Die Präparation eines polarisierten Elektronenstrahls an ELSA

Wolfgang Hillert

Physikalisches Institut, Universität Bonn

ELEKTRON-STRETCHER-ANLAGE

Inhalt:

- Strahlerzeugung
- Depolarisierende Resonanzen
- Quelle polarisierter Elektronen
- Korrektur der Resonanzen
- Polarimetrie
- Ergebnisse

Notwendige Maßnahmen

Strahlerzeugung:

- Neubau einer **Quelle** polarisierter Elektronen
- Aufbau einer Vakuumschleuse
- Neubau einer Strahlführung zum LINAC II
- Optimierung des LINAC II mit pol. Elektronen

Imperfektionsresonanzen:

- Neue Ausleseelektronik der Lagemonitore
- Dynamische Korrektur der Gleichgewichtsbahn
- Korrektur der Resonanz treibenden Harmonische

Intrinsische Resonanzen:

• Aufbau zweier Sprungquadrupol-Systeme

Polarimetrie:

• Inbetriebnahme und Optimierung des Compton-Polarimeters

Laser-Systeme

Gemessene Ladungssättigung:

"Freilaufender" Ti:Sa-Laser, Pulsform:

Raumladungsbegrenzung

Einstellbare Perveanz:

Pulsform in Raumladungsbegrenzung:

Resonanzstärken

Korrigierte Gleichgewichtsbahn und Reduzierung der Emittanzkopplung:

Intrinsische Resonanzen

Korrektur der intrinsischen Resonanzen:

"Arbeitspunktspringen"

Energiekalibration

1.2 Simulation Messung 1 ŦŦ Ξ ŧ Ŧ 0.8 Ŧ 0.6 $P_{\rm f}/\,P_{\rm i}$ 0.4 ł 0.2 0 Ŧ -0.2 -0.4 L 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 Energie / MeV

Kreuzung der Resonanz γa=4:

Statische Korrektur:

Monitorsystem

HF-Teil der Monitorelektronik:

Relative Messgenauigkeit: $\Delta x/x \approx \mu m$

Kalibrationsprinzip:

Bestimmung des BPM-Nullpunktes:

Langzeitstabilität

Polarisation des externen Strahls @ 2,4 GeV:

Polarisation des externen Strahls @ 2,92 GeV:

Compton-Polarimeter

Aktive Stabilisierung des Laserstrahls

Si-Streifendetektor mit 384 ausgelesenen Kanälen

Polarisationstransport

Messergebnisse

Intensitätsprofile Compton gestreuter Photonen:

Selbstpolarisation in ELSA:

Harmonischen-Korrektur

Schleppfehler-Korrektur der Korrektoren:

Zusammenfassung

Quelle polarisierter Elektronen:

- Pulsstrom 100 mA, raumladungsbegrenzt
- Polarisation P = (80 +/- 5) %
- Standzeit ≥ 3000 Stunden, hohe Verfügbarkeit

Polarisationserhaltende Beschleunigung:

- Dynamische Korrektur der Gleichgewichtsbahn
- Imperf. Resonanzen: Harmonischen Korrektur
- Intrins. Resonanzen: Arbeitspunktspringen

Externer Elektronenstrahl:

- Strahlstrom bis zu 3 nA im Dauerbetrieb
- Stabilisierung der Tagging-Rate
- Polarisation P > 50 % für Energien E > 1,5 GeV
- Energiekalibration: $\Delta E \leq 1 \text{ MeV}$

Compon-Polarimeter:

- Erste Messung der Selbstpolarisation in ELSA
- Demnächst verbesserte Untergrundbedingungen

Spin-Arbeitspunkt: $Q_{Sp} = \gamma \cdot a$

Spinpräzession unter Einfluss von Störfeldern:

Klassifikation der Resonanzen:

- Imperfektionsresonanzen: $Q_{Sp} = \gamma a = n$
- Intrinsische Resonanzen: $Q_{Sp} = n \cdot P \pm Q_z$

Photoeffekt am GaAs

Superlattice-Kristalle

T. Nakanishi et al., Polarized Gas Targets and Polarized Beams, 1998

Ladungssättigung

Hohe Dotierung (> 10^{19} cm⁻³) \leftrightarrow Verminderung der Polarisation?

PES Bonn: höchster Emissionsstrom / Kathodenfläche weltweit ! Keine Verschiebung des Laserflecks auf der Kathode möglich!

Überwindung der Austrittsarbeit

Quelle und Vakuumschleuse

Eigenschaften der Photokathode

Erreichte Polarisation in ELSA

Verfügbarkeit der 50-keV-Quelle

Depolarisation im Synchrotron

Kreuzen einer Resonanz

Sprungquadrupole

Einfluss von Synchrotronsatelliten

Unvollständiger Spinflip

