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11. Free Electron Laser (FEL) 

In this chapter a short insight into the mode of operation of FELs will be delivered. 

We will pay particular attention to the descriptive comprehension of the processes, 

especially compared to the mode of operation of conventional lasers using the here 

„well-known“ formalism (population inversion etc.). For this purpose a quantum me-

chanical description of coherent states in the formalism of the Glauber theory is ad-

vantageous. 

11.1. Introductive survey 

11.1.1. Undulators 

Let us consider a planar undulator, consisting of an arrangement of small dipole 

magnets with alternating magnetic fields: 
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The spectrum of the radiation consists of discrete lines (harmonics) whose line widths 

are given by the emission period T of the undulator radiation with the wave length    

and the frequency   observed in the laboratory frame: 

2u uN NT
c
 




  . 
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One obtains the intensity spectrum in the center of mass frame of the electrons  using 

the Fourier transformation  
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and it displays the well-known behaviour: 

 
The full width half maximum will be UN   . 
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One gets for the spectral description of the emitted power via a Lorentz boost into the 

laboratory frame:  

 

11.1.2. The FEL principle (classical) 

As in the case of a conventional laser the stimulated emission shall be utilized. We 

need a radiation field yet which has to be amplified and we have – totally analogous 

to the optical laser – the following set-up:  
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Therefore a ”conventional“ FEL still needs an optical resonator: 

 

From a classical point of view, the electrons sustain an additional energy loss in the 

electric field of the incoming radiation: 
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Certain frequencies of the laser field are needed for the correct phase shift of L  per 

undulator period. Hereby the line spectrum of the emission is determined (so-called 
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coherence condition). The relative phasing to the laser field decides if energy from 

the beam is transferred into the radiation field or vice versa.  Hence “micro bunches” 

being shorter than half the laser wave length must be generated for the laser emission.  

11.1.3. The FEL principle (quantum mechanical) 

For an atom or a molecule laser the emission induced by the radiation field is exploit-

ed. Normally a 2-level-system is investigated, consisting of an excited and a ground 

state: 

 

The factor n of the Bose statistics is utilized at the transition (see next chapter). How-

ever this holds true for both directions:  
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2
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22ˆ ( , )eO A r t P

mc
if if   M

 
  

 emission:  iN   (population number of the upper state) 

 absorption:   fN   (population number of the lower state) 

   Population inversion necessary! 
 

At an optical laser, this is often achieved by a 4-level-system:  
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The simplest set-up consists of an active medium surrounded by an optical resonator:  

 

We have a 2-level-system at the FEL. The de-excited state is the undulator field, the 

excited state the laser field: 
 

 
 

The transition persists by Compton scattering off the according photons:  
 

1. emission: 
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2. absorption: 

 

 

Population inversion is produced by phasing!!! 
 

The status of the electrons relatively to the laser field phase is essential!  

So called micro bunching ( Laserl   ) is necessary! 

This is produced in the FEL so far! 

If all electrons are involved in the laser process, in the amplification formula one 

gets the „duplex N2“ ( 2 2
eN N ) as a factor! 
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11.2. Some Glauber theory 

In the following we try to get grip on the idea of a coherent photon radiation in the 

quantum mechanical way. Classically, coherence is linked with the availability of a 

fixed phase relation. But what is the ”phase“ of a photon actually?  

11.2.1. The electric field in 2nd quantization 

Firstly we describe the electric field strength as a Fourier integral:  

1( , ) ( , )
2

i tE r t A r e d 







 
   

 
A splitting into parts of positive and negative frequencies passes to:  

( )

0

1( , ) ( , )
2

i tE r t A r e d 



  
   

and since E  is a real number, it applies *( , ) ( , )A r A r  
   and therewith 
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    . 

We write for a monochromatic wave: 

*( , ) ( ) ( )i t i tE r t A r e A r e    
    

 
This can be translated quantum mechanically into 

( ) †*( ) ˆ ˆ( , )ˆ ( , ) ( )ˆ ˆ) ( )( , i t i tE r t r e r eE r E r tt a a         
    , 

 
whereas we have split the factor ( )r   at the spatial part and we have expressed the 

amplitude of the oscillation by the creation and annihilation operators â and †â . 

