

Status des COBRA-Experiments

Björn Wonsak für die COBRA-Kollaboration

Status des COBRA-Experiments

28.03.11 1

- Testaufbau am LNGS
- Pixel-Detektoren
- Perspektiven

$0\nu\beta\beta$ -Zerfall

- (A,Z) \rightarrow (A,Z+2) +2 e⁻ + 2 ν_{e} 2 $\nu\beta\beta$
- $(A,Z) \rightarrow (A,Z+2) + 2 e^{-1}$

0νββ

Z+1 Z+2

z

 $0\nu\beta\beta$ ist nur möglich, wenn:

- Neutrinos Majorana-Teilchen sind!
- Sie Ihre Helizität wechseln können.

UH

iii

$0\nu\beta\beta$ -Zerfall

- (A,Z) \rightarrow (A,Z+2) +2 e⁻ + 2 ν_{e} 2 $\nu\beta\beta$
- $(A,Z) \rightarrow (A,Z+2) + 2 e^{-1}$

0νββ

 $0\nu\beta\beta$ ist nur möglich, wenn:

- Neutrinos Majorana-Teilchen sind!
- Sie Ihre Helizität wechseln können.

→ Masse!

Z+1 Z+2

z

Universität Hamburg

Benutze grosse Mengen von CdZnTe-Halbleiterdetektoren

Detektoren mit coplanarem Gitter (CPG)

Pixellierte Systeme

UH

Vorteile von CdZnTe

- Quelle = Detektor \rightarrow große Masse
- Halbleiter → reines Material, gute Energieauflösung
- Betrieb bei Raumtemperatur \rightarrow keine Kühlung
- Modulares Design \rightarrow Koinzidenz Analyse
- Tracking: 'Solid state TPC'
- Kommerziell erhältlich → schnelle Verfügbarkeit

In CdZnTe unterliegen 9 Isotope dem $\beta\beta$ -Zerfall:

¹³⁰Te: hohe natürliche Isotopenhäufigkeit (33,8%) ¹¹⁶Cd: hoher Q-Wert (2809 keV), hohe Anreicherung möglich ¹⁰⁶Cd: β + β +-Emitter, hoher Q-Wert (2771 keV)

UH

R&D-Aufbau im Gran Sasso Labor

Daten von 16 roten CPGs: Untergrund durch Farbe und Radon \rightarrow jetzt farblose CPGs (4+4) und Stickstoffspülung

Untergrund bei 2.8 MeV: ca. 5 Ereignisse/keV/kg/a !

Universität Hamburg

UH

6 Limits auf Halbwertszeiten über 10²⁰ Jahren, 6 Limits nur Faktor 3 entfernt von Weltbesten

Isotope and Decay	Fit Range	$T_{1/2}$ limit (years)	
	(MeV)	This work	Previous [14]
¹¹⁶ Cd to gs	2.2 - 3.2	9.4×10^{19}	3.14×10^{19}
130 Te to gs	2.2 - 3.2	5.0×10^{20}	9.92×10^{19}
$^{130}\mathrm{Te}$ to 536 keV	1.7 - 2.3	3.5×10^{20}	3.73×10^{19}
^{116}Cd to $1294\mathrm{keV}$	1.2 - 1.8	$5.0 imes 10^{19}$	4.92×10^{18}
^{116}Cd to 1757 keV	0.9 - 1.3	4.2×10^{19}	$9.13 imes 10^{18}$
128 Te to gs	0.6 - 1.3	1.7×10^{20}	$5.38 imes 10^{19}$
$^{116}\mathrm{Cd}$ to $2027\mathrm{keV}$	0.5 - 1.2	2.8×10^{19}	$1.37 imes 10^{19}$
^{116}Cd to $2112{\rm keV}$	0.5 - 1.0	4.7×10^{19}	$1.08 imes 10^{19}$
$^{116}\mathrm{Cd}$ to $2225\mathrm{keV}$	0.5 - 1.0	2.1×10^{19}	9.46×10^{18}
$^{130}\mathrm{Te}$ to $1794\mathrm{keV}$	0.5 - 1.2	1.9×10^{20}	3.1×10^{18} [15]
$^{130}\mathrm{Te}$ to $1122\mathrm{keV}$	1.1 - 1.7	1.2×10^{20}	1.4×10^{19} [15]
¹¹⁴ Cd to gs	0.4 - 1.0	2.0×10^{20}	6.4×10^{18} [15]

