Ultracold Quantum Gases

Part 3: Artificial gauge potentials

* Coupling between electromagnetic fields and charged particles
central for many phenomena:

>

\

Integer and fractional Quantum Hall effect
» Spin-orbit coupling

>

v

Topological insulators

» ...

* Quantum simulation with quantum gases
» Well controlled systems to study solid-state models
» Neutral atoms (q = 0)

Simulating magnetic effects with quantum gases is a challenge:
Requires the creation of “substitutes” to real electromagnetic fields:
“Artificial gauge potentials”
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Ultracold Quantum Gases

3.1 Lorentz force for neutral particles

* Description of electromagnetic fields in quantum physics
» New natural length scale in guantum mechanics

» Landau levels

* How to simulate magnetic fields for neutral particle?

» Lorentz force for neutral particles

Dalibard, Introduction to the physics of artificial gauge fields, Cours du College de France



Motion of a charged particle in a static magnetic field

* Static magnetic field
» Divergence free (no magnetic monopole) B =V Xx A4
» Gauge freedom: B corresponds to a set of vector potentials
A'(r) = A(r) + Vx(r)
» Gauge transformation
A(r) - A'(r) =A(r) + Vx(r)

* Classical motion of a charged particle
» Newtonian equation of motion mi = gqr X B
» Lorentzforce F =qr XB
» Classical cyclotron orbit

_|q|B
* Cyclotron frequency w, = ——

M
e Cyclotron orbit vy = wry

* Strong magnetic fields
W, >0 =>715 >0



Motion of a charged particle in a static magnetic field

e Lagrangian mechanics 1 B
» Lagrange function L(r,7) = EM"‘Z +q1-A(r)

» Newtonian equation of motion obtained via Euler Lagrange equation
dL d OJL

_ e B
or. a7 mre=ar @

* Hamiltonian

» Legendre transform to obtain the Hamiltonian
p=ViL(r,1)

Hr,p)=p-r —L(r,1)

2
» Hamiltonian (minimal coupling): E(p.) = ;—& E(p) A E(ps) =

_ (- qA®)’
H= 2M

> p



Landau levels

* Energy spectrum of a charged particle in a uniform magnetic field B B
» Hamiltonian P (’ﬁ — qA(fﬂ))z
B 2M

» Eigenvalues: Landau levels (analog to an harmonic oscillator)

1

* Magnetic length

i 0

» New natural length scale [l = |
eb A=| Bz
0

» I,q4 1S the minimal cyclotron orbit size (Heisenberg inequality)

R
ArAp = = = (Ar)? =
rAp 25 = (A7 2 e

» ForB=1T: /mag =25 nm

Quantum Hall effect:

Direct consequence of the minimal cyclotron orbit size and quantized energies



Lorentz force for neutral particles

» “Artificial” magnetic field:

Lorentz force for neutral particles

* Rotation of the trap around the z axis
~_

» Coriolis force appearing in the rotating frame

Fcoriolis = 2Mv x (2 Fiorentz = gV X B

» Rotating superfluid: vortex lattice

Ketterle, Science 292, 476 (2001)



Lorentz force for neutral particles

A2

* Rotation of the trap 7y _ P V() — QF
2M —I— (I') z
 Effective vector potential
~  (b—qA)? ) i
H = ( ) + V(I‘) + chentrif.(r)

2M
qA = MQ(zu, — yuy,)

1 .
Veentrit. = — §MQQI'2

 Effective magnetic field qB = 2M()

. _gB  2MQ
* Flux density e = T

* Advantages
» Simple (no special set-up)

» Applicable for any atoms / molecules



Lorentz force for neutral particles

Challenges
: . : . = Quz
» Heating due to the rotation of non-circular potentials (wg_g, Wy W

(Equivalent to time dependent potentials in rotating frame)

» The trapping potential has to balance the

centrifugal potential {2 < w ~—
o 2Mw
Flux density limitedto nge < 5
Mean field regime Strongly interacting regime

Moore -Read Laughlin

Experiments to date
state state

< l : : l
103 10 1 1/2
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Ultracold Quantum Gases

3.2 Berry curvature and artificial magnetic field

* Gauge transformation in quantum mechanics
» Aharonov-Bohm phase (gauge invariant, geometric)

» Central concept for the quantum simulation with neutral atoms

e Berry phase

» Quantum mechanical phase imprinted on the system wave function while
modifying external parameters.

