Livingston plot

Hadron colliders

Luminosity

... the unknown divinity ...

The (only?) important acc. parameter for particle physicists?

- Luminosity $\dot{N} = \sigma \cdot \mathcal{L}$
- Integrated Luminosity: $\dot{N} = \sigma \cdot \int \mathcal{L} \cdot dt = \sigma \cdot \mathcal{J}$

$$N_{b,b} = \sigma \cdot \iint n_1(x,z) \cdot n_2(x,z) \cdot dx \, dz$$

$$\downarrow$$

$$\frac{e^+ \cdot e^-, p \cdot p \text{ Collider:}}{\sigma_1 = \sigma_2 = \sigma}$$

$$\int \mathcal{L} = \frac{n_b \cdot f_{rev}}{4\pi} \cdot \frac{N_1 \cdot N_2}{\sigma_x \cdot \sigma_z}$$

Luminosity

Luminosity Optimization

Beam Crossing

Cavities

Baseline : adopt both cavity types and exploit their natural RF topology

Double Quarter Wave (DQW) cavity – Vertical – to be used in Point 1 (ATLAS) RF Dipole (RFD) cavity – Horizontal – to be used in Point 5 (CMS)

5th Joint HiLumi LHC-LARP Annual Meeting 2015,

27/10/2015

Beam Crossing

 $\mathcal{L} \propto KN_1N_2 \int \int \int \int_{-\infty}^{+\infty} \rho_1(x, y, s, -s_0) \rho_2(x, y, s, s_0) dx dy ds ds_0$ s₀ is "time"-variable: s₀ = $c \cdot t$

Kinematic factor: $K = \sqrt{(\vec{v_1} - \vec{v_2})^2 - (\vec{v_1} \times \vec{v_2})^2/c^2}$

Gaussian distribution functions: $\rho_i(x, y, s, \pm s_0) = \rho_{i,x}(x) \cdot \rho_{i,y}(y) \cdot \rho_{i,s}(s \pm s_0)$

$$\rho_s(s\pm s_0) = \frac{1}{\sigma_s\sqrt{2\pi}} \exp\left(-\frac{(s\pm s_0)^2}{2\sigma_s^2}\right) \qquad \qquad \rho_z(u) = \frac{1}{\sigma_u\sqrt{2\pi}} \exp\left(-\frac{u^2}{2\sigma_u^2}\right) \qquad \qquad u=x,y$$

Piwinski Angle

Assume crossing in horizontal (x, s)- plane. Transform to new coordinates:

$$\begin{cases} x_1 = x \cos \frac{\phi}{2} - s \sin \frac{\phi}{2}, & s_1 = s \cos \frac{\phi}{2} + x \sin \frac{\phi}{2}, \\ x_2 = x \cos \frac{\phi}{2} + s \sin \frac{\phi}{2}, & s_2 = s \cos \frac{\phi}{2} - x \sin \frac{\phi}{2} \end{cases}$$
$$\mathcal{L} \approx \frac{f_{rev} n_b}{4\pi} \frac{N_1 N_2}{\sigma_x \sigma_y} \frac{1}{\sqrt{1 + \left(\frac{\sigma_s}{\sigma_x} \tan \frac{\phi}{2}\right)^2}}{\sqrt{1 + \left(\frac{\sigma_s}{\sigma_x} \tan \frac{\phi}{2}\right)^2}} \approx \frac{f_{rev} n_b}{4\pi} \frac{N_1 N_2}{\sigma_x \sigma_y} \frac{1}{\sqrt{1 + \left(\frac{\sigma_s}{\sigma_x} \frac{\phi}{2}\right)^2}}$$
"Piwinski Angle"

Example LHC @ 7TeV: ϕ =285 μ rad, $\sigma_x \approx 17\mu$ m, $\sigma_s \approx 7.5$ cm \rightarrow S_{θ} =0.84

Offset and Crossing Angle

"Beta Squeeze" $\sigma_{x,y} = \sqrt{\varepsilon_{x,y} \cdot \beta_{x,y}}$

Hourglass Effect

$$\frac{\mathcal{L}(\sigma_s)}{\mathcal{L}(0)} = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{\pi}} \frac{e^{-u^2}}{\left[1 + \left(\frac{u}{u_x}\right)^2\right]} du = \sqrt{\pi} \cdot u_x \cdot e^{u_x^2} \cdot \operatorname{erfc}(u_x)$$