These operators act on states in the Fock space. We have already got to know them at 

the harmonic oscillator:  
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Application of the operators  „→“  creation / annihilation of photons: 

†ˆ 1

1ˆ

1a

n

n nn

na n

 

 


 

 

One gets the total energy of the system by application of 

     † 1ˆ
2

ˆâH a    
 

1 , 

what leads us to the following definition of the particle number operator: 

†ˆ ˆˆN aa  
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In the case of a linearly polarized wave we have: 

 ( ) ( ) †
0

ˆ ( , ) ˆ ˆi k r t i k r tE r t E a ae e      
   . 

In the real representation, we obtain via Euler’s formula 

 0
1ˆ ( , ) cos( ) sin( )ˆ ˆ
2

E r t E t k r t k rx p        
    . 

The new operators x̂  und p̂  correspond to the real resp. imaginary part of the classi-

cal complex amplitude A and can be identified as position and momentum of a one-

mode-field by comparing with a harmonic oscillator: 
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Thus we have separated the electric field strength into one part oscillating in phase 

and into another part oscillating not in phase. For a general phase  it follows with 

 0
1ˆ ( , ) cos( ) sin( )ˆ
2

ˆE r t E t k r t kp rx              
     

for the operators 
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For completeness: The commutation relations apply 

 †, and ,ˆ ˆˆ ˆx ipaa     1 1 . 
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11.2.2. Coherent states 

Using the creation and the annihilation operators we can define states with known 

(”sharp“) photon number. We begin with a system of 2 identical bosons in the states 

1 and 2. The total wave function has to be symmetric for permutation of the particles, 

therefore 

 1 2 21
12 (1) (2) (2) (1)
2

       

One has to sum up over all permutations for n particles and we obtain as correct (

1n n   for distinguishable particles) normalized wave function: 

permutatio s
1 2

n

1 (1) (2) ( )
! nn n

n


 
   





   

The creation resp. annihilation of photons transforms a wave function n  normalized 

to 1 to a wave function 1n   resp. 1n   normalized to 1 as well. We obtain auto-

matically 
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So the probability to find a system of n identical bosons in the same quantum state is 

increased by a factor of n than in a system of n distinguishable bosons:  
 

undistingishable particles distinguishable particles 
 

(

22

)

1 1

( )

( ) ( )
! !

k k

j j
j jP k

j
j

k n

n

n n






 

      

   
 

 
state

22

) (

)

)

(

(j j
j j

j
j

j




    

      
 

 
Let us apply this to electric fields. The expectation value of the field strength vanish-

es for such a sharp state since  

1 1 0n n n n    . 

Conclusion: 
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At a sharp state, the ”phases of the individual photons“ are distributed arbitrarily! 

The „individual fields“ cancel each other!  

 
Expedient: 

1. Claim for a minimum medium fluctuation of the electric field strength:

 
22 2ˆ ˆ( , ) ( , ) ( , ) minE r t E r t E r t   

    

2. Claim for a defined medium energy (photon number): 

 †ˆ ˆˆ aN NaN    . 

We obtain for the fluctuation: 

2 †2 † ˆˆ ˆ 1( , ) 2 ( ) m
2

ˆ ina ar aE r t a       
 

  , 

which is minimized for a fixed †ˆ ˆa a N , if  
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2*† ˆ ˆ ˆ ˆ m xˆ aa a a aa    . 

Using the general ansatz for the searched state 

2

0 0

with 1n n
n n
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we obtain for the expectation value of the operator 

*
1

0

ˆ 1n n
n

a c c n





      . 

According to Schwarz’s inequality it applies 
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            , 

since it applies for a medium photon number 
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The inequality becomes an equality if both ”vectors“  nc  and  11 nn c    are par-

allel. Then it holds for the components 

1 !
1 n n

n

n occ
n

n c c       

 

with an arbitrary factor  . Including the normalization of nc  we obtain thereby for 

the searched state: 
2

2

0 !

n

n

e n
n

 
 



  . 

 

Such states are called Glauber states. They have not any sharp defined photon num-

ber! 