» Analog to the Aharonov-Bohm phase (gauge invariant, geometric)

» Induced by a vector field analog to a magnetic field — Berry curvature.

* Realization of gauge fields for free atoms: Optically dressed states

Well-designed light-matter interaction induces electric or magnetic fields for
neutral atoms.

Dalibard, Introduction to the physics of artificial gauge fields, Cours du College de France



Gauge transformation Ubungsblatt 7

* Classical physics B

» Equation of motion mr =qr X B
» Gauge transformation A(r) - A'(r) = A(r) + Vy(r)

e Quantum mechanics @

» Schrodinger equation

O(r,t) (P —qA(F))?
= v

» Gauge transformation (imposed by the Schrodinger equation)
A — A'(r)=A(r) + Vx(r)
P(r,t) = ¢ (r,t) = explagx(r)/h](r,t)

The wave-function is modified by a gauge transformation: it acquires a phase!

12



The Aharonov-Bohm effect

* Gedanken experiment of Aharonov and Bohm (1959)

» Two path interferometer for single electrons

» Infinite solenoid: B,,=Band B_,, =0

Emutter
* Probing a magnetic field without seeing it \

» Zero Lorentz force outside the solenoid

» BUT: Shift of the interference pattern

* One of the “seven wonders of the quantum world” [New Scientist magazine]
» Several experimental demonstrations
» Questions the locality of electromagnetic fields
* Local electromagnetic fields (B, E) and delocalized particle in the solenoid,
e Gauge potentials (A, V) and particle localized around the solenoid.

» Global action versus local forces: Lagrangian formalism (based on energies) is not
just a computational aid to the Newtonian formalism (based on forces).

Aharonov and Bohm, Phys. Rev. 115, 485 (1959) 13



The Aharonov-Bohm effect

* Gedanken experiment of Aharonov and Bohm (1959)

» Two path interferometer for single electrons

» Infinite solenoid: B,,=Band B_,, =0

Emutter
* Probing a magnetic field without seeing it \

» Zero Lorentz force outside the solenoid

» BUT: Shift of the interference pattern

* Aharonov-Bohm phase

» Switching the current corresponds to a gauge change:

A(I‘) — 0 — A(r) — VXI,II(I') patch |

» The matter-wave interference at ris related to:

Y (r)-(r) = expleq(xrr(r) — x1(r))] 1(0)*10?(}))

r r

XTI (I‘) — XII(r) = A(r')dr’ L / A(r’)dr’ patch Il
0,CI 0,CII

Aharonov and Bohm, Phys. Rev. 115, 485 (1959) 14



The Aharonov-Bohm effect

* Gedanken experiment of Aharonov and Bohm (1959)
» Two path interferometer for single electrons

» Infinite solenoid: B,,=Band B_,, =0

Emutter
* Probing a magnetic field without seeing it \

» Zero Lorentz force outside the solenoid

» BUT: Shift of the interference pattern

e Aharonov-Bohm phase

1
Acpzﬁj{qA( // a:ydydac—%r—
h
Flux quantum &5 = —
q Is there something analog for

» Gauge invariant
» Geometric phase (no dependency on velocity)

» Even topological (constant under path deformation)

Aharonov and Bohm, Phys. Rev. 115, 485 (1959)

neutral particles?

15



Berry phase

* Adiabatic evolution of a quantum system

» Quantum system depending on a set of parameters A

» Quantum system governed by IA{()\) w Es
2

» Evolution on a closed trajectory 111 (1, 1))
M0) = A(f) = A(T) = A(0) M E

Y
Time evolution of the state vector of the system \

() =D enlt) [n (A1)

T

v

>

v

>

v

Adiabatic approximation for a system initially prepared in Wl) :

(1)) = a(t) [i(A(?)))

