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5.3. Longitudinal Beam Dynamics 

5.3.1. Equation of Motion in Phase Space 

From the discussion of the momentum compaction (chapter 4.3.7.) we have obtained 

for the relative variation of the travel time 0T T∆  and the angular revolution fre-

quency 0ω ω∆ : 

0 0
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T p p
T p p
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= − = − = − ⋅
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The revolution frequency 0ω  is linked to the RF frequency RFω  by the number h of 

circulating bunches, which is called the harmonic number. Using this relation we 

obtain for the phase shift 0ϕ ϕ ϕ∆ = −  with respect to a reference particle (with refer-

ence phase 0ϕ ): 

0RF T h Tϕ ω ω∆ = ⋅ ∆ = ⋅ ⋅ ∆  
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The phase shift per revolution can be linked to the relative momentum deviation by 

using the η-parameter: 

( ) 0 0
0 0

2
rev

p ph T h
p p

ϕ η ω π η∆ ∆
∆ = − = −  

and may be expressed in terms of the relative energy deviation using 

2 2 4 2 2 2 2
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β β= + ⇒ ⋅ = ⋅ ⇒ = ⋅ ⇒ =  

which gives:   ( ) 2
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π ηϕ
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∆
∆ = −  

So far, we have expressed the phase shift ( )rev
ϕ∆  per revolution in terms of  

0E E E∆ = − . In order to relate this to the energy gain per turn produced by accelera-

tion, we first have to divide by the revolution time T0 to get the change of the phase 

shift per unit time ϕ∆  :  
( )

2
0 0 0
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We then have to built the second derivative to express this variation in terms of the 

energy gain ( )rev
E∆ per turn 

( ) 0( ) ( ) sin ( )
rev

E eU W E eU W Eϕ ϕ∆ = − = −  

where ( )W E  represents the radiation losses per turn due to synchrotron radiation and 

( )U ϕ  is the acceleration voltage for a given phase ϕ . The energy gain per turn 

( )rev
E∆  is linked to the energy deviation E∆  with respect to the reference particle by 

( )
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d E E
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∆ = ⋅ ∆  

This gives    
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and we finally obtain 
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5.3.2. Small Oscillation Amplitudes 

For small deviations ϕ∆  from the synchronous phase we can expand the acceleration 

voltage into a Taylor series and get 

( ) ( )00
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At equilibrium we have 0 0( ) ( )eU W Eϕ =  and obtain the phase equation 
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Particles orbiting in a circular accelerator therefore perform longitudinal oscillations 

with the angular frequency SΩ , which are called synchrotron oscillations. These 

phase oscillations are damped or antidamped depending on the sign of the damping 

decrement Sα . For small oscillation amplitudes the movement can be described by a 
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damped harmonic oscillator. In most cases we find the damping time much longer 

than the phase oscillation period 

1 2 1
S

S S SQ
πτ

α
= =

Ω
  

and the synchrotron tune SQ , defined by the number of longitudinal oscillations per 

turn, much smaller than the transverse tunes XQ , ZQ . 

The oscillations are stable for a real angular frequency SΩ  and therefore for a posi-

tive product 0cosη ϕ⋅ . From 2 21 1 trη γ γ= −  and the equilibrium condition 

0 0 0sin ( ) 0eU W Eϕ = >  we derive the condition for stable phase focusing: 
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Neglecting the small damping term the equation of motion reads 
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2
2

2 0S
d

dt
ϕ ϕ∆

+ Ω ⋅ ∆ =  

and is solved by a harmonic oscillation 

 ( )cos Stϕ ϕ φ∆ = ∆ ⋅ Ω +  

Building the first derivative and relating ϕ∆   to the relative energy deviation 0E E∆ , 

we obtain for the amplitude ϕ∆  of the oscillation 

 ( ) 2
0 0 0

2sinS S RF
h E pt
T E p

π ηϕ ϕ φ ηω
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∆ ∆
∆ = − Ω ⋅ ∆ ⋅ Ω + = − ⋅ = ⋅  
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All particles of a beam perform incoherent phase oscillations about a common 

reference point and generate thereby the appearance of a steady longitudinal 

distribution of particles which we call a particle bunch. 
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The total bunch length lb can be determined from the maximum longitudinal excur-

sion of particles from the bunch center and is twice the amplitude of the phase varia-

tion.: 
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Using the equation derived above, this gives 
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5.3.3. Large Amplitude Oscillations 

We will ignore the small damping term for the following discussions. This allows us 

to rewrite the equation of motion (without any further approximation) to 

[ ]
2

0
0

sin sin 0
cos

Sϕ ϕ ϕ
ϕ

Ω
+ − =  

with the synchrotron frequency SΩ  defined above and 0ϕ ϕ ϕ= + ∆ . 

This can easily be integrated to the potential equation 
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The potential energy function corresponds to the sum of a linear function and a sinus-

oidal one. An oscillation can only take place if the particle is trapped in the potential 

well: 
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max
1 0ϕ π ϕ= −  is an extreme elongation corresponding to a stable motion. The corre-

sponding curve in phase space is called separatrix and the area delimited by this 
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curve is called the RF bucket. Part of this area is filled with particles, forming the 

bunch. 

 
The equation of the separatrix is 
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The other extreme elongation max
2ϕ  (second value for which 0ϕ = ), is such that 

( ) ( )max max
2 2 0 0 0 0cos sin cos sinϕ ϕ ϕ π ϕ π ϕ ϕ+ ⋅ = − + − ⋅  
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From the equation of motion it is also seen that ϕ  reaches a maximum when 0ϕ =  

corresponding to 0ϕ ϕ= . This gives the maximum stable values of ϕ  and the maxi-

mum energy spread maxE∆ , which is called the RF acceptance: 

( )2 2
max 0 02 2 2 tanSϕ π ϕ ϕ = Ω − − ⋅   
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In accelerator physics one usually defines an over voltage factor q by 

0

0 0 0

maximum RF voltage 1
desired energy gain sin sin

eUq
eU ϕ ϕ

= = =  

Using this factor, we can rewrite the RF acceptance to 
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Using ( )2
Cη γ α−= − , 21C xQα ≈  and 0RF hω ω= ⋅ we finally note the important scal-

ing: 
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