

SFB/TR 16 TP D.2.

Status and Actual/Planned Work Program

Contents:

- General Accelerator Performance
- Improved Diagnostics
- Linearly Polarized Photons
- Circularly Polarized Photons
- Increase of Dynamic Range

Elektronen-Stretcher-Anlage (ELSA)

Long Term Stabilization

Temperature in ELSA Tunnel

Position Long Term Stability

Improved Diagnostics

Tune Measurements and Stabilization on the Ramp

time / ms

Vertical Tune-Kicker

One-Turn Excitation

Beam-Loss-Monitor System

Counting Microstrip Detector

Detector: (BABAR 1)

- 768 strips
- 50 µm pitch

➤ resolution 14 µm

6 front-end chips: amplifier, shaper, discriminator, counter

- high rate acceptance (10 150 MHz, single channel!)
- digital part built in LVDS technology
- FPGA controlled

Developed in close collaboration with ATLAS pixel-detector group of Prof. N. Wermes, PI Bonn

Linearly Polarized Photons

Beam Pointing Stability

Datum

Linearly Polarized Photons

- Orientation ±45° without changing beam settings
- High beam pointing stability
- Stable position of coherent edges
- High long term overall stability

 $P \approx 60\%$ (dependent on setting of coherent peak)

Circularly Polarized Photons

Depolarizing Resonances

Imperfektions-Resonanz: $\gamma \cdot a = n$, $n \in Z$ Intrinsische Resonanz: $\gamma \cdot a = n \cdot P \pm Q_z$, $n \in Z$

a "simple" but very useful idea?!!

Dipole "Flattening" 2007/2008

Dipol-Nr.

Closed Orbit Correction

32 beam position monitors for 32 quadrupole-magnets 40 steerer-magnets (correctors)

measurement of beam position every millisecond
computation of correcting currents
generation of a current ramp for each steerer

Orbit Correction on the Ramp

vertical beam position / mm in stretcher during ramp E(inj) = 1.200 GeV, E(extr) = 2.350 GeV 2 ramp start ramp stop Imp.-Res. 3 Imp.-Res. 4 ТJ Imp Res. 5 1.5 bump statump stop bump start bump stopump start bump stop 1 **Implemented since Oct. 2008** vertical beam position / mm 0.5 0 -0.5 **1.2 GeV** 2.35 GeV -1 $\Delta z_{\rm rms} \leq 80 \ \mu m$ -1.5 -2 450 500 600 700 550 650 750 800 850 time / ms

Harmonic Correction

(Imperfection Resonances)

"Tune Jumping"

Panofsky-Typ Quadrupol mit Ferrit-Joch

Vakuumkammer:	AL ₂ O ₃ Keramik
Widerstand: Induktivität: max. Pulsstrom: max. Feldgradient:	mit 10 μm Titanbeschichtung (4,298±0.001) mΩ (DC) (9,0±0,1) μH (DC) 500 A (1,1241 ±0,005) T/m
steigende Flanke: fallende Flanke:	4 - 14 μs 4 - 20 ms

Orbit Correction System

New corrector magnet & fast switching power supply

Beam pipe optimized for eddy current suppression

Programmable 4-quadrant power supply with microcontroller

Orbit Correction System

Increase of Dynamic Range

High Intensity Operation Internal Current *I* = 200 mA

- Reduction of Coupling Impedance
- Damping of Cavity-HOMs
- Active Bunch to Bunch Feedback
- Single-Bunch Operation (diagnostic purpose)
- Upgrade of Beam Diagnostics
- Intensity Upgrade Photoinjector

Bunch to Bunch Feed-Back System

High Current Operation

Impedances of undamped monopol HOMs of Petra cavity at ELSA and typical thresholds for beam instabilities at 30 mA and 2.4 GeV

Upgrade of Photoinjector to 200 mA

Main features:

- inverted structure
- adjustable perveance
- load-lock-system
- pulsed 200 mJ Ti:Sa laser

Load-Lock upgrade:

- short loading time
- storage of ≤ 5 crystals
- hydrogen cleaning

Main parameters:

Beam energy:48 keVPulse current:100 mARepetition rate:50 HzPolarisation:≈80%Quantum-lifetime:>3000 hCathode:Be-InGaAs/AlGaAs

Upgrade Polarized Injector

New Area for Detector Testing

External Electron Beam:

- Beam Energy: **1.0 GeV <** *E* **< 3.5 GeV**
- Beam Current: 1 fA < I < 100 pA
- Beam Radius: 0.5 mm < σ < 7 mm

Single-Bunch Operation!

Tagged Photons:

- Energy: E < 3.2 GeV
- Tagging Rate: $\dot{N} < 10 \text{ MHz}$

extraction of a single electron every 300 revolutions!

BN3

BN1

BN2

BN0

Single Pulse Injector @ LINAC 1

(major components from SBTF-injector / DESY)

+ single pulse accumulation in the stretcher ring ELSA

Conclusions

Meanwhile 2 standard operation modes @ ELSA:

> linearly polarized photons up to E_e - = 3.2 GeV

photon polarization dependent on coherent edge polarization orientation $\pm 45^{\circ}$ routinely achievable

> circularly polarized photons up to E_{e} - = 2.35 GeV

electron beam polarization higher than 60 %

photon polarization dependent on photon energy

High long term stability of beam position and polarization!

Outlook: Planned Improvements

- Source: new load-lock with storage and H-cleaning
- > **Polarimetry: Compton polarimeter** at ELSA
- Polarization: new correctors and power supplies
- Stability: RF-based BPM @ CB-Tagger
- > **Optics**: full accelerator **tune stabilization**
- Intensity: high intensity operation (D2: 2008-2012)
- Test-Area: new beam-line for detector testing
- Single-Bunch operation: ultra low intensity (fA!)