Polarized Beams: a powerful tool for hadron physics

ELectron Stretcher Accelerator

Physics Institute of Bonn University

- Why? ...do we need polarized electrons?
- How? ...do we generate and accelerate polarized electrons?
- What else? ...can be investigated using polarized beams?

Baryon Spectroscopy

Spectral Linewidth from $\Delta \boldsymbol{E} \cdot \Delta \boldsymbol{t} \geq \boldsymbol{\hbar}$
Double Polarization Experiments

How?

a) Source of polarized electrons

Electron Stretcher Accelerator (ELSA)

Generation of Polarized Electrons

Functional Principle:

Pierce \& Meier, 1976

Photoelectron emission from GaAs
polarization transfer from laser photons to emitted electrons

Generation of Polarized Electrons

Operation, heat cleaning and activation in extreme UHV
Lifetime $1000 \mathrm{~h} \leftrightarrow P\left(\mathbf{H}_{2} \mathrm{O}, \mathrm{CO}_{2}\right)<\mathbf{1 0}^{-13} \mathrm{mbar}$

How?

b) Acceleration of polarized electrons

Spins in Magnetic Fields

Depolarizing Resonances

Imperfection Resonance: $\quad \gamma \cdot a=n, \quad n \in Z$

Depolarizing Resonances

Imperfection Resonance:	$\gamma \cdot a=n$,	$n \in Z$
Intrinsic Resonance:	$\gamma \cdot a=n \cdot P \pm Q_{z}$,	$n \in Z$

Resonances of $1^{\text {st }}$ order

Synchrotron Radiation:

Emission of γ-Quants:

- Perturbation of the Orbit (recoil, dispersion)
- Slightly tilted invariant spin axis
\rightarrow Spin Diffusion!

Simulation of Spin Dynamics

\underline{B}-field as (filtered) Fourier series:

Resonance crossing:

Resonance Crossing

(isolated resonances only!)

Spin-Flip
Crossing Speed: $\alpha=\dot{\gamma} a / \omega_{\text {rev }}$

\rightarrow Resonance Strength ε

Resonance Crossing

Froissart-Stora-Formula

Synchrotron Oscillations

(= energy oscillations of beam's particles!)

Crossing of Synchrotron-Sidebands

„Modified" Froissart-Stora Formula:

$$
\frac{P_{f}}{P_{i}}=\left(2 \cdot e^{-\frac{\left.\pi \varepsilon_{r}\right|^{2}}{2 \alpha}}-1\right) \cdot\left(2 \cdot e^{-\frac{\pi\left|\delta_{s}\right|^{2}}{2 \alpha}}-1\right)^{2}
$$

Full Spin-Flip no longer possible!
Experimental verification at ELSA:

Beam excitation will only cause partial spin flip \rightarrow depolarization!
$>$ Reduce resonance strength by proper centering in the quads
$>$ Compensate resonance driving horizontal magnetic fields

Orbit Correction on the Ramp

Resonance Strengths

Acc. of Polarized Electrons

Integer Resonances: $\boldsymbol{\gamma} \boldsymbol{a}=\boldsymbol{n}$

- precise CO correction ($z_{\text {rms }}<80 \mu \mathrm{~m}$)
- harmonic correction:

\rightarrow scan of sin amplitude:

Intr. Resonances: $\gamma \boldsymbol{a}=\boldsymbol{n P} \pm \boldsymbol{Q}_{\mathrm{z}}$

- small vertical beam size
- tune jumping with pulsed quads

Polarization at the Experiment

Improvements over the last years

$$
(P \rightarrow 70 \%, I \rightarrow 200 \mathrm{~mA})
$$

- Precise and fast beam position monitoring: $\Delta_{x, z} \approx \mu \mathrm{~m}, 1 \mathrm{kHz}$
- Fast bipolar steerer system: $\dot{B}=2 \mathrm{~T} / \mathrm{sec}, B \cdot l \approx 0.01 \mathrm{~T} \cdot \mathrm{~m}$
- Low impedance vacuum chambers
- Effective ion clearing (35 clearing electrodes)
- HOM suppression in accelerating cavities
- 3D bunch by bunch feedback system ($\Delta f=250 \mathrm{MHz}$)
- FPGA-based LLRF control: $\Delta A / A<3 \cdot 10^{-4}, \Delta \phi<0.04^{\circ}$
- ps diagnosis based on a streak camera system