It holds: † 2* †ˆˆ ˆ ˆ ˆ, ,a a N a a             

  are not eigen states of any Hermitian operator! 
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Application on the electric field strength results: 

* *

2 22 2 2 2 2 2 2

ˆ ( , ) ( ) ( )

1ˆ ( , ) ( ) ( ) 2 ( )
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i t i t

i t i t
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Except for the additional term 2( )r   describing the vacuum fluctuations, we obtain 

exactly the classical expressions. Particularly we read the following: 

 corresponds to the classical complex amplitude of the wave! 

 

11.3. Undulator radiation 

In the following we deduce the coherence condition for the undulator radiation. We 

do this in the quantum mechanical as well as in the classical way. From the classical 

treatment we obtain additionally the trajectories of the electrons. 
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11.3.1. Magnetic field of a planar undulator 

A planar undulator is characterized by the period U of the magnet arrangement and 

the maximum magnetic field strength B0 on its central axis, determined by the dis-

tance of the magnetic poles, the undulator gap. In case of a large width of the pole 

shoes we can neglect the horizontal dependence of the magnetic field along the elec-

tron’s path. 

 

z 

s 
x 
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In the undulator gap, we have 0B 
 

. As a consequence, we can express the fields 

as the gradient of a scalar potential with 

mag mag 0B     
 

. 

On the central axis, the field is to very good approximation harmonic. With the ansatz 
2

mag ( , ) ( ) sin( ) ´́ 0U Uz s f z k s f k f        

we get the general solution 

( ) sinh( ) cosh( )U Uf z a k z b k z     

from which the vertical field can be derived by 

 mag cosh( ) sinh( ) sin( )z U U U UB k a k z b k z k s
z


       


. 

The vertical field Bz has to be symmetric with respect to the mid plane z = 0 giving 

b = 0. We set 0Uk a B and obtain for the potential 

0
mag sinh( ) sin( )U U

U

B k z k s
k
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and for the fields: 

0

0

0
cosh( ) sin( )
sinh( ) cos( )

x

z U U

s U U

B
B B k z k s
B B k z k s



   

   

 

Note, that for z ≠ 0 always a longitudinal field component is present! In the mid plane 

z = 0 we then have the idealized field 

0 ˆsin( )U sB B k s e   


 

 

11.3.2. Undulator design concepts 

Basically, there exist 3 different design concepts for undulators: 

 permanent magnet outside the beam vacuum 

 permanent magnet inside the vacuum 

 superconducting magnet 
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Examples: 

 

 

 
 
 
 
 
 
 
 
        BEAST II for LUX 
        hybrid in-vacuum undulator 
        Gap = 2 mm, Period U = 5, #=100 
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Variable gap size (micrometer precision!) undulators: 
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Prototype undulators for XFEL: 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

5 m                                                                     2m 
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11.3.3. Compton scattering 

We investigate the scattering of the virtual photons of the undulator field off the elec-

tron beam. It is described best in the rest frame of the electrons. For this purpose a 

Lorentz transformation is necessary so that the virtual photons become effectively 

real and thus the scattering process can be described by Compton scattering. In the 

following U  denotes the ”wave length“ of the undulator field. For simplification 

purposes we define the normalized wave numbers:  

12
2

197 MeV fmwith 2 2.4 10 m
0.511 MeVU e

a hca
m c





    K  

We calculate the scattering process in three steps:  

 Transformation to the moved reference system: 
*
i i K K  
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 Compton scattering off the static electrons: 

*

*
*

1
11 cos

f

i




 
K

K

 

 Back transformation to the laboratory system: 

 * *1 cosf f    K K  

Taking all together it follows for the correlation of the wave lengths: 

 1 cos

1 cos Uf

a

a

  
 









 
. 

Now we have to transform the scattering angle. Considering the appropriate coordi-

nate system definition we obtain: 

*
2

1 11 cos
1 cos

 
  

 


,  *
2

1 1 cos1 cos
2 1 cos


  


 


. 
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Inserting this, it follows 

  2

1 1 cos1 cos 1
2 1 cos

f U

a a
    

   
  

        
. 

A Taylor expansion for small angles up to the 2nd order implies: 

 
2 2

1 1 1
2 2 2f i
a     


   
           

   
. 