Isotope and Decay	Fit Range	$T_{1/2}$ limit (years)	
	(MeV)	This work	Previous [14]
64 Zn β^+ EC to gs	0.5 - 1.3	1.1×10^{18}	2.78×10^{17}
¹²⁰ Te β^+ EC to gs	1.0 - 2.0	4.1×10^{17}	1.21×10^{17}
120 Te 2EC	0.8 - 2.0	2.4×10^{16}	2.68×10^{15}
120 Te 2EC to 1171 keV	0.6 - 2.0	1.8×10^{16}	$9.72 imes 10^{15}$
106 Cd $\beta^+\beta^+$ to gs.	0.5 - 2.0	2.7×10^{18}	4.50×10^{17}
106 Cd β^+ EC to gs	1.5 - 3.0	4.7×10^{18}	7.31×10^{18}
$^{106}Cd \ 2 \ EC$ to gs	2.0 - 3.0	1.6×10^{17}	$5.7 imes 10^{16}$
$^{106}\mathrm{Cd}\;\beta^+\beta^+$ to $512\mathrm{keV}$	0.6 - 1.5	9.4×10^{17}	1.81×10^{17}
$^{106}\mathrm{Cd}\;\beta^+\mathrm{EC}$ to $512\mathrm{keV}$	0.8 - 2.0	4.6×10^{18}	9.86×10^{17}

Basierend auf 18 kg d Daten: J.V. Dawson et al., Phys. Rev. C 80, 025502 (2009)

LNGS-Aktivitäten

22335

- Neue Ausleseelektronik
- FADC → Pulseform-Analysen möglich
- Umzug in die Heidelberg-Moskau-Hütte (im April)
 - \rightarrow verbesserte Abschirmung
- 64 CPGs bis Ende des Jahres
- Aktives CsI-Veto geplant

LNGS-Aktivitäten

- Neue Ausleseelektronik
- FADC → Pulseform-Analysen möglich
- Umzug in die Heidelberg-Moskau-Hütte (im April)
 - \rightarrow verbesserte Abschirmung
- 64 CPGs bis Ende des Jahres
- Aktives CsI-Veto geplant

Vortrag von Oliver Schulz!

Pixel-Detektoren

3 verschiedene Detektortypen im Test am LNGS

WUSTL 20x20x5 mm³ Systeme: 8x8 Pixel 32x32 Pixel 100x100 Pixel

Entwickelt an der Washington University in Saint Louis (WUSTL) unter Henric Krawczynski. Weltgrößter CZT Detektor = 36 g in Zusammenarbeit mit Zhong He (Univ. of Michigan)

Timepix Systeme:

14x14x0.3 mm³ Si (2 Systeme) 14x14x1 mm³ CdTe (2 Systeme) 256x256 systems 128x128 systems

> System mit 2mm³ Dicke in Vorbereitung

Polaris System:

20x20x15 mm³ 11x11 Pixel Bis zu 40 Schichten in z durch Pulsinformationen

and the second second

8x8 Pixel

UH

Polaris System

Polaris System

Energieauflösung: 5.16 keV FWHM at 662 keV (0.78%)

Universität Hamburg

Obwohl der Detektor nicht auf radioaktive Reinheit optimiert wurde.

Timepix

256x256 Pixel, 55µm

Teilchenidentifikation zur Reduktion des Untergrunds funktioniert!

Timepix am LNGS

Cut auf die Linearität von Pixelclustern und Clustergröße. → Alphas, Gammas and Muonen sollen verschwinden! Aber: Alphas zu identifizieren ist einfach, Elektronen nicht. → Wird weiter studiert!