- Cavity-based BPM for low intensities: $\Delta_{x, 2} \approx 0.1 \mathrm{~mm}, 100 \mathrm{pA}$

Future issues

- Compton polarimetry
- Harmcorr based on spin-orbit response technique

- High current single-bunch injector
- New RF station and cavities

What else?

... perspectives for new measurements?

ENC@FAIR

High Energy Storage Ring HESR:

$>R=30 \mathrm{~m}, \quad L=576 \mathrm{~m}$
$>E=15 \mathrm{GeV}$ (Protons)
$>h=100, \quad n_{\mathrm{p}}=5,4 \cdot 10^{10}$
$>\varepsilon_{\mathrm{n}}=2 \mathrm{~mm} \mathrm{mrad}$
$>P>70 \%$

Electron Storage Ring:

$>R \approx 25 \mathrm{~m}, \quad L=577.1 \mathrm{~m}$
$>E=3.3 \mathrm{GeV} \quad\left(Q_{\mathrm{sp}} \approx 7.5\right)$
$>h=100, \quad I_{\mathrm{e}}=2 \mathrm{~A}$
$>\varepsilon_{\mathrm{n}}=2 \mathrm{~mm} \mathrm{mrad}$
$>P>80 \%$

Electron Ring: Spin Dynamics

Frozen Spin

Spins aligned along particles' momentum:

$$
\Delta \Omega_{B M T}=-\frac{e}{m}\left\{a \cdot \vec{B}_{\perp}+\left(\frac{1}{\gamma^{2}-1}-a\right) \frac{\vec{\beta} \times \vec{E}}{c}\right\}
$$

Magic Energies:

- all electric $(B=0): \quad p=m / \sqrt{a}$
- combined $(E, B \neq 0): \quad E_{x}=\frac{a c \beta \gamma^{2}}{1-a \beta^{2} \gamma^{2}} B_{z}$

EDM would cause a development of vertical polarization!

	particle	$p(\mathrm{GeV} / \mathrm{c})$	$E(\mathbf{M V} / \mathrm{m})$	\boldsymbol{B} (T)
$\begin{gathered} R \approx 30 \mathrm{~m}, \\ \text { all-in-one: } \end{gathered}$	proton	0.701	16.789	0.000
	deuteron	1. 000	-3.983	0.160
	${ }^{3} \mathrm{He}$	1. 285	17.158	-0.051

EDM-Measurement in Storage Rings (srEDM)

Challenges:

$>$ Suppression of systematic effects (cw and ccw beams)
$>$ High electric field gradients required ($E \approx 17 \mathrm{MV} / \mathrm{m}$)
$>$ Long spin coherence time ($T_{\text {coh }} \geq 1000 \mathrm{sec}$)
$>$ Continuous and precise polarimetry $\left(\Delta P \approx 10^{-6}\right)$
$>$ Precise beam positioning (10 nm)
> Sophisticated spin tracking
Jülich Electric Dipole moment
Investigation, goal: $10^{-29} \mathrm{e} \cdot \mathrm{cm}$

Conclusions

- Polarized Electrons@ ESA :
- pulsed photo-injector with $I=200 \mathrm{~mA}, P=80 \%$
- acceleration to $E \leq 2.4$ (3.2) GeV with $P_{\text {Exp }} \geq 60 \%$
- development of sophisticated correction schemes
- routine operation for hadron physics experiments
- upgrade to 200 mA internal current
- Challenging Perspective @ FZJ:
- high precision EDM-measurement of p , d , and ${ }^{3} \mathrm{He}$ in an all-in-one storage ring with combined E / B beam deflection

Thank you for youreattention!

