Deutsche Forschungsgemeinschaft DFG

Polarisierte Elektronenstrahlen in ELSA

Wolfgang Hillert

Elektronen-Stretcher Anlage

Physikalisches Institut der Universität Bonn

Drei einfache Fragen:

- Wozu braucht man polarisierte Elektronen?
- Wie erzeugt man polarisierte Elektronen?
- Wie beschleunigt man polarisierte Elektronen?

Aufbau der Materie

Baryonen - Spektroskopie

Linienbreite aus $\Delta E \cdot \Delta t \geq \hbar$

Doppelpolarisationsexperimente

 \rightarrow

Elektronen-Stretcher-Anlage (ELSA)

Erzeugung polarisierter Elektronen

Erzeugung polarisierter Elektronen

Aufhebung der Entartung:

- lokale Gitterverzerrung (strain)
- Mehrschicht-Strukturen (superlattice)

Be-InGaAs/AIGaAs Superlattice

Erzeugung polarisierter Elektronen

Lebensdauer 100 h \leftrightarrow $P(H_2O,CO_2) < 10^{-12}$ mbar

Elektronenquelle

Elektronenquelle

Raumladungsbegrenzung

Quelle polarisierter Elektronen

Betriebsparameter:

Strahlenergie:	48 keV	
Strahlstrom:	100 mA	
Wiederholrate:	50 Hz	
Polarisation:	$\approx 80\%$	
Lebensdauer:	>3000 h	
Kathode: Be-InGaAs/AlGaAs		

Strahlführung zum LINAC

Strahltransport

Spin-Präzession

Depolarisierende Resonanzen Quadrupol-Magnet В $n(\mathbf{\tilde{r}})$ 3 6 b b

Imperfektions-Resonanz: $\gamma \cdot a = n$, $n \in Z$ Intrinsische Resonanz: $\gamma \cdot a = n \cdot P \pm Q_z$, $n \in Z$

Depolarisierende Resonanzen

Starke Fokussierung: Betatronschwingungen!

Imperfektions-Resonanz: $\gamma \cdot a = n$, $n \in Z$ Intrinsische Resonanz: $\gamma \cdot a = n \cdot P \pm Q_z$, $n \in Z$

Imperfektions-Resonanzen

Kreuzungsgeschwindigkeit begrenzt, daher Reduktion der Resonanzstärke nötig:

- Präzise **Justierung** aller Magnete ($\Delta z \approx 0.1 \text{ mm}$)
- Korrektur von Feldfehlern
- **Strahlzentrierung** in den Quadrupol-Magneten
- Berücksichtigung dynamischer Effekte

Korrektur der Gleichgewichtsbahn

32 Positionsmonitore für 32 Quadrupol-Magnete 40 Korrektur-Magnete

- Messung der Strahllage jede Millisekunde
- Berechnung der Korrekturströme
- Generierung einer Stromrampe f
 ür jeden Korrektor

Orbit-Korrektur auf der Rampe

vertical beam position / mm in stretcher during ramp E(inj) = 1.200 GeV, E(extr) = 2.350 GeV 2 ramp stop Imp.-Res. 5 ramp start Imp.-Res. 3 Imp.-Res. 4 ТĴ 1.5 vertikale Strahlablage / mm 1 0.5 0 -0.5 1.2 GeV 2.35 GeV $\dot{B} = 1.2$ Tesla/s -1 $\Delta z_{\rm rms} \leq 80 \ \mu {\rm m}$ -1.5 -2 450 500 550 600 650 700 800 850 750 Zeit / ms

Resonanzstärken

Harmonischen Korrektur

(Imperfektions-Resonanzen)

Resonanzstärken

"Arbeitspunktspringen"

(Intrinsische Resonanzen)

Panofsky-Typ Quadrupol mit Ferrit-Joch

Vakuumkammer: Widerstand: Induktivität: max. Pulsstrom: max. Feldgradient:	AL ₂ O ₃ Keramik mit 10 μm Titanbeschichtung (4,298±0.001) mΩ (DC) (9,0±0,1) μH (DC) 500 A (1,1241 ±0,005) T/m
steigende Flanke:	4 - 14 μs
fallende Flanke:	4 - 20 ms

Polarisation @ 2350MeV, 12.11.2009, 10:54 - 18.12.2009, 8:49

Aktuelles und Zukünftiges

- intrinsische Resonanzen: Messung von Q_z
- Imperfektionsresonanzen: neues Korrektorsystem
- interne Polarimetrie: (Compton-Polarimeter)
- Strahldiagnose mit HF-Resonatoren
- Externe Strahlführung für Detektortests
- Bestrahlung am LINAC I, Einzelpulsbetrieb
- Intensitätserhöhung um ca. Faktor 10, feedbacks

Vertical Tune-Kicker

One-Turn Excitation

Tune Measurements

Orbit Correction System

New corrector magnet & fast switching power supply

Beam pipe optimized for eddy current suppression

Programmable 4-quadrant power supply with microcontroller

Orbit Correction System

New Correction-System:

24 correction coils (main dipoles)

30 new vert. dipole correctors

54 new "pulsed" power supplies

Compton-Detektor

Entwicklung in enger Kooperation mit der ATLAS-Gruppe (Prof. N. Wermes)

Intensitätsverteilung

Zusammenfassung

- Routine-Betrieb mit polarisierten Elektronen:
 - gepulster Photoinjektor mit I = 100 mA, P = 80%
 - Beschleunigung auf $E \le 2.4$ GeV mit $P_{Exp} \ge 60\%$
- Neues Korrektorsystem im Aufbau (E = 3.2 GeV)
- Polarimetrie und Diagnose: Compton-Polarimeter

Intensitätserhöhung um Faktor 10 (2) geplant

Vielen Dank für Ihre Aufmerksamkeit!