$$
$$V_{\text{centrif.}} = -\frac{1}{2}M\Omega^2\hat{\mathbf{r}}^2$$

- Effective magnetic field $\ qB=2M\Omega$

• Flux density
$$n_{\Phi} = \frac{qB}{h} = \frac{2M\Omega}{h}$$

- Advantages
 - » Simple (no special set-up)
 - » Applicable for any atoms / molecules

Challenges

- » Heating due to the rotation of non-circular potentials $(\omega_x, \omega_y, \omega_z)$ (Equivalent to time dependent potentials in rotating frame)
- » The trapping potential has to balance the

centrifugal potential $~\Omega \leq \omega$

Flux density limited to $n_{\Phi} \leq \frac{2M\omega}{h}$

Filling factor:

 $\nu = \frac{n_{2D}}{n_{2D}}$

 n_{Φ}

 $\mathbf{\Omega} = \Omega \mathbf{u}_z$

Ultracold Quantum Gases Part 3: Artificial gauge potentials

Part 3 3.1 Lorentz force for neutral particles

3.2 Berry curvature and artificial magnetic field

3.3 Artificial gauge potentials using Raman coupling

3.4 Artificial magnetic field on a lattice

3.5 Engineering and probing topological band structures

Ultracold Quantum Gases 3.2 Berry curvature and artificial magnetic field

- Gauge transformation in quantum mechanics
 - » Aharonov-Bohm phase (gauge invariant, geometric)
 - » Central concept for the quantum simulation with neutral atoms
- Berry phase
 - » Quantum mechanical phase imprinted on the system wave function while modifying external parameters.
 - » Analog to the Aharonov-Bohm phase (gauge invariant, geometric)
 - » Induced by a vector field analog to a magnetic field **Berry curvature**.
- Realization of gauge fields for free atoms: Optically dressed states Well-designed light-matter interaction induces electric or magnetic fields for neutral atoms.

Gauge transformation

- Classical physics
 - » Equation of motion $m\ddot{r} = q\dot{r} \times B$
 - » Gauge transformation $A(r) \rightarrow A'(r) = A(r) + \nabla \chi(r)$
- Quantum mechanics
 - » Schrödinger equation

$$i\hbar \frac{\partial \psi(\mathbf{r},t)}{\partial t} = \frac{(\hat{\mathbf{p}} - q\mathbf{A}(\hat{\mathbf{r}}))^2}{2M}\psi(\mathbf{r},t)$$

» Gauge transformation (imposed by the Schrödinger equation)

$$\mathbf{A} \to \mathbf{A}'(\mathbf{r}) = \mathbf{A}(\mathbf{r}) + \nabla \chi(\mathbf{r})$$
$$\psi(\mathbf{r}, t) \to \psi'(\mathbf{r}, t) = \exp[\imath q \chi(\hat{\mathbf{r}}) / h] \psi(\mathbf{r}, t)$$

The wave-function is modified by a gauge transformation: it acquires a phase!

The Aharonov-Bohm effect

- Gedanken experiment of Aharonov and Bohm (1959)
 - » Two path interferometer for single electrons
 - » Infinite solenoid: **B**_{in} = **B** and **B**_{out} = **0**
- Probing a magnetic field without seeing it
 - » Zero Lorentz force outside the solenoid
 - » BUT: Shift of the interference pattern

- One of the "seven wonders of the quantum world" [New Scientist magazine]
 - » Several experimental demonstrations
 - » Questions the locality of electromagnetic fields
 - Local electromagnetic fields (B, E) and delocalized particle in the solenoid,
 - Gauge potentials (A, V) and particle localized around the solenoid.
 - » Global action versus local forces: Lagrangian formalism (based on energies) is not just a computational aid to the Newtonian formalism (based on forces).

The Aharonov-Bohm effect

- Gedanken experiment of Aharonov and Bohm (1959)
 - » Two path interferometer for single electrons
 - » Infinite solenoid: B_{in} = B and B_{out} = 0
- Probing a magnetic field without seeing it
 - » Zero Lorentz force outside the solenoid
 - » BUT: Shift of the interference pattern
- Aharonov-Bohm phase
 - » Switching the current corresponds to a gauge change:

$$\mathbf{A}(\mathbf{r}) = \mathbf{0} \to \mathbf{A}(\mathbf{r}) = \nabla \chi_{I,II}(\mathbf{r})$$