Since 2

11
2




   and 1010
i

a


 , it implies in excellent approximation:  1 i
a  


  . 

Thereby the coherence condition of the undulator radiation follows: 
2

1
2f i
  

 
    
 

 

 

Important: c is here the average velocity of the electrons in the undulator and 

is not equal to the  of the electron beam outside!!! 
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11.3.4. Motion of the electrons in the undulator 

The transverse acceleration due to the Lorentz force em v ev B   
   caused by the 

the B field of the undulator 0 ˆ( ) sin ( )u zB s B k s e   


 is: 
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With the initial conditions    0(0) 0, ´(0) e ux x eB m ck   we obtain the 

First-order solution: 
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or in practical units:           00.934 T cmuK B      
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Second-order solution: 

Projection of the motion on the s axis gives with 2 21 1   :  

      2 2 2 2 2 2 2 2 21 1 1 1 2 1s c x c x c c x c                

Inserting the solution  ´ cos ux c x Kc t      results in 

  
2

2

11 1 1 cos 2 with
2 2 u u u

Ks c t c k  


  
       

  
 . 

Thus the electrons move with the average normalized velocity  
2

2

11 1
2 2

K


 
   

 
 

and describe the following trajectory in second order: 
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Lorentz transformation to a reference frame (*) moving with c  gives: 
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With the transformed frequency 

*

21 2
u

u u
ckck
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and the amplitude 

u

Ka
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We obtain the electron orbit in the 

moving frame ( )    

 
 

* * *

* * *

( ) sin

( ) sin 2
8

x t a t

Ks t a t





 

  
 

 

which turns out to have the shape of 

the number 8: 

 
 

If we ignore the longitudinal oscillation, the electrons will emit dipole radiation in the 

moving system with the frequency *
u    and the wavelength *

u   ! 
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11.3.5. Coherent emission 

The radiation characteristics of an oscillating dipole chances when it moves at relativ-

istic speed: with increasing  it becomes more and more concentrated in the forward 

direction: 

 

 

 

 

 

 

To compute the wavelength of the emitted light in the laboratory frame we have to 

apply a Lorentz transformation 

   * cos 1 cosph ph LE c p               

v = 0.9 c a 
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with phE     in the moving reference system and the energy ph LE   and the 

momentum  ˆ ˆcos sinph L s xp c e e     
   in the laboratory frame.  

Hereby we obtain:  

   1 cos 1 cosu L L u                   . 

We insert  2 21 1 2 1 2K     , expand the cosine up to the 2nd order and obtain 

the following coherence condition: 
2

2 2
21

2 2
uK   


 
    
 

. 

 

Comparing this with the relation in chapter 11.3.3., these formulas match under the 

approximation 1   assumed there, since 
2

2

11 1
2 2

K


 
   

 
. 
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Why is this called a coherence condition? This comes from the fact, that this condi-

tion describes the requirements for constructive interference of the radiation emitted 

at different longitudinal positions in the undulator: 
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While the electron travels a distance U T  , the photon emitted one period earlier 

travels a path length of l cT  . We will have constructive interference if 
2 2 2

2 2
2

1cos 1 1 1
2 2 2 2

U
U U U

Kl          
 

     
                

     
 

 But: constructive coherence requires full overlap of the emitted radiation cones! 
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The comparison between the maximum bending angle of the electron orbit  

max
K
   and the typical aperture angle 1   of the emitted radiation results in 

the differentiation of wigglers and undulators: 

 wiggler:  K > 1,  emits „incoherent“ radiation 

 undulator:  K < 1,  emits „coherent“ radiation 
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11.3.6. Higher harmonics 

If the undulator parameter is small, the radiation will always point towards the detec-

tor and the whole trajectory will contribute. A pure sinusoidal electric field at the 

fundamental frequency is observed.  

