R&D at the **Electron-Stretcher Accelerator**

"Clients":

Status, Goals, Projects

Wolfgang Hillert

Funding:

• CB:	Apr: 15h	
Σ=2152	Jul: 285h	
	Aug: 375h	
	Sep: 211h	700
	Oct: 436h	650 - Deal
	Nov: 519h	600 — oper
	Dec: 313h	550
• BGO:	Feb: 107h	450 Althoff-
Σ=766	Mar: 7h	400
	May: 46h	300
	Jul: 106h	250
	Sep: 165h	200
	Nov 146h	150
	Dec: 190h	50
• PANDA	Σ=69	0 1 2
• ELSA:	Σ=317	

Operating Hours 2013

R&D @ ELSA: Goals

• Polarized Electrons @ 3.2GeV:

- reliable operation (source, ELSA)
- suppression of beam depolarization utilizing novel correction schemes
- efficient polarimetry (Møller, Compton)

• High-Intensity Operation of ELA:

- 3D bunch by bunch feed-back systems
- powerful LLRF for amplitude- and phase stabilization
- sufficient RF power (new RF system)
- low impedance chambers, HOM suppression, vacuum upgrade
- high current (single bunch) injector

Low-Intensity Beams for Detector Testing:

- reliable low-intensity operation of ELSA
- new dedicated experimental area with flexible magnet optics

• High-Performance Non-Invasive Beam Diagnosis:

- Cavity-based low-intensity and position monitoring
- 3D ps-Diagnosis with Streak Camera
- Low-intensity monitoring using synchrotron radiation

Highest possible polarization @ 3.2 GeV

Source of Rolanized Blectrons

ASE

Specific features:

- inverted HV geometry
- adjustable perveance
- full load lock system
- H-cleaning

Operating parameters:

48 keV
200 mA
50 Hz
>80%
: >1000 h
aAs/GaAsP

Source of Polarized Electrons

Specific features:

- inverted HV geometry
- adjustable perveance
- full load lock system
- H-cleaning

Operating parameters:

beam energy	: 48	8 keV
beam current	: 20	00 mA
repetition ra	te: 50) Hz
polarization:	>	80%
quantum life	-time: >	1000 h
photocathode	e: GaAs/	GaAsP

 $P < 10^{-11} \text{ mbar}$

and is directed to the photocathode.

Acc. of Polarized Electrons

Integer Resonances: $\gamma a = n$

- precise CO correction ($z_{\rm rms} < 80 \mu m$)
- harmonic correction:

 \rightarrow scan of sin amplitude:

Intr. Resonances: $\gamma a = nP \pm Q_z$

- small vertical beam size
- tune jumping with pulsed quads

Programmable 4-Ouadrant PS:

Correction Coils:

voltage

max. current

inductance

max. field

weight

field integral 9.8

		$I = 400 \text{ A/sec} \leftrightarrow B = 2 \text{ Tesla/sec}$											
		0.6	I	njection:	$1.2\mathrm{GeV}$		Rar	nping: 60	${ m GeVs^{-1}}$	E	Extraction	: 3.2 GeV	
new 200 V	шш	0.2	MARKA.	the of And	Alana	ALA Anna		$rms \approx 64$	μm	11 10	ALA A	M-1 - M	
8.0 A 260 mH	/z	0 -0.2											
40 m l 30 kg		-0.6	100	200		1	1	1			-	1 000	
2.0 111 111			100	200	300	400	$\frac{500}{t}$	600 / ms	700	800	900	1,000	1,100

Harmonic Correction

(simple approach)

Harmcorr Optimization

 $\alpha_{corr} = \mathbf{A} \cdot \cos(2\pi n / 24) + \mathbf{B} \cdot \sin(2\pi n / 24)$

(a) Polarisations optimierung bei $a\gamma = 3$ (b) Polarisations optimierung bei $a\gamma = 6$

Spin-Orbit Response Technique

Spectral Distribution: $\varepsilon_{\alpha}/ \operatorname{mrad}$ wanted resonance strength contribution 0.10achieved resonance strength of correctors 0,050,00 $\mathbf{2}$ 3 6 8 9 $\frac{a\gamma\omega_{\mathrm{u}}}{\mathrm{MHz}}$ 0 1 4 57 1011

Compton Polarimeter

Coming 2014

Si microstrip detector 768 channels, 50 µm pitch

M24

10 nA external \leftrightarrow 200 mA stored current

Thermionic Gun:

- U = 90 kV
- $I = 800 \text{ mA} (1-2\mu s) / 2 \text{ A} (1 \text{ ns})$

Bunching:

- 500 MHz prebuncher
- 3 GHz TW buncher (4 cells)

LINAC:

- 20 MV 3GHz TW structure (constant gradient)
- ongoing overhaul of modulator and waveguides

Energy Compression System:

- 3-bend magnetic chicane
- 3GHz TW structure

Coming 2014

3D Bunch by Bunch Feed-Back in a fast ramping machine

Feedback of System Layout: revolution clock RF 499.67 MHz -8236 MHz kicker cavity *E* = 1.2 GeV RF clock horiz iGp12 longitudinal ADC DAC 0.8 $\Omega_{\rm s}$ on fast ramp 0.85s 0.9s 0.95s 1.05s RF clock fid. clock iGp12 horizontal DAC ADC Frontend 6 longitudinal & transverse 50 Ω RF clock fid. clock iGp12 vertical 50Ω ADC DAC **©DIMTEL, Inc.** 90 100 110 120 ideales Feld 4400 Frequenz / kHz CST-Simulation Simulation with CST Microwave 4200 4000 3800 **Studio & In-house fabrication** f = 0 - 250 MHz3600 measurement 3400 ส่งการโลยโลย 0.9 3200 3000 0.82800 S 0.7302 MHz 2600 2400 0.6 2200 0.52000 1800 0.41600 1400 0.2 1200 1000 $\mathbf{n} \mathbf{2}$ 800 0.1 600 1.100 GHz 125 GHz 400 0 0.8 0.91.0 1.1 1.21.3 1.4 200 $f = 1125 \pm 150 \text{ MHz}$ f / GHz

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 Frequenz / MHz

130

RF Control & Stabilization

Accelerating Voltage

Vacuum and Impedances

Test-beam with intensities down to < 1 fA

New Area for Detector Testing

External Electron Beam:

- Beam Energy: **1.0 GeV <** *E* **< 3.5 GeV**
- Beam Current: 1 **fA** < *I* < 100 **pA**
- Beam Radius: $0.5 \text{ mm} < \sigma < 7 \text{ mm}$

Low-Intensity Operation: extraction of a single electron every 1000 revolutions! Successfully offered to COMPASS and SiLab

SYL

Conclusions

Status:

• reliable operation, fulfils all actual requirements

Ongoing work:

- preparing for pol e⁻ @ 3.2 GeV
- upgrade to high intensities (energies?)
- setting up a variable low-intensity test-beam and area