» The matter-wave interference at *r* is related to:

$$\psi_l^*(\mathbf{r})\psi_r(\mathbf{r}) = \exp[iq(\chi_{II}(\mathbf{r}) - \chi_I(\mathbf{r}))]\psi_l^{(0)*}\psi_r^{(0)}$$
$$\chi_I(\mathbf{r}) - \chi_{II}(\mathbf{r}) = \int_{\mathbf{0},\mathbf{CI}}^{\mathbf{r}} \mathbf{A}(\mathbf{r}')d\mathbf{r}' - \int_{\mathbf{0},\mathbf{CII}}^{\mathbf{r}} \mathbf{A}(\mathbf{r}')d\mathbf{r}$$

The Aharonov-Bohm effect

- Gedanken experiment of Aharonov and Bohm (1)
 - Two path interferometer for single electrons **》**
 - Infinite solenoid: **B**_{in} = **B** and **B**_{out} = **0 》**
- Probing a magnetic field without seeing it
 - Zero Lorentz force outside the solenoid **》**
 - **》 BUT:** Shift of the interference pattern
- Aharonov-Bohm phase

neutral particles?

$$\Delta \varphi = \frac{1}{\hbar} \oint q \mathbf{A}(\mathbf{r}) d\mathbf{r} = \frac{2\pi}{\Phi_0} \int \int B_z(x, y) dy dx = 2\pi \frac{\Phi}{\Phi_0}$$
Flux quantum $\Phi_0 = \frac{h}{q}$
Is there something analog for

- Gauge invariant **》**
- Geometric phase (no dependency on velocity) »
- Even topological (constant under path deformation) **》**

Berry phase

- Adiabatic evolution of a quantum system
 - » Quantum system depending on a set of parameters $\,\lambda\,$
 - » Quantum system governed by $\hat{H}(\lambda)$,

 $\hat{H}(\lambda) |\psi_n(\lambda)\rangle = E_n(\lambda) |\psi_n(\lambda)\rangle$

- » Evolution on a closed trajectory $\lambda(0) \to \lambda(t) \to \lambda(T) = \lambda(0)$
- » Time evolution of the state vector of the system

$$|\psi(t)\rangle = \sum_{n} c_n(t) |\psi_n(\lambda(t))\rangle$$

» Adiabatic approximation for a system initially prepared in $|\psi_l
angle$:

 $|\psi(t)\rangle = c_l(t) |\psi_l(\lambda(t))\rangle$

Berry phase

Berry connection

» Schrödinger equation
$$\imath \hbar \dot{c}_l = \left[E_l(t) - \imath \hbar \dot{\lambda} \langle \psi_l | \nabla \psi_l \rangle \right] c_l$$

$$i\hbar\dot{c}_l = \left[E_l(t) - \dot{\lambda}\cdot\mathbf{A}_l(\lambda)\right]c_l$$

- Geometric and dynamical phases
 - » For a close contour in parameter space $c_l(T) = e^{i\Phi^{\text{dyn.}}(T)}e^{i\Phi^{\text{geom.}}(T)}c_l(0)$
 - » Dynamical phase (usual phase for time-dependent problems, gauge invariant) $\Phi^{\rm dyn}(T)=-\frac{1}{\hbar}\int_0^T E_l(t)dt$
 - » Geometric phase "Berry phase" (gauge invariant, only depends on the trajectory)

$$\Phi^{\text{geom}}(T) = \frac{1}{\hbar} \int_0^T \dot{\lambda} \cdot \mathbf{A}_l(\lambda) dt = \frac{1}{\hbar} \oint \mathbf{A}_l(\lambda) d\lambda$$

- Berry curvature
 - » Real, gauge invariant vector field $\mathbf{B}_l =
 abla imes \mathbf{A}_l$

$$\mathbf{A}_{l}(\lambda) = \imath \hbar \left\langle \psi_{l} | \nabla \psi_{l} \right\rangle$$

- » Analog to a magnetic field (relative to any set of parameters λ , not only position)
- Berry phase and Aharonov-Bohm phase

$$\Phi^{\text{geom}}(T) = \frac{1}{\hbar} \oint \mathbf{A}_l(\lambda) d\lambda = \frac{1}{\hbar} \int \int \mathbf{B}_l \cdot d^2 S$$

The Berry phase accumulated by a particle moving around a closed contour C is fully analog to the Aharanov-Bohm phase.

