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6. Synchrotron radiation 

6.1. Radiation of accelerated particles 

Electrostatic potential Φ  and vector potential A


 of a point charge: 
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In case of a relativistic movement one obtains the so-called 

Liénard Wiechert potentials: 
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where the expressions in the brackets are to be evaluated at the retarded time  
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0 0 0(́ )t t R cτ = −  

and n  is a unit vector in the direction of ( )x r τ−
  . 

 

  
 

Only an intersection of the world line of a particle with the light cone contributes to 

the field at the "point" ( , )x t ! 
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The electric and magnetic field are calculated by differentiation 
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and after some lengthy calculations one obtains: 
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Reminder: 

• Velocity fields essentially are static fields and drop by 21 R : Near fields! 

• Acceleration fields are radiation fields and drop by 1 R : Far fields! 

Now everything will be considered in a frame of reference in which the velocity of 

the charge is small compared to c ("rest frame"): 
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The energy flux is described by the Poynting vector: 
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The power radiated into the solid angle section Ω  results therewith as 
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and can be expressed by the angle θ  between *β


  and n  as follows: 
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Integration over all angles yields for the total radiated power in non-relativistic ap-

proximation the famous Larmor formula: 



Advanced Accelerator Physics 
 

Module 66-252                                                                                                                      W. Hillert 10 
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Because of 0p m cβγ=


  it can be written as ( 1β  !!!) 
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With the proper time unit d dtτ γ=  and the four-momentum pµ  one gets the follow-

ing Lorentz invariant form 
2
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, 

which for 0β →  reduces to the Larmor formula. 

(Remark: It’s interesting to see how this is e.g. “derived” in Jackson’s classical text-

book “Classical Electrodynamics”!) 
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Expressing it by the energy 2
0E m cγ=  and the momentum 0p m cβγ=



  ensues 
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and using the relations ( ) ( )2 2
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   and ( ) 3γ β β γ= ⋅
 



  one final-

ly gets: 
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In accelerators either of the two cases of linear acceleration β




  when passing through 

accelerating sections and centripetal acceleration β⊥



  during deflection in magnetic 

fields occurs separately. The resulting radiated powers are: 
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Implications: 

• Linear accelerator: 
typ

15 MeV md E
d x

≤ , thus 145 10P
d E d x

−≈ ⋅ !!! 

• Electron- / proton accelerator: 
4

1310pe

p e

mP
P m

 
= ≈ 

 
!!! 

The synchrotron radiation P⊥  has been theoretically predicted by Liénard by the end 

of the penultimate century. The experimental verification only succeeded at the end 

of the forties at the 70 MeV synchrotron of General Electric in the USA. 
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6.2. Circumference voltage 

The energy loss per revolution E P T∆ = ⋅  results from the radiation loss P  and the 

staying time 2 RT
c

π
β

=  per revolution in the deflecting magnets 
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and is called circumference voltage. Approximately the following applies: 
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For illustration purposes we give here some numerical values: 
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Accelerator L / m E / GeV R / m B / T E∆  / MeV 

BESSY I    (Berlin) 62.4 0.8 1.78 1.50 0.02 

DELTA    (Dortmund) 115 1.5 3.34 1.50 0.134 

ELSA    (Bonn) 164.2 3.5 11.0 1.08 1.22 

DORIS II   (Hamburg) 288 5.0 12,2 1.37 4.53 

PETRA    (Hamburg) 2304 23.5 195 0.40 138 

LEP    (Geneva) 27000 104.6 3000 0.116 3450 
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6.3. Time structure and angular distribution 

In order to provide a clarifying illustration, the situation of a circulating electron will 

be considered here in an approximation. In a frame of reference moving uniformly 

with the electron, the latter, being located in the origin at the time  t=0, only experi-

ences an acceleration along the x´-axis: 
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The radiation characteristic corresponds to the Hertzian dipole. A photon being emit-

ted in y´-direction holds the momentum: 

0
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By Lorentz transformation, one gets the momentum in the laboratory frame: 
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Herefrom ensues for the angle Θ  under which the photon is emitted in the laboratory 

frame: 
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The result is a focusing of the light beam with the angle of aperture 1 γΘ ≈  in the 

shape of a narrow club which, like the beam of a headlamp, is emitted tangentially to 

the electron path and sweeps over the observer: 
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Only during the flight from point A to point B the emitted light reaches the observer. 

He sees a pulse whose length corresponds to t∆ , the delay between electron and pho-

ton from A to B ( 1 2βγ γ γ≈ − ): 
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The following frequency corresponds to this pulse length: 

32 3
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c
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The thereby defined frequency cω  is called the critical frequency (see below). 
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6.4. Spectrum of the synchrotron radiation 

For simplification matters we do set in the following 0( )
ret

A t c R Eε  =  
 

 and 

thereby get:   
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The total irradiated energy W  then is 
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This can be expressed through the Fourier transform of A
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If one restrains the integration to positive frequency values, one gets for the radiated 

energy per solid angle unit and frequency interval: 
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After calculating the Fourier transform taking into account the retardation condition 

´ ( )́t R t c t+ =  

and the approximation for large distances (allowed by ( )́ ( )́R t x n r t≈ − ⋅
   ) as well as 

the decomposition into orthogonal polarizations one gets for the radiated power on a 

circular orbit (see e.g. Jackson): 
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where: 

• θ  = polar angle to the orbit plane, 

• 
33

2c
c
R
γω =  ”critical frequency“ (R = radius of curvature of the orbit), 

• ( )
3

2 2 21
2 c

ωξ γ θ
ω

= +  dimensionless parameter as the argument. 
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In the orbit plane, the light therefore is completely linearly polarized, 

 outside of it weakly elliptically polarized! 
 

In the low and high frequency range, the following approximations apply for 0θ ≈ : 

( ) 2 1 3 2 32

c2
0

2
0 2

c2
0

2 3 3 , if
4 4

3 , if
4

c

c

e R
c cd I

d d e e
c

θ ω ω

ω ω ω
π ε π

ω ωγ ω ω
π ε ω

= −

 Γ               ≈ Ω 







 

 

For the "critical angles" (for a more precise definition see Jackson) we have: 
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The low frequency components are emitted under a much higher, the high fre-

quency components under a much smaller angle than the average radiation! 

 

Integration over the polar angle θ  (allowed because of the small aperture angle) 

yields the spectral energy distribution: 
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The critical energy cω  divides the spectrum of the synchrotron radiation into two 

equal parts.  
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