

Polarized Electrons in

Physics / Problems & Status

Contents:

- Generation (Source of polarized electrons)
- BMT equation and depolarizing resonances
- Resonance crossing
- Correction schemes
- Improvements since the GDH experiment
- Beam time statistics '08 and perspectives '09 Universitätbo

Source of polarised electrons @ ELSA

Main features:

- inverted structure
- adjustable perveance
- load-lock-system
- pulsed 200 mJ Ti:Sa laser

Load-Lock upgrade:

- short loading time
- storage of ≤ 5 crystals
- hydrogen cleaning

Main parameters:

Beam energy:48 keVPulse current:100 mARepetition rate:50 HzPolarisation:≈80%Quantum-lifetime:>3000 hCathode:Be-InGaAs/AlGaAs

Spin-Precession

Spin Rotation I

imperfection resonances: $\gamma \cdot a = n, \quad n \in Z$ intrinsic resonances: $\gamma \cdot a = n \cdot P \pm Q_z, \quad n \in Z$

Depolarizing Resonances

Strong Focussing: Betatron Oscillations!

imperfection resonances: $\gamma \cdot a = n, n \in \mathbb{Z}$ intrinsic resonances: $\gamma \cdot a = n \cdot P \pm Q_z, n \in \mathbb{Z}$

Resonance Crossing

Resonance Crossing

Froissart-Stora-Formula

Spin Diffusion

Quadrupole Alignment

Resonance Strengths

Closed Orbit Correction

Closed Orbit Correction

Resonance Strengths

Harmonic Correction

(Imperfection Resonances)

Resonance Strengths

"Tune Jumping"

Panofsky-Typ Quadrupol mit Ferrit-Joch

Vakuumkammer:	AL ₂ O ₃ Keramik
Widerstand: Induktivität: max. Pulsstrom: max. Feldgradient:	mit 10 μm Titanbeschichtung (4,298±0.001) mΩ (DC) (9,0±0,1) μH (DC) 500 A (1,1241 ±0,005) T/m
steigende Flanke: fallende Flanke:	4 - 14 μs 4 - 20 ms

GDH: Achieved Polarization

a "simple" but very useful idea?!!

Dipole "Flattening" 2007/2008

Dipol-Nr.

"Static" CO Correction

Set up:

- 32 BPM stations
- 40 Correcting magnets

Method:

- Meas. of CO at certain energies (32 data points each)
- Corr. of CO at these energies (40 corrector values)
- Generation of corrector ramps (lin. Interpolation, **#5sp**)
- Superimposition of harmonic corrections

"Dynamic" CO Correction

Set up:

- 32 BPM stations
- 40 Correcting magnets

Method:

- Calc. of current values for magnets (40 x 25 values)
- Generation of corrector ramps (lin. Interpolation, #12sp)
- Superimposition of harmonic corrections

Vertical Orbit Displacements

vertical beam position / mm in stretcher during ramp E(inj) = 1.200 GeV, E(extr) = 2.350 GeV 2 ramp stop Imp Res. 5 ramp start Imp.-Res. 3 Imp.-Res. 4 ТJ 1.5 bump statump stop bump start bump stopump start bump stop 1 vertical beam position / mm 0.5 0 -0.5 1.2 GeV 2.35 GeV -1 11/2007 -1.5 -2 450 500 550 600 700 800 650 750 850 time / ms

Vertical Orbit Displacements

vertical beam position / mm in stretcher during ramp E(inj) = 1.200 GeV, E(extr) = 2.350 GeV 3 ramp stop Imp Res. 5 ramp start Imp.-Res. 3 Imp.-Res. 4 ΤJ bump stabump stop bump stopump start bump start bump stop 2 vertical beam position / mm 1 0 1.2 GeV 2.35 GeV -1 -2

650

time / ms

600

700

-3 – 450

500

550

11/2007

800

850

750

Orbit Correction on the Ramp

vertical beam position / mm in stretcher during ramp E(inj) = 1.200 GeV, E(extr) = 2.350 GeV 2 ramp start ramp stop Imp.-Res. 3 Imp.-Res. 4 ТĴ Imp Res. 5 1.5 bump statump stop bump start bump stopump start bump stop 1 **Implemented since Oct. 2008** vertical beam position / mm 0.5 0 -0.5 **1.2 GeV** 2.35 GeV -1 $\Delta z_{\rm rms} \leq 0.15 \ {\rm mm}$ -1.5 -2 450 500 600 700 550 650 750 800 850 time / ms

0.2 0.2 0.18 0.18 0.2 0.18

Conclusions

Meanwhile 2 standard operation modes @ ELSA:

> linearly polarized photons up to E_e - = 3.2 GeV

photon polarization dependent on coherent edge

polarization orientation $\pm 45^{\circ}$ routinely achievable

➢ circularly polarized photons up to E_e - = 2.35 GeV electron beam polarization higher than 60 %

photon polarization dependent on photon energy

High long term stability of beam position and polarization!

Outlook: Planned Improvements

- Source: new load-lock with storage and H-cleaning
- > **Polarimetry: Compton polarimeter** at ELSA
- Polarization: new correctors and power supplies
- Stability: RF-based BPM @ CB-Tagger
- > **Optics**: full accelerator **tune stabilization**
- Intensity: high intensity operation (D2: 2008-2012)
- Test-Area: new beam-line for detector testing
- Single-Bunch operation: ultra low intensity (fA!)

ELSA Operation 2008

4 CB/TAPS Runs with extended Data-Taking

28.04 26.06.	1420 hours (<i>d</i>	0 3.2 GeV	(lin. Pol.)		
04.08 31.08.	650 hours (0 3.2 GeV	(lin. Pol.)		
29.10. – 27.11.	630 hours (2.35 GeV	(cir. Pol.)		
28.11. – 15.12.	400 hours (2.35 GeV	(cir. Pol.)		
	$\Sigma = 3100$	hours			
Tests in CB-Area:	290 hours	(incl. H2-target testing)			
Tests in B1-Area:	160 hours				
Students Experiment:	60 hours				
ELSA Tests:	100 hours	(incl. horz. P	olarization)		
approx. 3700 operating hours in 2008					

Operation 2009???

Date Beam		Experimental Area, Target			
12.01. – 13.01.	3.2 GeV	CB, High intensity test, ripple investigations!			
19.01. – 20.01.	3.2 GeV	CB, preparation for high intensity operation			
21.01. – 19.02.	3.2 GeV	CB, unpolarized beam, solid state targets			
19.02. – 14.04.		Break and maintenance: Set up polarized target			
15.04. – 18.05.	2.35 GeV <i>e</i>	CB, polarized beam, double polarization			
01.06. – 07.06.	Pentecost	Break for surveying (Geodäsie, Schauerte)			
08.06. – 06.07.	2.35 GeV <i>ē</i>	CB, polarized beam, double polarization			
07.07 – 31.10.		Break, lack of working funds!!!			
01.11. – 21.12.	t.b.d.	Operation on working funds of 2010!?!			
$\sum = 2.250 \text{ hours}$ Not realizable without additional funds! Unsolved problem up to now!!! $\sum = 2.250 \text{ hours}$					