16



Berry phase

* Berry connection
» Schrodinger equation 1h¢; = [El (t) — 2hA <1/)5\V¢l>] c
» Definition of the Berry connection A ;(A) = 2k (1| Vi)

iy = [El(t) Y Al()\)} c

* Geometric and dynamical phases

. dyn. geom.
» For a close contour in parameter space ¢;(1") = et (1) 2@ (T)cl(O)

» Dynamical phase (usual phase for time-dependent problems, gauge invariant)
1 T
PN (T) = —— / Ey(t)dt
hJo
» Geometric phase “Berry phase” (gauge invariant, only depends on the trajectory)

1 T
QECT(T) = g[) \ - A (N)dt = fAl

17



Berry curvature and artificial magnetic fields

* Berry curvature

» Real, gauge invariant vector field B; =V x A;
Ai(A) = h (| Vi)

» Analog to a magnetic field (relative to any set of parameters A, not only position)

* Berry phase and Aharonov-Bohm phase

e (T) = %j{Al(A)dA = %//Bl .d*S

The Berry phase accumulated by a particle moving around a closed contour Cis fully
analog to the Aharanov-Bohm phase. z

* How to impose such a geometric phase on ultracold gases? — )\

» Atom: different internal states f/ X

» Hatom-light

» These parameters can be easily varied in space

e

depends on intensity and detuning Y

18



Toy model: two-level system Ubungsblatt 7

* Two level system coupled by a light field

» Spontaneous emission neglected EA T

(long lived electronic state)

» Atom-laser coupling characterized by Laser
- Rabifrequency K = |k|e"® v
* Detuning A Y | >
0 1 wwt * —iwt Y
o 5 (ke™ + K™e )
nt %(K/*e—zwt + ﬁezwt) Wo

* Rotating wave approximation
» In the co-rotating frame
I:It_h( 1 % %(,{_I_Kj*e—mwt) )
mt —

E(H* _‘_Iiemwt) _%

» Rotating wave approximation wg >> A, K

A h (A k*
Hint_i(ﬁ: —A)

Dalibard and Gerbier, Artificial gauge potentials for neutral atoms, Reviews of Modern Physics 83, 1523 (2011) 19



Toy model: two-level system Ubungsblatt 7

* Two level system coupled by a light field

» Spontaneous emission neglected EA T

€)
(long lived electronic state)
» Atom-laser coupling characterized by Laser
- Rabifrequency K = |k|e"® v
* Detuning A A 7 N y g)
H.. = —
nt 2 ( K _A )

* Eigenstates and eigenvalues
» Eigenvalues
h(2 > 5
» Eigenstates

- hQ [ cos(f) e sin(0)
Hiy = 5 ( sin(f)  — cos(f) ) v

( gos.(H/Z) )
e*® sin(6/2)
cos(0) =% sin(9) = 11 0= ( _e;jss(i;/(ze)/z) )

Dalibard and Gerbier, Artificial gauge potentials for neutral atoms, Reviews of Modern Physics 83, 1523 (2011) 20



Toy model: two-level system Ubungsblatt 7

» Space dependent atom-light coupling

) =5 (20 A )

* Resulting gauge potentials

- Y
» Berry connection

h
A (r) = h (P|Vips) = £ (cos(8) — 1)V =
» Berry curvature

B.(r)= j:gV(cos(Q)) x VO

* Conditions to obtain non-vanishing gauge potentials

» Non-zero Berry curvature achieved only for non-zero gradients of the phase and the
mixing angle
k= |k|e® A ]

cos(f) = = sin(f) = —
Q= /A2 + |52 2 {2
» Non-zero gradients gradient of the mixing angle can be achieved via a gradient of
intensity (V k) or a gradient of detuning (VA)

Dalibard and Gerbier, Artificial gauge potentials for neutral atoms, Reviews of Modern Physics 83, 1523 (2011)

21



Toy model: two-level system

* Berry connection and curvature
» Arise in simple experimental schemes

» Give rise to magnetic-like behavior (Lorentz force for neutral atoms)

* Drawbacks of this toy model
» Scheme only applicable to alkaline-earth species as Yb

* The occupation of the excited state must be non-negligible in order to create
non-vanishing artificial magnetic fields

* Spontaneous emission is detrimental

* Scattering rate must be negligible on the experimental time scale (10 - 100 ms)

» Strength of the realized magnetic field

* One travelling wave: spatial scale for the variation of the mixing angle limited to
the beam waist w.

* More travelling waves: interference phenomena introduce a much shorter wave-
length A /2. Part 3.4

Dalibard and Gerbier, Artificial gauge potentials for neutral atoms, Reviews of Modern Physics 83, 1523 (2011) 22



Summary: Generating artificial gauge potentials

Momentum space

_ Px (px + qA)?
E(ps) = oM E(p) A E(py) = — T,

\
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Real space

@

B(r) =V x A(r)

E(r)=—

0A(T)
ot

1 )
=—¢ qA(r) -dr =2n—

D
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