  
In case of a large undulator parameter only part of the electron trajectory will con-

tribute and the radiation consists of narrow pulses. The frequency spectrum therefore 

contains many higher harmonics: 
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11.3.7. Radiation power 

We will concentrate on the first harmonic only! The radiation power in the co-

moving frame is can be extracted from the Lamor formula (cf. Chapter 6) 
2

2
3

06
eP v

c


  

With 

   
2

* * *2 * * * *
2sin sin

1 2
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we obtain a time-averaged square of the acceleration of 

   
2 2 4 2 2 2 2 2

2 *
2 22 2
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1
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u uK c k e c K kv P P
K K

 


   

 
  

The total power, summed over all harmonics and angles, is equal to that emitted in a 
bending magnet whose field strength is 0 2B B : 

4 2 2 2 2 2 2
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11.4. The pendulum equation 

In the following, we want to neglect the longitudinal oscillation completely in order 

to achieve the aim (understanding!) preferably simply and fast. For a correct treat-

ment, we then would have to modify the K parameter accordingly to (without proof): 
2 2

0 14 2 4 2JJ
K KK K K J J

K K
                 

 

One obtains for the energy variation of the electron beam in the laser field 

 2 2
0

2 cosv

e e e
L L L

d e x
dt m c m c

E tW F k s
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. 

Inserting the derived transverse oscillation 
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1cos , 1 1
2 2u

K Kx c k s s c c
 

  
       

  
   

and using     1cos cos cos cos
2

           we get 
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 0

2
coscos

e

e K E
m c




    

with    L U Lk k s t       (slowly varying) 

and   L U Lk k s t       (fast oscillating) 

  is called the “ponderomotive phase”, which is constant for in case of resonance 

    11 0 if
1 1L U L L U L U Ures

k k s k c k c k k k   
 

   
               

 

since for forward scattering( 0)  the coherence condition gives 
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r
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We mark the resonant energy by r , define the relative energy deviation from the 
resonance energy by 

r

r

 



 ,    and get if  1 ( )r   :    0
2 cos

2 r e

eKE
m c
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In the following, we will redefine the ponderomotive phase by 

2
    , 

yielding no net energy transfer for 0,   and save further writing by setting 

0
2 22 r e

eKE
m c




  . 

 We now have to calculate the derivative of the slowly varying ponderomotive phase. 

Using 

 2 2

2 21 11 , 1 1
2 2 2 2U L

r

K Kk k



   

       
   

 

we obtain for small energy deviations 1    
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The 2 canonical variables   and  , representing the motion in the longitudinal phase 

space, are linked together by two coupled differential equations, the famous 

 

pendulum equations: 

(́ ) sin ( ), (́ ) 2 ( )Us s s k s         

or 
2

2 2 0
2 3 2´́ sin 0 with L

e r

e E B
m c

 


      

 

This equation reminds us deeply on the longitudinal phase space and the synchrotron 

oscillation! Consequently we have the following illustration:  
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The electron executes stable oscillations at small oscillation amplitudes and intense 

laser fields. The limitation of the stable motion is given by the separatrix 

 1 cossep Uk    , the maximum allowed   is given by 2sep Uk  . 
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11.5. The FEL amplification 

At the amplification process, we distinguish two domains by comparing the ”fre-

quency“   with the undulator length u u uL N   : 

1. Short signal range: 2 21 UL   

2. Long signal range: 2 21 UL   → saturation! 

An analytic solution for the FEL amplification is possible only for the short signal 

range. For this purpose we compute the energy transfer in the laser field:  
2

0, with ( )L e uW m c L            

The amplification factor G is the energy gain normalized to the energy  
20

0 ,02 LW E V
   stored in the laser field, thus 

2

2
0 ,0

2L e

L L

W m cG
W E V





     . 

We integrate the phase relation 
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0
0

0 0

2 ( )´( ) ´ ´´( ) ´( ) 2
s s

u u
r r

ss s ds k s ds k    
 


        

and obtain in the case of resonance with  

0 0
0 0resonance

0 (́ ) ´ 2 ´ 2r r
u u

r r

s k k     
 
 

        

the following important relation: 

( )(́ ) 2 r
u

r

ss k 



  . 

For this reason the energy variation   occurring during every passage of the undu-

lator can directly be expressed by the variation of the ”phase velocity“ ´ : 

 0 0( ) (́ ) ´ ´
2 2

r r
u u

u u

L L
k k
              

We obtain this quantity from the integrated pendulum equation 
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 2 2 2
0 0´ ( ) ´ 2 cos ( ) coss s         

by re-writing the phase variation with this equation as follows: 

 2 2
0 0´( ) ´ 2 cos coss       . 

