The Bonn Electron Stretcher Accelerator

Project D2 / 2014

Beam and spin dynamics in a fast ramping stretcher ring

Wolfgang Hillert

Physics Institute of Bonn University

- (1. The Challenge of High Intensities) \rightarrow last meeting...
- 2. The Hunt for Highest Polarization
- (3. The Mystery of Resonance Extraction) \rightarrow next meeting...

The Hunt for Highest Polarization

Photoproduction Experiments:

- GeV photon beams with precisely known photon energies (tagging!)
- Linear or circular polarization of photon beam

Underlying basic generation principle: Compton scattering!

Compton scattering of polarized y's

Beam energy: 3.2 GeV

Required Photon Flux

Compton Backscattering:

Beam energy:E = 3.2 GeVBeam current:I = 100 mAIncoming photon: $\lambda = 15 \text{ nm} (80 \text{ eV})$

Required Photon Flux

Compton Backscattering:

Coherent Bremsstrahlung:

Beam energy: E = 3.2 GeVBeam current: I = 1 nAMomentum transfer to crystal radiator!

Polarization determined by orientation of the crystal!

Coherent Bremsstrahlung

Beam energy: 3.2 GeV

New RF System

General Set-Up

Our Approach:

Home-made solution with RF components from DESY: < 0.1M€ !!!

G

Circularly Polarized Photons

Longitudinal:

Generation of Polarized Electrons

Functional Principle: semiconductor circularly polarized photocathode based on GaAs laser light Pierce & Meier, 1976 accelerating voltage

Photoelectron emission from GaAs polarization transfer from laser photons to emitted electrons

Generation of Polarized Electrons

Operation, heat cleaning and activation in extreme UHV Lifetime 1000 h ↔ P (H₂O, CO₂) < 10⁻¹³ mbar

Source of Polariz

 $P < 10^{-11} \text{ mbar}$

lectrons

Specific features:

- inverted HV geometry
- adjustable perveance
- full load lock system
- H-cleaning

Operating parameters:

-	-	
beam ener	gy:	48 keV
beam curre	ent:	200 mA
repetition	rate:	50 Hz
polarizatio	n:	>80%
quantum li	ife-time:	>1000 h
photocatho	ode: GaA	s/GaAsP

Spins in Magnetic Fields

Depolarizing Resonances

Acc. of Polarized Electrons

Integer Resonances: $\gamma a = n$

- precise CO correction ($z_{\rm rms} < 80 \mu m$)
- harmonic correction:

-0.1

-0.15

-0.05

0

0.05

0.1

0.15

Intr. Resonances: $\gamma a = nP \pm Q_z$

- small vertical beam size
- tune jumping with pulsed quads

Harmcor (sine) of $\gamma a = 3$

Harmonic Correction

(simple approach)

Spin-Orbit Response Technique

$$\mathbf{HCM}_{i,k} = \boldsymbol{\delta}_{i,k}^{\mathbf{VC}} + \sum_{m=1}^{32} \boldsymbol{\delta}_{m,k}^{\mathbf{Q}} \cdot \boldsymbol{l}_m \cdot \boldsymbol{k}_m \cdot \mathbf{ORM}_{m,i}$$

Simulation of Field Compensation

Variation of sine and cosine amplitudes for γ**a** = **6**

Simulation of Spin Dynamics

Resonance crossing:

POLE-Simulation of Harmcor

$$\alpha_{corr} = \mathbf{A} \cdot \cos(2\pi n/24) + \mathbf{B} \cdot \sin(2\pi n/24)$$

(a) Polarisations optimierung bei $a\gamma = 3$ (b) Polarisations optimierung bei $a\gamma = 6$

POLE-Simulation of $\gamma a = 6$

Old method (harmonic corrector fields only):

New method (orbit response technique):

Fast Correction System

Programmable 4-Quadrant PS: + 200 V $I_{ m measured}$ ► 20 kHz pulsed H-bridge *I*_{desired} ▶ Pl-controller 1 \blacktriangleright current precision $\approx 1 \%$ ► CAN-Bus module $\stackrel{{\rm e}}{\frown} 0.5$ ► stored current ramps shunt magnet coil ► external trigger 0 ▶ in total 54 power supplies 2 distributed in 14 cabinets 20 -100 10 30 40 $t \ / \mathrm{ms}$ along the ELSA tunnel

Correction Coils:

	new
voltage	200 V
max. current	8.0 A
inductance	260 mH
max. field	40 mT
weight	30 kg
field integral	9.8 mT m

$\mathbf{I} = 400 \text{ A/sec} \leftrightarrow \mathbf{B} = 2 \text{ Tesla/sec}$

Highlights:

ELSA is hunting for highest polarization!

Highlights:

ELSA is hunting for highest polarization!

Linearly polarized photons:

Radiated by unpolarized electrons via coherent bremsstrahlung

- \rightarrow highest possible energy (recoil!!!) and intensity (photon beam collimation!!!)
- 3D bunch by bunch feedback, HOM suppression, tapered chambers, new LLRF, ...

 2^{nd} RF station serving to additional 7-cell resonators \rightarrow operation @ 3.5GeV

Highlights:

ELSA is hunting for highest polarization!

Linearly polarized photons:

Radiated by unpolarized electrons via coherent bremsstrahlung

- \rightarrow highest possible energy (recoil!!!) and intensity (photon beam collimation!!!)
- 3D bunch by bunch feedback, HOM suppression, tapered chambers, new LLRF, ...

2nd RF station serving to additional 7-cell resonators → operation @ 3.5GeV

Circularly polarized photons:

Radiated by longitudinally polarized electrons, full polarization transfer at max. energy

- \rightarrow highest possible electron polarization at desired (max?!) energy
- polarized source, spin manipulation, num. simulation, resonance compensation

new corrector system \rightarrow appl. spin response harmonic correction technique

Achieved Polarization: $P = 74 \pm 2\%$ @2.35 GeV, $P = 65 \pm 2\%$ @2.92 GeV

Milestones D.2

1. Minimization of beam depolarization on the fast energy ramp up to maximum beam energy

- Spin-orbit response technique for harmcor of depolarizing resonancesSimulation of spin dynamics with POLE
- Horizontal polarization when operating on an integer resonance
- 2. Reduction of beam halo and emittance of the extracted electron beam by improving the slow beam extraction
 - Experimental and theoretical studies of the slow beam extraction
- **3.** Optimization of the high current operation with circulating beam currents up to 200mA in the stretcher ring

- Damping of higher order modes (HOM) in accelerating cavities
- ✓ Tapering of vacuum chambers to reduce the total coupling impedance of the ring.
- Systematic investigations of ion induced beam instabilities
- (Construction and commissioning of a second RF system)

Installation and commissioning of a streak camera system!

in full

ongoing

coming soon

ongoing