

Polarisierte Elektronenstrahlen – ein wichtiges Werkzeug zur Untersuchung der Kernkraft

Wolfgang Hillert

Elektronen-Stretcher Anlage

Physikalisches Institut der Universität Bonn

Drei einfache Fragen:

- Wozu braucht man polarisierte Elektronen?
- Wie erzeugt man polarisierte Elektronen?
- Wie beschleunigt man polarisierte Elektronen?

Aufbau der Materie

Baryonen - Spektroskopie

Linienbreite aus $\Delta E \cdot \Delta t \geq \hbar$

Doppelpolarisationsexperimente

 \rightarrow

Elektronen-Stretcher-Anlage (ELSA)

Erzeugung polarisierter Elektronen

Erzeugung polarisierter Elektronen

Aufhebung der Entartung:

- lokale Gitterverzerrung (strain)
- Mehrschicht-Strukturen (superlattice)

Be-InGaAs/AIGaAs Superlattice

Erzeugung polarisierter Elektronen

Lebensdauer 100 h \leftrightarrow $P(H_2O,CO_2) < 10^{-12}$ mbar

Elektronenquelle

Elektronenquelle

Quelle polarisierter Elektronen

Betriebsparameter:

Strahlenergie:	48 keV	
Strahlstrom:	100 mA	
Wiederholrate:	50 Hz	
Polarisation:	$\approx 80\%$	
Lebensdauer:	>3000 h	
Kathode: Be-InGaAs/AlGaAs		

Strahlführung zum LINAC

Strahltransport

Spin-Präzession

Depolarisierende Resonanzen Quadrupol-Magnet В $n(\mathbf{\tilde{r}})$ 3 6 b b

Imperfektions-Resonanz: $\gamma \cdot a = n$, $n \in Z$ Intrinsische Resonanz: $\gamma \cdot a = n \cdot P \pm Q_z$, $n \in Z$

Depolarisierende Resonanzen

Starke Fokussierung: Betatronschwingungen!

Imperfektions-Resonanz: $\gamma \cdot a = n$, $n \in Z$ Intrinsische Resonanz: $\gamma \cdot a = n \cdot P \pm Q_z$, $n \in Z$

Imperfektions-Resonanzen

Kreuzungsgeschwindigkeit begrenzt, daher Reduktion der Resonanzstärke nötig:

- Präzise **Justierung** aller Magnete ($\Delta z \approx 0.1 \text{ mm}$)
- Korrektur von Feldfehlern
- **Strahlzentrierung** in den Quadrupol-Magneten
- Berücksichtigung dynamischer Effekte

Korrektur der Gleichgewichtsbahn

32 Positionsmonitore für 32 Quadrupol-Magnete 40 Korrektur-Magnete

- Messung der Strahllage jede Millisekunde
- Berechnung der Korrekturströme
- Generierung einer Stromrampe f
 ür jeden Korrektor

Orbit-Korrektur auf der Rampe

vertical beam position / mm in stretcher during ramp E(inj) = 1.200 GeV, E(extr) = 2.350 GeV 2 ramp stop Imp.-Res. 5 ramp start Imp.-Res. 3 Imp.-Res. 4 ТĴ 1.5 vertikale Strahlablage / mm 1 0.5 0 -0.5 1.2 GeV 2.35 GeV $\dot{B} = 1.2$ Tesla/s -1 $\Delta z_{\rm rms} \leq 80 \ \mu {\rm m}$ -1.5 -2 450 500 550 600 650 700 800 850 750 Zeit / ms

Resonanzstärken

Harmonischen Korrektur

(Imperfektions-Resonanzen)

Resonanzstärken

"Arbeitspunktspringen"

(Intrinsische Resonanzen)

Panofsky-Typ Quadrupol mit Ferrit-Joch

Vakuumkammer: Widerstand: Induktivität: max. Pulsstrom: max. Feldgradient:	AL ₂ O ₃ Keramik mit 10 μm Titanbeschichtung (4,298±0.001) mΩ (DC) (9,0±0,1) μH (DC) 500 A (1,1241 ±0,005) T/m
steigende Flanke:	4 - 14 μs
fallende Flanke:	4 - 20 ms

Aktuelles und Zukünftiges

- interne **Polarimetrie**
- (• höherer und geringerer **Strahlstrom**)
 - neuer Messplatz für Detektor-Tests
 - polarisierte Elektronen für die GSI: ENC@FAIR

Compton-Detektor

Entwicklung in enger Kooperation mit der ATLAS-Gruppe (Prof. N. Wermes)

Intensitätsverteilung

Messplatz für Detektortests

Externer Elektronenstrahl:

- Strahlenergie: 1.0 GeV < E < 3.5 GeV
- Strahlstrom: 1 $\mathbf{fA} < \mathbf{I} < 100 \mathbf{pA}$
- Strahlradius: 0.5 mm < σ < 7 mm

Einzelpuls-Betrieb!

Energiemarkierte Photonen:

- Energie: E < 3.2 GeV
- Photonenrate: $\dot{N} < 10 \text{ MHz}$

BN1 **BN0 Extraktion eines Elektrons** alle 300 Umläufe!

BN3

BN2

Elektronen-Nukleonen-Kollider

* ENC@FAIR: Sommer 2008

Hochenergie-Speicherring HESR:

> R = 30 m, L = 576 m $\geq E = 15 \text{ GeV}$ (Protonen) $h = 100, \quad n_{\rm p} = 3,6 \cdot 10^{10}$ $\succ \varepsilon_n = 2 \text{ mm mrad}$ P > 70 %

Elektronen-Speicherring:

$$R \approx 25 \text{ m}, \quad L = 577.1 \text{ m}$$

$$E = 3.3 \text{ GeV} \quad (Q_{sp} \approx 7.5)$$

$$h = 200, \quad I_e = 4 \text{ A}$$

$$\varepsilon_n = 2 \text{ mm mrad}$$

$$P > 80^{-9/6}$$

 \rightarrow

K. Aulenbacher, A. Jankowiak, W. Hillert, A. Lehrach, T. Weiss

Zusammenfassung

- Routine-Betrieb mit polarisierten Elektronen:
 - gepulster Photoinjektor mit I = 100 mA, P = 80%
 - Beschleunigung auf $E \le 3.2$ GeV mit $P_{Exp} \ge 50\%$
- Polarimetrie und Diagnose: Compton-Polarimeter
- Messplatz für Detektoren: 100 pA > I > 1 fA
- ENC@FAIR: polarisierte Elektronen bei der GSI?!

