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Ultracold Quantum Gases
Part 3: Artificial gauge potentials

Part 3 3.1 Lorentz force for neutral particles

3.2  Berry curvature and artificial magnetic field

3.3  Artificial gauge potentials using Raman coupling

3.4  Artificial magnetic field on a lattice

3.5  Engineering and probing topological band structures
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Ultracold Quantum Gases
3.4 Artificial magnetic field on a lattice

• Magnetic phenomena in the presence of a spatially periodic potential

» Competition between two length scales

Lattice spacing: a

Magnetic length:

» New phenomena when

Fractal structure for the energy spectrum “Hofstadter butterfly”

• Experimental realization with quantum gases

allows reaching strong fields in optical lattices

𝑎2

𝑙mag
2 =

𝑒 𝐵𝑎2

ℏ
= 2𝜋

Φ

Φ0

𝑙mag =
ℏ

𝑒𝐵

𝑙mag ≈ 𝑎

𝑙mag ≈ 𝑎 ⇔ Φ ≈ Φ0

Φ0= h/e



3

Hubbard Model

• Hubbard model

» 2D square lattice

» Single-band

» Nearest-neighbor hopping J

• Eigenstates and eigenenergies

» Bloch states

» Eigenenergies

Reduction to the 1st Brillouin zone

Band centered around E=0 with a full width of 8J
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Gauge potentials on a lattice - Peierls phase

• Peierls substitution

» Presence of a gauge potential

↔ Complex tunneling matrix element

» Peierls phase

» Magnetic flux through a plaquette - Aharonov-Bohm phase

• Gauge potential in momentum space
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Harper Hamiltonian - Hofstadter butterfly

• Particle moving on a square lattice in presence of a magnetic field

» Same flux through each plaquette

» Landau gauge

» Peierls phase

• Harper Hamiltonian

• Energy spectrum: Hofstadter butterfly

» Invariant under

→ study of the spectrum for

» Magnetic field breaks the translational invariance

along y

» Fractal structure

Φ = 𝛼Φ0
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Harper Hamiltonian - Hofstadter butterfly

• Rational values of the flux

» Translational symmetry restored along y 

» Increased spatial period pa: magnetic unit cell

• Case α=1/3

» Magnetic unit cell: length of a along x and 3a along y

» Each unit cell contains 3 sites 

→ Splitting of the energy spectrum in 3 sub-bands

• Origin of the fractal structure

» α=1/3 and α=10/31: very close values of α 

» But very different results as 3 or 31 sub-bands!
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Harper Hamiltonian - Hofstadter butterfly

• Recovering the Landau levels

» For low magnetic fluxes:

» Analog to a free particle in a static magnetic field

» Landau levels?

• Measurement of the Hofstadter butterfly

» Solid state systems

» Realized using the Moiré pattern in monolayer graphene

» Quantum gases?

𝑙mag ≫ 𝑎

Übungsblatt 9

Φ = Φ0 ⇔ 𝐵 ≈ Φ0/𝑎
2

𝑎 ≈ 1 𝐴 ⇒ 𝐵 ≈ 4 105𝑇
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• Natural tunneling in an optical lattice

» Well controlled with the lattice depth

» Tunneling = hopping probability

• Getting complex tunneling

» Shift the dispersion relation

» Strong field regime reachable as one simulates directly the Peierls phase

Generating artificial gauge potentials on a lattice
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Generating artificial gauge potentials on a lattice

• Band engineering via periodic driving: “Floquet engineering”

» Periodic driving of the quantum system

» Analog to the Bloch theorem in time

Eigenstate: Floquet states

» Floquet theorem

• High frequency limit

» Faster than all other timescales in the system

» Effective Hamiltonian is time independent

» New properties can emerge in the effective Hamiltonian, especially gauge fields

𝐻eff = 𝐻 𝑡
𝑇

𝐻 𝑡 + 𝑇 = 𝐻(𝑡)
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ۧ|𝑈(𝑡1, 𝑡2) = 𝑃 𝑡2 𝑒𝑖𝐻eff 𝑡1−𝑡2 𝑃+(−𝑡1)
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Realization of artificial magnetic fields on a lattice

