

The Bonn Electron-Stretcher Accelerator

Wolfgang Hillert

Physics Institute of Bonn University

November Workshop IAP / Uni Frankfurt Nov. 13th – 14th, 2008

Set up: 1953 – 1958 Operation until 1984

First strong focusing synchrotron being operational in Europe!

eters

3 MeV Electrons from van de Graaff Accelerator

500 MeV Synchrotron

Elektronen-Stretcher-Anlage (ELSA)

Booster Synchrotron

50 Hz Operation, max. Energy 2.3 GeV (1.6 GeV)

12 Combined function Magnets of type F/2 – D/2

in operation since 1967

Bending Radius: $\rho = 7.65 \text{ m}$ max. Dipole Strength: $B_{\text{max}} = 1 \text{ Tesla}$ Field Indexes: $n_{\text{f}} = -22.26 \rightarrow g_{\text{f}} = 29.2 \text{ T/m}$ $n_{\text{d}} = 23.26 \rightarrow g_{\text{d}} = 30.5 \text{ T/m}$ Total Weight: m = 18.5 t (incl. girder)

Number of Windings = 36, Maximum Current = 1380 A

ELSA: FODO-Lattice

Slow Extraction

Extraction Quadrupole-Magnets:

tune-shift close to a 3rd integer resonance, feedback (TAG-OR) stabilizes the external current

Facility Parameters

External beams of Electrons:

- > Two (three as of 2009?!) experimental areas
- \blacktriangleright Energy range: 1.0 GeV < E < 3.5 GeV
- > Current range: 10 pA < I < 1 nA
- > **Polarized electrons** available routinely
- Tagged photon operation with linearly and circularly polarized photons

Electron Stretcher Accelerator ELSA

Director: F. Klein

Physikalisches Institut

Head of the Acc. Department: W. Hillert

Research <i>.</i> F. Frommberger			Associates: C. N	lietzel	
Operating Engineer: FG. Engelmann					
Radio Frequency	Electro- Installations	Electronics	Mechanics	Vakuum	Technical Infrastructure
M. Thelen	KP. Faßbender M. Holzhäuser P. Mahlberg H. Schug	H. Bücking A. Dieckmann M. Humpert R. Müller	M. Brock B. Neff J. Schelske	H. Blank J. Karthaus N. Rick	T. Becker W. Merfert R. Schulz Aytekin Yildiz

PhD Stud.: A. Balling, M. Eberhardt, F. Klarner, O. Preisner, T. Pusch, A. Roth, J. Wittschen, S. Zander **Diploma Stud.:** B. Aurand, O. Boldt, D. Heiliger, D. Krönung, S. Patzelt

Radiation Protection:S. Goertz (conductor), H. Blank, H. Dutz, F.-G. Engelmann,
F. Frommberger, W. Hillert, N. Joepen, D. Walther, M. Lang

universitätbonn

Research & Development at

- Accelerator control:
- Stretcher operation:
- Polarized beams:
- > Beam diagnostics:
- > High current operation: single and multi bunch instabilities, feed-back

control system developed in housefast ramping and beam extractiongeneration (source) and post-accelerationposition and intensity monitors, polarimetry

ELSA / Bonn is participating in the Helmholtz Alliance @ DESY: *Physics at the Terascale*: R&D in beam diagnostics and dynamics, electron sources

"Fast" ramping Stretcher Ring

"Fast" Ramping Operation: > $\dot{E} \le 7.5$ GeV/s > $\dot{B} \le 2.1$ Tesla/s → reduction of eddy currents

Closed Orbit

Orbit Correction on the Ramp

vertical beam position / mm in stretcher during ramp E(inj) = 1.200 GeV, E(extr) = 2.350 GeV 2 ramp start ramp stop Imp.-Res. 3 Imp.-Res. 4 ТĴ Imp Res. 5 1.5 bump statump stop bump start bump stopump start bump stop 1 **Implemented since Oct. 2008** vertical beam position / mm 0.5 0 -0.5 **1.2 GeV** 2.35 GeV -1 $\Delta z_{\rm rms} \leq 0.15 \ {\rm mm}$ -1.5 -2 450 500 600 700 550 650 750 800 850 time / ms

