**SFB 925**Light induced dynamics and control of correlated quantum systems

# Project C5

### 2018

#### Nonequilibrium quantum phase transition in a hybrid atom-optomechanical system

*N. Mann, M. Reza Bakhtiari, A. Pelster, M. Thorwart*

We consider a hybrid quantum many-body system formed by a vibrational mode of a nanomembrane, which interacts optomechanically with light in a cavity, and an ultracold atom gas in the optical lattice of the out-coupled light. The adiabatic elimination of the light field yields an effective Hamiltonian which reveals a competition between the force localizing the atoms and the membrane displacement. At a critical atom-membrane interaction, we find a nonequilibrium quantum phase transition from a localized symmetric state of the atom cloud to a shifted symmetry-broken state, the energy of the lowest collective excitation vanishes, and a strong atom-membrane entanglement arises. The effect occurs when the atoms and the membrane are nonresonantly coupled.

#### Light-induced coherence in an atom-cavity system

*C. Georges, J. G. Cosme, L. Mathey, A. Hemmerich*

We demonstrate a light-induced formation of coherence in a cold atomic gas system that utilizes the suppression of a competing density wave (DW) order. The condensed atoms are placed in an optical cavity and pumped by an external optical standing wave, which induces a long-range interaction mediated by photon scattering and a resulting DW order above a critical pump strength. We show that the light-induced temporal modulation of the pump wave can suppress this DW order and restore coherence. This establishes a foundational principle of dynamical control of competing orders analogous to a hypothesized mechanism for light-induced superconductivity in high*-T*_{c} cuprates.

### 2017

#### Bloch oscillations of a Bose-Einstein condensate in a cavity-induced optical lattice

*Ch. Georges, J. Vargas, H. Keßler, J. Klinder, A. Hemmerich*

This article complements previous work on the nondestructive observation of Bloch oscillations of a Bose-Einstein condensate in an optical lattice formed inside a high-finesse optical cavity [H. Keßler et al., New J. Phys. 18, 102001 (2016)]. We present measurements showing that the observed Bloch frequency is independent of the atom number and hence the cooperative coupling strength, the intracavity lattice depth, and the detuning between the external pump light and the effective cavity resonance. We find that in agreement with theoretical predictions, despite the atom-cavity dynamics, the value of the Bloch frequency agrees with that expected in conventional optical lattices, where it solely depends on the sizes of the force and the lattice constant. We also show that Bloch oscillations are observed in a self-organized two-dimensional lattice, which is formed if, instead of axially pumping the cavity through one of its mirrors, the Bose-Einstein condensate is irradiated by an optical standing wave oriented perpendicularly with respect to the cavity axis. For this case, however, excessive decoherence prevents a meaningful quantitative assessment.

#### Driven Bose-Hubbard Model with a Parametrically Modulated Harmonic Trap

*N. Mann, M. Reza Bakhtiari, F. Massel, A. Pelster, M. Thorwart*

We investigate a one-dimensional Bose–Hubbard model in a parametrically driven global harmonic trap. The delicate interplay of both the local interaction of the atoms in the lattice and the driving of the global trap allows us to control the dynamical stability of the trapped quantum many-body state. The impact of the atomic interaction on the dynamical stability of the driven quantum many-body state is revealed in the regime of weak interaction by analyzing a discretized Gross–Pitaevskii equation within a Gaussian variational ansatz, yielding a Mathieu equation for the condensate width. The parametric resonance condition is shown to be modified by the atom interaction strength. In particular, the effective eigenfrequency is reduced for growing interaction in the mean-field regime. For a stronger interaction, the impact of the global parametric drive is determined by the numerically exact time-evolving block decimation scheme. When the trapped bosons in the lattice are in a Mott insulating state, the absorption of energy from the driving field is suppressed due to the strongly reduced local compressibility of the quantum many-body state. In particular, we find that the width of the local Mott region shows a breathing dynamics. Finally, we observe that the global modulation also induces an effective time-independent inhomogeneous hopping strength for the atoms.

### 2016

#### Topological Varma superfluid in optical lattices

* M. Di Liberto, A. Hemmerich, and C. Morais Smith*

Topological states of matter are peculiar quantum phases showing different edge and bulk transport properties connected by the bulk-boundary correspondence. While non-interacting fermionic topological insulators are well established by now and have been classified according to a ten-fold scheme, the possible realisation of topological states for bosons has not been much explored yet. Furthermore, the role of interactions is far from being understood. Here, we show that a topological state of matter exclusively driven by interactions may occur in the p-band of a Lieb optical lattice filled with ultracold bosons. The single-particle spectrum of the system displays a remarkable parabolic band-touching point, with both bands exhibiting non-negative curvature. Although the system is neither topological at the single-particle level, nor for the interacting ground state, on-site interactions induce an anomalous Hall effect for the excitations, carrying a non-zero Chern number. Our work introduces an experimentally realistic strategy for the formation of interaction-driven topological states of bosons.

Physical Review Letters 117, 163001 (2016)

https://arxiv.org/abs/1604.06055

#### In-situ observation of optomechanical Bloch oscillations in an optical cavity

*H. Keßler, J. Klinder, B. Prasanna Venkatesh, Ch. Georges, A. Hemmerich*

It is shown experimentally that a Bose-Einstein condensate inside an optical cavity, operating in the regime of strong cooperative coupling, responds to an external force by an optomechanical Bloch oscillation, which can be directly observed in the light leaking out of the cavity. Previous theoretical work predicts that the frequency of this oscillation matches with that of conventional Bloch oscillations such that its in-situ monitoring may help to increase the data acquisition speed in precision force measurements.