Inserting of   0 0´ 2 r r uk       results in 

   
2

0
0

0

1´( ) 2 1 cos ( ) cos
2

r r
u

r r u

s k s
k

    
  

             
. 

 

In 0th order the phase variation is constant and we get 

0 0
0´ 2 2r r

u u
r r

k k s     
 
 

     . 

Therefore holds 0´́ (́ ) ´ 0uL       and the amplification factor 0G , too! 

Hence, we have to look at the higher orders! Now a nasty calculation goes off in 

which we solve the stuff iteratively. It is time to define the following abbreviatory: 
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0 0
0, ( )r

u u
u r

k L
L
     




     

and thereby to simplify the root expression:  

 
2 2

0
02

0

1(́ ) 2 1 cos cos
2

u

u

Ls
L
  


 

         

By inserting the phase trend in 0th order we obtain in 1st order  

0 0 000
( ) 2uL         

and expansion of the root up to the 1st order ( 1 1 2x x   ): 

  
2

0 0 01
0

´ cos 2 cos
2

uL   


 
    


, 

what we have to average over all initial phases 0  because of the large spatial spread 

of the electron bunch. This results again in 0G ! 
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For the calculation of the 2nd order, initially we have to calculate the phase trend 

( )s  in 1st order. We integrate  

 
2

0 0
0 0 01

00

2 2( ) cos cos
2

uL
u

u
u u

LL s ds
L L
    



              
    

  

and obtain 

  
2 2

0 0 0 0 0 021
0

2 sin 2 sin 2 cos
4

uL      


 
      


. 

Now we expand the root up to the 2nd order 

   
222 2

02
0

0
2

2
02

0

1 c 1 cos coos cos s
8 22

´
2

2 1 u u

u

LL
L

 


 


  
     

   
 

 
 



 

 
 and re-

place in the term of the 1st order  0 1
( )uL    , 

but in the term of 2nd order only    0 0
( )uL    . 

Further on we use 
1 0

1     and hereby approximate 



Advanced Accelerator Physics 
 

Module 66-252                                                                                                                      W. Hillert 301

       0cos cos sin0 0 00 01 1           . 

Hence it follows 

 

     

   

2

02

4 3
2 2

0 0 0 0

0 0
0

4 3
2

0 0 0 0 0 0 0 0 03

03
0

0

0

cos 2 cos
2

sin 2 sin sin 2 2

´

cos 2 cos 2cos cos

cos sin 2

2
16

8

u

u

u

L

L

L

  


        




     




     


 

    

        







 

 

 

and finally, using the addition theorems  

    
    
    

sin sin 1 2 cos cos

cos cos 1 2 cos cos

sin cos 1 2 sin sin

     

     

     

    

    

    

 

we get the following relation: 



Advanced Accelerator Physics 
 

Module 66-252                                                                                                                      W. Hillert 302

 

     

 

2

0 0 0
0

4 3
2 2

0

2

0 0 0 03
0

0 0 0

cos 2 cos
2

1 sin 2 cos 2cos 2 2 sin 2
16

´

2 sin 2 2

u

u

L

L

  


     


  

  
     

        

 





 

After averaging over all initial phases remains: 

    
0

24 3 4 3

0 0 03
0

sin´ 1 cos 2 sin 2u uL L d
d

   
  

    
         

 8 8
. 

 

For the amplification of the FEL follows: 

24 2 3 4

3 4 3
0

sin
16

u u

e

e B N dG
m c V d

 
   

 
    

 
. 

 

Having a closer look we realize moreover that the parameter w  is linked with the 

relative line width. We obtain with 
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2

2

2 2 2
1 2 u

uu
uK L

N
k

         
 


          


 

 

Furthermore, for the intensity spectrum helds 
2

sin
( )

u

u

N
I

N


 



   
    

 
 
 

 . 

So we obtain the fundamental Madey theorem linking the amplification factor with 

the derivative of the intensity spectrum of the spontaneous undulator radiation: 

   r
u

dG I
d N

 
  

   


. 

Therefore an FEL operating at the resonance energy has not any amplification, since 

no micro bunching occurs. It appears only at positive  ! 
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