Source of polarised electrons @ ELSA

Main features:

- inverted structure
- adjustable perveance
- load-lock-system
- pulsed 200 mJ Ti:Sa laser

Load-Lock upgrade:

- short loading time
- storage of ≤ 5 crystals
- hydrogen cleaning

Main parameters:

Beam energy:48 keVPulse current:100 mARepetition rate:50 HzPolarisation:≈80%Quantum-lifetime:>3000 hCathode:Be-InGaAs/AlGaAs

Low Energy Transfer Line

Harmonic Correction

(Imperfection Resonances)

Orbit Correction System

New corrector magnet & fast switching power supply

Beam pipe optimized for eddy current suppression

Programmable 4-quadrant power supply with microcontroller

Orbit Correction System

Tune Jumping

(Intrinsic Resonances)

Panofsky-type quadrupole with ferrite yoke

Vacuum chamber:	Al_2O_3 ceramics with 10 µm titanium coating		
Resistivity:	$(4.298 \pm 0.001) \text{ m}\Omega \text{ (DC)}$		
Inductivity:	$(9.0 \pm 0.1) \mu \text{H} (\text{DC})$		
Max. pulse current:	500 A		
Max. field gradient:	(1.1241 ± 0.005) T/m		
Rising edge:	$4-15 \ \mu s$		
Falling edge:	$4-20 \ \mu s$		

Achieved Polarization

Counting Microstrip Detector

Detector: (BABAR 1)

- 768 strips
- 50 µm pitch

➤ resolution 14 µm

6 front-end chips: amplifier, shaper, discriminator, counter

- high rate acceptance (10 150 MHz, single channel!)
- digital part built in LVDS technology
- FPGA controlled

Developed in close collaboration with ATLAS pixel-detector group of Prof. N. Wermes, PI Bonn

Beam Profile

Tune Measurements and Stabilization on the Ramp

time / ms

High Current Operation

Impedances of undamped monopol HOMs of Petra cavity at ELSA and typical thresholds for beam instabilities at 30 mA and 2.4 GeV

Single and multi bunch operation:

- investigation of instabilities
- ➤ influence of cavity HOM's
- methods of HOM damping
- multi bunch feed-back system
- \succ ion clearing

Elektronen-Stretcher-Anlage (ELSA)

Design Study Energy Upgrade (Acceleration of I = 50 mA up to E = 5 GeV)

Superconducting RF Cavities in a fast ramping strecher:

✓ two 5-cell resonators 500MHz JAERI-type: U_{Cav} ≤ 4.5 MV/m
✓ standard parameters: Q₀ = 2·10⁹, R_s = 10¹¹Ω, Q_{ext} = 4·10⁶, β = 540
✓ generator power: P_g ≤ 260 kW, power input coupler: P_{cp} ≤ 130 kW
✓ maximum detuning: Δf ≤ 3.5 kHz, overvoltage factor: q ≤ 50
✓ large number of HOM's need to be damped, HOM-coupler design!

Magnet Optics and Dynamic Aperture:

- ✓ geometric aperture sufficient for 5 GeV
- ✓ dynamic aperture ok, 4 additional sextupoles may be required
- dipole magnets have to be replaced by stronger ones (1.5 T)

Conclusions

Operation of ELSA for hadron physics experiments:

- > serves two experimental areas with large acceptance detectors
- > well suited energy range 1.0 3.5 GeV
- > polarized beams, high beam pointing stability

Accelerator Physics R&D at ELSA:

- generation and acceleration of polarized electrons
- ➤ beam dynamics in a fast ramping stretcher ring
- > advanced beam diagnostics and polarimetry
- operation with high currents: ion clearing, HOM's suppression, multi bunch feed-back system