Storage Rings

Important Relations:

a) Luminosity

b) Beam-Beam Parameters

$$\mathcal{L} = \frac{n_b \cdot f_{rev}}{4\pi} \cdot \frac{N_1 \cdot N_2}{\sigma_x \cdot \sigma_y} \cdot S_\theta \cdot H$$

Beam-Beam Parameters

$$\xi_{x,y} = \frac{r_e N}{2\pi\gamma_r} \frac{\beta_{x,y}^*}{\sigma_{x,y}} \left(\sigma_x + \sigma_y\right)$$

Circular Colliders: $\xi_{x,v} < 0.05$ typ.

$$\sigma_{x,y} = \sqrt{\varepsilon_{x,y}\beta_{x,y}}$$

Linear Colliders:

$$\xi_x = 0.54, \ \xi_y = 1.44 \ (ILC)$$

$$\mathcal{L} = \frac{\gamma_r}{2er_e} \cdot \left(1 + \frac{\sigma_y^*}{\sigma_x^*}\right) \cdot \frac{I_{beam} \cdot \xi_y}{\beta_y^*} \cdot S_\theta \cdot H$$

But:

Time structure of linear / circular colliders are different:

- **Comparison FCC-ee (@Higgs) ↔ ILC:**
- SR: $I_{beam} = f_{rev} n_b q N = 3000 \cdot 393 \cdot q \cdot 1.5 \cdot 10^{11} = 29 \text{ mA}$ • LC: $I_{beam} = f_{rep} n_b q N = 5 \cdot 1312 \cdot q \cdot 1 \cdot 10^{10} = 11 \mu \text{A}$

Example (e⁺-e⁻ Storage Ring) SUPER-KEKB

Lumi-Goal: 5(8)x10³⁵ s⁻¹·cm⁻²

SUPER-KEKB with head-on collision:

- Circumference: 3016 m
- Number of bunches: 2500
- Collision frequency: 10 kHz
- Beam currents: 9.4 / 4.1 A

$$L \approx 1.24 \cdot 10^{28} \frac{I_1 \cdot I_2}{\sigma_x \cdot \sigma_y} \approx \frac{5 \cdot 10^{29}}{\sigma_x \cdot \sigma_y}$$

 $\rightarrow \sigma_x \cdot \sigma_y \approx 10^{-6} \text{ cm}^2$, and with real emittance values $\beta_y \approx 3 \text{ mm}$

Nano-Beam Scheme

SuperKEKB Parameters as of Feb.15, 2010

	KEKB Design	KEKB Achieved : with crab	SuperKEKB
Energy (GeV) (LER/HER)	3.5/8.0	3.5/8.0	4.0/7.0
Crossing angle (mrad)	22	0 (crab)	83
β _y * (mm)	10/10	5.9/5.9	0.27/0.41
ε _x (nm)	18/18	18/24	3.2/2.4
σ _y (μm)	1.9	0.94	0.059
ξ _γ	0.052	0.129/0.090	0.09/0.09
σ _z (mm)	4	~ 6	6/5
I _{beam} (A)	2.6/1.1	1.64/1.19	3.6/2.62
Number of bunches	5000	1584	2503
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	1	2.11	80

Improves with increase of beam energies - if you can store enough beam current!!!

Linear Colliders

Additional focusing by opposing beams

Linear Colliders

Pinch effect - disruption

beam-beam collision

Additional focusing by opposing beams

Enhancement and Disruption

 \blacksquare Using the enhancement factor H_D :

$$\mathcal{L} = \frac{N^2 f_{rep} n_b}{4\pi \overline{\sigma_x} \overline{\sigma_y}} \longrightarrow \mathcal{L} = \frac{H_D \cdot N^2 f_{rep} n_b}{4\pi \sigma_x \sigma_y}$$

- Enhancement factor H_D takes into account reduction of nominal beam size by the disruptive field (pinch effect)
- **Z** Related to disruption parameter \mathcal{D} :

$$D_{x,y} = \frac{2r_e N\sigma_z}{\gamma\sigma_{x,y}(\sigma_x + \sigma_y)} \approx \frac{\sigma_z}{f_{beam}} \qquad \sigma_z = \text{bunch length}, \\ f_{beam} = focal \ length \ of \ beam-lens$$

Enhancement factor (typically $H_D \sim 2$): (ILC: $D_y \approx 20 \rightarrow f_{beam} \ll \sigma_z$)

$$H_{Dx,y} = 1 + D_{x,y}^{1/4} \left(\frac{D_{x,y}^3}{1 + D_{x,y}^3} \right) \left[\ln\left(\sqrt{D_{x,y}} + 1\right) + 2\ln\left(\frac{0.8\beta_{x,y}}{\sigma_z}\right) \right]$$

