Deutsche Forschungsgemeinschaft DFG

Polarisierte Elektronen für die Hadronen- und Kernphysik

Wolfgang Hillert

Elektronen-Stretcher Anlage

Physikalisches Institut der Universität Bonn

Drei einfache Fragen:

- Wozu braucht man polarisierte Elektronen?
- Wie erzeugt man polarisierte Elektronen?
- Wie beschleunigt man polarisierte Elektronen?

Aufbau der Materie

Baryonen - Spektroskopie

Linienbreite aus $\Delta E \cdot \Delta t \geq \hbar$

Doppelpolarisationsexperimente

 \rightarrow

Elektronen-Stretcher-Anlage (ELSA)

Erzeugung polarisierter Elektronen

Quelle polarisierter Elektronen

Besonderheiten:

- invertierte HV-Geometrie
- einstellbare Perveanz
- Schleusensystem

Betriebsparameter:

Strahlenergie:	48 keV	
Strahlstrom:	120 mA	
Wiederholrate:	50 Hz	
Polarisation:	≈80%	
Lebensdauer:	>3000 h	
Photokathode: GaAs/GaAsP		

Strahlführung zum LINAC

Raumladungsdominierter Strahltransport

Spin-Präzession

Depolarisierende Resonanzen Quadrupol-Magnet В $n(\mathbf{\tilde{r}})$ 3 6 b b

Imperfektions-Resonanz: $\gamma \cdot a = n$, $n \in Z$ Intrinsische Resonanz: $\gamma \cdot a = n \cdot P \pm Q_z$, $n \in Z$

Depolarisierende Resonanzen

Starke Fokussierung: Betatronschwingungen!

Imperfektions-Resonanz: $\gamma \cdot a = n$, $n \in Z$ Intrinsische Resonanz: $\gamma \cdot a = n \cdot P \pm Q_z$, $n \in Z$

Imperfektions-Resonanzen

Kreuzungsgeschwindigkeit begrenzt, daher Reduktion der Resonanzstärke nötig:

- Präzise **Justierung** aller Magnete ($\Delta z \approx 0.1 \text{ mm}$)
- Korrektur von Feldfehlern
- **Strahlzentrierung** in den Quadrupol-Magneten
- Berücksichtigung dynamischer Effekte

Korrektur der Gleichgewichtsbahn

32 Positionsmonitore für 32 Quadrupol-Magnete 40 Korrektur-Magnete

- Messung der Strahllage jede Millisekunde
- Berechnung der Korrekturströme
- Generierung einer Stromrampe f
 ür jeden Korrektor

Orbit-Korrektur auf der Rampe

vertical beam position / mm in stretcher during ramp E(inj) = 1.200 GeV, E(extr) = 2.350 GeV 2 ramp stop Imp.-Res. 5 ramp start Imp.-Res. 3 Imp.-Res. 4 ТĴ 1.5 vertikale Strahlablage / mm 1 0.5 0 -0.5 1.2 GeV 2.35 GeV $\dot{B} = 1.2$ Tesla/s -1 $\Delta z_{\rm rms} \leq 80 \ \mu {\rm m}$ -1.5 -2 450 500 550 600 650 700 800 850 750 Zeit / ms

Resonanzstärken

Harmonischen Korrektur

(Imperfektions-Resonanzen)

Resonanzstärken

"Arbeitspunktspringen"

(Intrinsische Resonanzen)

Panofsky-Typ Quadrupol mit Ferrit-Joch

Vakuumkammer: Widerstand: Induktivität: max. Pulsstrom: max. Feldgradient:	AL ₂ O ₃ Keramik mit 10 μm Titanbeschichtung (4,298±0.001) mΩ (DC) (9,0±0,1) μH (DC) 500 A (1,1241 ±0,005) T/m
steigende Flanke:	4 - 14 μs
fallende Flanke:	4 - 20 ms

Polarisation am Experiment

Aktuelles und Zukünftiges

- höherer Strahlstrom
- polarisierte Elektronen für die GSI: ENC@FAIR

Höhere Intensität – Betrieb mit *I* = 200 mA:

- Verkleinerung der Koppelimpedanz
- > Absaugelektroden f
 ür Ionen
- Dämpfung der Resonator-HOMs
- Aktives Bunch by Bunch Feedback
- Single-Bunch-Betrieb zu Diagnosezwecken
- Erweiterung der Strahldiagnose
- > Intensitätserhöhung Photoinjektor

SFB/TR 16

Bunch by Bunch Feedback

Breitbandiges Kicker-Cavity

Simulation (CST StudioTM):

Elektronen-Nukleonen-Kollider

* ENC@FAIR: August 2008

Hochenergie-Speicherring HESR:

> $R = 30 \text{ m}, \quad L = 576 \text{ m}$ > E = 15 GeV (Protonen) > $h = 100, \quad n_p = 5,4 \cdot 10^{10}$ > $\varepsilon_n = 2 \text{ mm mrad}$ > P > 70 %

Elektronen-Speicherring:

BROOKHAVEN ATIONAL LABORATORY K. Aulenbacher, D. Barber, O. Boldt, R. Heine, W. Hillert, A. Lehrach, C. Montag, P. Schnizer, T. Weis

Simulation der Spindynamik

Konzept 1: Sibirische Schlange

E frei wählbar aber $\tau_{SP} \sim \gamma^{-7}$

➢ FODO-Anordnung in Bögen
➢ Missing Magnet → D = 0 in Geraden
➢ 1 Solenoid, $\Delta S = 180^{\circ}$ ➢ $\beta_x = \beta_z$ im Solenoid
➢ $\varepsilon_x = \varepsilon_z = 1.95$ mm·rad (norm) $\tau_{Sp} = 7$ min @ 2.8 GeV

E = 3.3 GeVwegen $\Delta \Phi = 12^{\circ}$ **SBA**: 3 Achromate à 6 Dipole \blacktriangleright Bisher nur **D** = **0** in Gegengeraden > 2 Solenoid-/Dipolrotatoren, $\Delta S = 90^{\circ}$ $\succ \beta_x = \beta_z$ vor und hinter Achromaten $\succ \varepsilon_x = 3.8, \varepsilon_z = 3.1 \text{ mm} \cdot \text{rad (norm)}$ = 100 min @ 3.3 GeV

Konzept 2: Spinrotatoren

Zusammenfassung

Polarisierte Elektronenstrahlen:

- Routine-Betrieb @ ELSA :
 - gepulster Photoinjektor mit I = 120 mA, P = 80%
 - Beschleunigung auf $E \leq 3.2$ GeV mit $P_{Exp} \geq 50\%$
- Höherer Strahlstrom (intern $I \leq 200 \text{ mA}$)
- ENC: polarisierte Elektronen bei der 🖬 🎞 ?!
 - Polarisation P = 80% mit long. Ausrichtung am IP
 - Sehr hoher interner Strahlstrom von I = 2 A