» Periodic acceleration of the optical lattice

» Periodic modulation of the lattice depth

Band engineering via periodic driving
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Publications with the word „Floquet“ in the abstract:
(Source: arXiv:condensed matter section)
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Band engineering via lattice shaking

• Lattice shaking

» Modification of the frequency of one lattice beam

» Acceleration of the lattice in space → inertial force

» Semi-classical equation for the quasi-momentum

» Time-periodic force with zero mean value

• Renormalization of the band structure in 1D

» Sinusoidal shaking

» Effective band-structure
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Band engineering via lattice shaking

• Effective tunneling

» Band structure and tunneling

» Effective tunneling 

• Measurement with a condensate

» BEC: occupies the minimal energy 

quasi-momentum k

» Quasi-momentum

retrieved after time-of-flight expansion

for different forcing amplitude K
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𝐸 𝑞 = −2𝐽barecos(𝑞𝑎)

𝐽eff = 𝐽bare𝐽0(𝐾)

𝐾 =
𝐹0𝑎

ℏ𝜔



13

Band engineering via lattice shaking

• Realization of complex tunneling

» Inertial force asymmetric around q=0

» Shift of the effective band structure

» Realization of complex tunneling elements

 Sengstock, Simonet, Phys. Rev. Lett. 108, 225304 (2012)
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Band engineering via lattice shaking

• Realization of artificial magnetic fluxes

» Shaking of a triangular lattice → complex tunneling

» Alternating flux pattern

» Modification of the band structure

can be retrieved after time-of-flight

 Sengstock, Simonet, Nature Physics 9, 738 (2013) kx
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• Tilted optical lattice

» Along y: standard lattice potential, tunneling J

» Along x: tilted potential using a magnetic field gradient

→ tunneling suppressed by the energy offset Δ

• Raman coupling

» Restore the tunneling along x (photon-assisted tunneling)

» Realization of complex tunneling

Band engineering via amplitude modulation

 Bloch / Ketterle, Phys. Rev. Lett. 111 (2013)

𝜔1 − 𝜔2 = Δ/ℏ

𝐾pert =
Ω

2
𝑑2𝒓 𝑤∗ 𝒓 − 𝑹𝑚,𝑛 𝑒−𝑖 𝛿𝒌⋅𝒓𝑤(𝒓 − 𝑹𝑚,𝑛 − 𝑎𝒆𝑥) = 𝐾 𝑒−𝑖 𝛿𝒌⋅𝑹𝑚,𝑛

𝛿𝒌 = 𝒌1 − 𝒌2

𝑹𝑚,𝑛 = 𝑚𝒅𝑥 + 𝑛𝒅𝑦
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• Realization of the Harper Hamiltonian

» Accumulated phase around a closed path

» Raman beams propagating along x and y

» Tuning the flux: alignment of the Raman beams

• Amplitude modulation

» This scheme can be understood in the frame of Floquet theory

» Raman beams create a local optical potential

Induce a time-periodic on-site modulation of the lattice depth

» Spatially dependent phases not necessary in the minimal implementation

Band engineering via amplitude modulation

 Bloch / Ketterle, Phys. Rev. Lett. 111 (2013)

𝑉𝐾(𝒓) = 𝑉𝐾
0 cos2(

𝛿𝒌 ⋅ 𝒓

2
+
𝜔𝑡

2
)

Φ𝑦 = 𝛿𝑘𝑦𝑎

Φ𝑦 = 𝑘𝐿𝑎 = 𝜋 ⇒ 𝛼 = 1/2
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• Cyclotron motion of mass currents

» Cyclotron orbit around a square plaquette

» Finite mass current ↔ finite quasi-momentum

Band engineering via amplitude modulation

 Bloch / Ketterle, Phys. Rev. Lett. 111 (2013) kx
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• Harper Hamiltonian

» Realized

» Realized with quantum gases

Fluxes fully tunable but heating as to be taken care of…

Artificial magnetic fields on lattices - Status

 Bloch / Ketterle, Phys. Rev. Lett. 111 (2013)
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Generating artificial gauge potentials on a lattice

Momentum space
Free particle

Particle on a lattice
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