New Journal of Physics 18, 102001 (2016)

https://arxiv.org/abs/1606.08386

### 2015

#### Dynamical phase transition in the open Dicke model

*J. Klinder, H. Keßler, M. Wolke, L. Mathey, A. Hemmerich*

The Dicke model with a weak dissipation channel is realized by coupling a Bose–Einstein condensate to an optical cavity with ultranarrow bandwidth. We explore the dynamical critical properties of the Hepp–Lieb–Dicke phase transition by performing quenches across the phase boundary. We observe hysteresis in the transition between a homogeneous phase and a self-organized collective phase with an enclosed loop area showing power-law scaling with respect to the quench time, which suggests an interpretation within a general framework introduced by Kibble and Zurek. The observed hysteretic dynamics is well reproduced by numerically solving the mean-field equation derived from a generalized Dicke Hamiltonian. Our work promotes the understanding of nonequilibrium physics in open many-body systems with infinite range interactions.

#### Observation of a superradiant Mott insulator in the Dicke-Hubbard model

* J. Klinder, H. Keßler, M. Reza Bakhtiari, M. Thorwart, and A. Hemmerich*

It is well known that the bosonic Hubbard model possesses a Mott insulator phase. Likewise, it is known that the Dicke model exhibits a self-organized superradiant phase. By implementing an optical lattice inside of a high finesse optical cavity both models are merged such that an extended Hubbard model with cavity-mediated infinite range interactions arises. In addition to a normal superfluid phase, two superradiant phases are found, one of them coherent and hence superfluid and one incoherent Mott insulating.

Physical Review Letters 115, 230403 (2015)

http://arxiv.org/abs/1511.00850

#### Nonequilibrium phase transition of interacting bosons in an intra-cavity optical lattice

* M. R. Bakhtiari, A. Hemmerich, H. Ritsch, M. Thorwart*

We investigate the nonlinear light-matter interaction of a Bose-Einstein condensate trapped in an external periodic potential inside an optical cavity, which is weakly coupled to the vacuum radiation modes and driven by a transverse pump field. Based on a generalized Bose-Hubbard model, which incorporates a single cavity mode, we include the collective back action of the atoms on the cavity light field and determine the nonequilibrium quantum phases within the non-perturbative bosonic dynamical mean-field theory. With the system parameters adapted to recent experiments, we find a quantum phase transition from a normal phase to a self-organized superfluid phase, which is related to the Hepp-Lieb-Dicke phase transition. For even stronger pumping, a self-organized Mott insulator phase arises.

Physical Review Letters 114, 123601 (2015)

http://arxiv.org/abs/1410.5735

### 2014

#### Steering matter wave superradiance with an ultra-narrowband optical cavity

* H. Keßler, J. Klinder, M. Wolke, A. Hemmerich*

A superfluid atomic gas is prepared inside an optical resonator with an ultra-narrow band width on the order of the single photon recoil energy. When a monochromatic off-resonant laser beam irradiates the atoms, above a critical intensity the cavity emits superradiant light pulses with a duration on the order of its photon storage time. The atoms are collectively scattered into coherent superpositions of discrete momentum states, which can be precisely controlled by adjusting the cavity resonance frequency. With appropriate pulse sequences the entire atomic sample can be collectively accelerated or decelerated by multiples of two recoil momenta. The instability boundary for the onset of matter wave superradiance is recorded and its main features are explained by a mean field model.

Physical Review Letters 113, 070404 (2014)

http://arxiv.org/abs/1407.4954

#### Optomechanical atom-cavity interaction in the sub-recoil regime

* H. Keßler, J. Klinder, M. Wolke, A. Hemmerich*

We study the optomechanical interaction of a Bose-Einstein condensate with a single longitudinal mode of an ultra-high finesse standing wave optical resonator. As a unique feature the resonator combines three extreme regimes, previously not realized together, i.e., strong cooperative coupling, cavity dominated scattering with a Purcell factor far above unity, and sub-recoil resolution provided by a cavity damping rate smaller than four times the single photon recoil frequency. We present experimental observations in good agreement with a two-mode model predicting highly non-linear dynamics with signatures as bistability, hysteresis, persistent oscillations, and superradiant back-scattering instabilities.

New Journal of Physics 16, 053008 (2014)

http://arxiv.org/abs/1403.3545

### 2012

#### Cavity cooling below the recoil limit

* M. Wolke, J. Klinner, H. Keßler, A. Hemmerich*

Conventional laser cooling relies on repeated electronic excitations by near-resonant light, which constrains its area of application to a selected number of atomic species prepared at moderate particle densities. Optical cavities with sufficiently large Purcell factors allow for laser cooling schemes avoiding these limitations. Here, we report on an atom-cavity system, combining a Purcell factor above 40 with a cavity bandwidth below the recoil frequency associated with the kinetic energy transfer in a single photon scattering event. This lets us access a yet unexplored regime of atom-cavity interactions, in which the atomic motion can be manipulated by targeted dissipation with sub-recoil resolution. We demonstrate cavity-induced heating of a Bose-Einstein condensate and subsequent cooling at particle densities and temperatures incompatible with conventional laser cooling.