→ WIRD W WIRD W Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

Timepix Simulation

- Sehr detaillierte Simulation vorhanden
- Wird genutzt zur:

Sensitivitätsabschätzung

Analysen zur Identifikation von $0\nu\beta\beta$ -Zerfall

220

210

200

190

190

170

160

Timepix Simulation

- Sehr detaillierte Simulation vorhanden
- Wird genutzt zur:

Sensitivitätsabschätzung

Analysen zur Identifikation von $0\nu\beta\beta$ -Zerfall

UH # \rightarrow Vortrag von Thomas Gleixner

210

200

190

180

170

168

- Betrieb in Flüssigszintillator
- Kristallzucht
- Materialuntersuchungen auf radioaktive Reinheit
- Anreicherung mit ¹¹⁶Cd
- Charakterisierung von Detektor/Kristallen

ALL NES

- Betrieb in Flüssigszintillator
- Kristallzucht
- Materialuntersuchungen auf radioaktive Reinheit
- Anreicherung mit ¹¹⁶Cd
- Charakterisierung von Detektor/Kristallen

→ Vorträge von: Arnd Sörensen Mykhaylo Filipenko

64000 Detektoren mit 1cm³ Volumen

Um sensitive auf Halbwertszeiten von 10²⁶ Jahre zu sein, benötigt es 420kg CnZnTe, angereichert mit ¹¹⁶Cd.

Abschirmung und andere Möglichkeiten den Untergrund zu reduzieren (+Pixel) müssen einen Untergrund von weniger als 10⁻³ Ereignisse/kg/keV/a erreichen!

Technischer Designreport geplant für Ende 2012!

Zusammenfassung

- COBRA: Experiment zum $0\nu\beta\beta$ -Zerfall von ¹¹⁶Cd
- Erste Ergebnisse vielversprechend
- Große Fortschritte erreicht bzw. erwartet f
 ür 2010/11
- Pixel-Detektoren erlauben Teilchenidentifikation \rightarrow massive Untergrundreduktion möglich

Zusammenfassung

- COBRA: Experiment zum $0\nu\beta\beta$ -Zerfall von ¹¹⁶Cd
- Erste Ergebnisse vielversprechend
- Große Fortschritte erreicht bzw. erwartet f
 ür 2010/11
- Pixel-Detektoren erlauben Teilchenidentifikation
 → massive Untergrundreduktion möglich

Einzigartig in diesem Feld der Physik!

- ALL BIS
- COBRA: Experiment zum $0\nu\beta\beta$ -Zerfall von ¹¹⁶Cd
- Erste Ergebnisse vielversprechend
- Große Fortschritte erreicht bzw. erwartet f
 ür 2010/11
- Pixel-Detektoren erlauben Teilchenidentifikation
 → massive Untergrundreduktion möglich

Einzigartig in diesem Feld der Physik!

Technischer Designreport geplant für Ende 2012!

Kollaboration

Technical University Dresden Technical University Dortmund Material Research Centre Freiburg University of Erlangen-Nürnberg University of Hamburg

University of Jyvaskyla

University of Bratislava

Laboratori Nazionali del Gran Sasso

University of La Plata

Czech Technical University Prague

Washington University at St. Louis

JINR Dubna

- Arnd Sörensen: Korrektur des Ladungsverlustes durch ortsaufgelöste Bestimmung der Detektor-Effizienz an COBRA-CZT-CPG Detektoren, T 61.9 Mo 18:45 30.21: 001
- Thomas Gleixner: Identifikation von Doppel-Beta Ereignissen mit pixelierten CdTe Halbleiter Detektoren für COBRA, 17:20 hier!
- Oliver Schulz: Pulsform-Analyse von CdZnTe CPG Detektoren am COBRA-Experiment, 17:35 hier!
- Mykhaylo Filipenko: Charakterisierung von Timepix-Halbleiterdetektoren mit CdTe als Sensormaterial, T 108.5 Fr 15:05 30.95: 121
- Jan Horst Karl Timm: γ-Spektroskopie im HERA-Tunnel, T 108.6 Fr 15:20 30.95: 121

Sicherheits Folien:

Status des COBRA-Experiments

28.03.11 30

$$T^{0\nu}_{1/2} \propto \alpha \cdot \epsilon \cdot \sqrt{\frac{M \cdot t}{\Delta E \cdot B}}$$