- How to impose such a geometric phase on ultracold gases?
 - » Atom: different internal states
 - » H_{atom-light} depends on intensity and detuning
 - » These parameters can be easily varied in space

Toy model: two-level system

- Two level system coupled by a light field
 - » Spontaneous emission neglected (long lived electronic state)
 - » Atom-laser coupling characterized by
 - Rabi frequency $\kappa = |\kappa| e^{\imath \Phi}$
 - Detuning Δ

$$\hat{H}_{\text{int}} = \hbar \begin{pmatrix} 0 \\ \frac{1}{2} (\kappa^* e^{-\imath \omega t} + \kappa e^{\imath \omega t}) \end{pmatrix}$$

- Rotating wave approximation
 - » In the co-rotating frame

$$\hat{H}_{\text{int}} = \hbar \begin{pmatrix} \frac{\Delta}{2} & \frac{1}{2}(\kappa + \kappa^* e^{-2\iota\omega t}) \\ \frac{1}{2}(\kappa^* + \kappa e^{2\iota\omega t}) & -\frac{\Delta}{2} \end{pmatrix}$$

» Rotating wave approximation $\omega_0 >> \Delta, \kappa$

$$\hat{H}_{\rm int} = \frac{\hbar}{2} \left(\begin{array}{cc} \Delta & \kappa^* \\ \kappa & -\Delta \end{array} \right)$$

Toy model: two-level system

- Two level system coupled by a light field
 - » Spontaneous emission neglected (long lived electronic state)
 - » Atom-laser coupling characterized by
 - Rabi frequency $\kappa = |\kappa| e^{\imath \Phi}$
 - Detuning Δ

$$\hat{H}_{\text{int}} = \frac{\hbar}{2} \left(\begin{array}{cc} \Delta & \kappa^* \\ \kappa & -\Delta \end{array} \right)$$

- Eigenstates and eigenvalues
 - » Eigenvalues $E_{\pm}=\pm\frac{\hbar\Omega}{2}\qquad\qquad\Omega=\sqrt{\Delta^2+|\kappa|^2}$ Finally, where $E_{\pm}=\pm\frac{\hbar\Omega}{2}$
 - » Eigenstates

$$\hat{H}_{\text{int}} = \frac{\hbar\Omega}{2} \begin{pmatrix} \cos(\theta) & e^{-i\Phi}\sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix} \quad |\psi_{+}\rangle = \begin{pmatrix} \cos(\theta/2) \\ e^{i\Phi}\sin(\theta/2) \end{pmatrix}$$
$$\cos(\theta) = \frac{\Delta}{\Omega} \sin(\theta) = \frac{|\kappa|}{\Omega} \qquad |\psi_{-}\rangle = \begin{pmatrix} -e^{i\Phi}\sin(\theta/2) \\ \cos(\theta/2) \end{pmatrix}$$

Space dependent atom-light coupling

$$\hat{H}_{\rm int}(\mathbf{r}) = \frac{\hbar}{2} \begin{pmatrix} \Delta(\mathbf{r}) & \kappa^*(\mathbf{r}) \\ \kappa(\mathbf{r}) & -\Delta(\mathbf{r}) \end{pmatrix}$$

- Resulting gauge potentials
 - » Berry connection

$$\mathbf{A}_{\pm}(\mathbf{r}) = i\hbar \left\langle \psi_{\pm} | \nabla \psi_{\pm} \right\rangle = \pm \frac{h}{2} (\cos(\theta) - 1) \nabla \Phi$$

1

» Berry curvature

$$\mathbf{B}_{\pm}(\mathbf{r}) = \pm \frac{\hbar}{2} \nabla(\cos(\theta)) \times \nabla \Phi$$

- Conditions to obtain non-vanishing gauge potentials
 - » Non-zero Berry curvature achieved only for non-zero gradients of the phase and the mixing angle

$$\kappa = |\kappa|e^{i\Phi}$$

$$\Omega = \sqrt{\Delta^2 + |\kappa|^2}$$

$$\cos(\theta) = \frac{\Delta}{\Omega} \quad \sin(\theta) = \frac{|\kappa|}{\Omega}$$

» Non-zero gradients gradient of the mixing angle can be achieved via a gradient of intensity $(\nabla\kappa)$ or a gradient of detuning $(\nabla\Delta)$

Toy model: two-level system

- Berry connection and curvature
 - » Arise in simple experimental schemes
 - » Give rise to magnetic-like behavior (Lorentz force for neutral atoms)
- Drawbacks of this toy model
 - » Scheme only applicable to alkaline-earth species as Yb
 - The occupation of the excited state must be non-negligible in order to create non-vanishing artificial magnetic fields
 - Spontaneous emission is detrimental
 - Scattering rate must be negligible on the experimental time scale (10 100 ms)
 - » Strength of the realized magnetic field
 - One travelling wave: spatial scale for the variation of the mixing angle limited to the beam waist *w*.
 - More travelling waves: interference phenomena introduce a much shorter wavelength λ /2. Part 3.4

Summary: Generating artificial gauge potentials