'hour glass' effect

a) Luminosity

b) RF to beam power efficiency

$$\mathcal{L} = \frac{n_b \cdot f_{rep}}{4\pi} \cdot \frac{N \cdot N}{\sigma_x \cdot \sigma_y} \cdot H_D$$

$$P_{beams} = f_{rep} n_b N \cdot E_{cm} = \eta_{RF} \cdot P_{RF}$$

Luminosity as a function of β_y

Circular vs. Linear Collider

Beamstrahlung

Particles are deflected in magnetic field of colliding bunch:

Peak field:
$$B_{\text{max}} = \frac{2E_{\perp,\text{max}}}{c} = \frac{eN}{2\pi\varepsilon_0 c\sigma_x \sigma_s} = \text{up to 1000 Tesla!}$$

Classical treatment of synchrotron radiation: $\Delta E \sim \frac{\gamma^4}{R^2} \sim \gamma^2 B^2$

> particles with high energy loss will be lost

> short beam life time

Beamstrahlung

Most important parameter: $\Upsilon = \frac{2}{3} \frac{\hbar \omega_c}{E}$

Some Numbers:

• average and maximum value: Υ_a

$$_{av} = \frac{5}{6} \cdot \frac{Nr_e \lambda_c \gamma_r}{\sigma_s \left(\sigma_x + \sigma_y\right)}, \quad \Upsilon_{\max} \approx 2.4 \cdot \Upsilon_{av}$$

• # photons per electron:

$$n_{\gamma} \approx 2.54 \left(\frac{\alpha \sigma_{s}}{\lambda_{c} \gamma_{r}}\right) \frac{\Upsilon_{av}}{\sqrt{1 + \Upsilon_{av}^{2/3}}}$$
$$\delta_{BS} = \left\langle -\frac{\Delta E}{E} \right\rangle \approx 1.24 \cdot \left(\frac{\alpha \sigma_{s}}{\lambda_{c} \gamma_{r}}\right) \cdot \frac{\Upsilon_{av}^{2}}{\left[1 + \left(\frac{3}{2} \Upsilon_{av}\right)^{2/3}\right]^{2}}$$

• average energy loss:

Leads to pair production: $\begin{cases} \Upsilon < 0.6 & \text{incoherent } e^+e^- \text{ pairs} \\ \Upsilon > 0.6 & \text{coherent } e^+e^- \text{ pairs} (E_{cm} > 1 \text{ TeV}) \end{cases}$

Beamstrahlung $\rightarrow \mathcal{L}$

RMS energy loss for weak beamstrahlung:

$$\delta_{BS} \approx 0.86 \frac{e r_e^3}{2m_0 c^2} \cdot \frac{E_{cm}}{\sigma_s} \cdot \frac{N^2}{\left(\sigma_x + \sigma_y\right)^2} \propto \frac{E_{cm}}{\sigma_s} \cdot \frac{N^2}{\sigma_x^2} \quad \leftarrow \quad -$$

 \succ use flat beams ($\sigma_x >> \sigma_y$) but keep $\sigma_x + \sigma_y$ large to reduce δ_{BS}

a) Luminosity

b) Vertical rms beam size

$$\mathcal{L} = \frac{1}{4\pi E_{cm}} \cdot \left(\eta_{RF} P_{RF}\right) \cdot \left(\frac{N}{\sigma_{x} \sigma_{y}} \cdot H_{D}\right)$$

$$\sigma_{y} = \sqrt{\frac{\varepsilon_{n,y}\beta_{y}}{\gamma_{r}}}$$

 $\rightarrow \text{Again Rewrite Luminosity Formula} (\delta_{BS} \approx \text{few \%})$ $\mathcal{L} \propto \frac{\eta_{RF} P_{RF}}{4\pi E_{cm}} \cdot \sqrt{\frac{\delta_{BS}}{\varepsilon_{n,y}}} \cdot \sqrt{\frac{\sigma_s}{\beta_y}} \cdot H \cdot H_D \propto \frac{\eta_{RF} P_{RF}}{4\pi E_{cm}} \cdot \sqrt{\frac{\delta_{BS}}{\varepsilon_{n,y}}} \cdot H_D \text{ damping rings!}$

Luminosity: Beamstrahlung Limit

