Problem 1.1

a) Show

$$\int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}ax^2 + Jx} = \sqrt{\frac{2\pi}{a}} \, e^{\frac{J^2}{2a}} \, .$$

b) Show

$$Z(J) := \int_{-\infty}^{\infty} dx_1 \dots dx_N \, e^{-\frac{1}{2}x^T \cdot A \cdot x + J^T \cdot x} = \sqrt{\frac{(2\pi)^N}{\det(A)}} \, e^{\frac{1}{2}J^T \cdot A^{-1} \cdot J} \,,$$

where $x^T \cdot A \cdot x \equiv \sum_{i,j=1}^N x_i A_{ij} x_j$, $J^T \cdot x \equiv \sum_{i=1}^N J_i x_i$ and A, J are independent of x.

Hint: Diagonalize A and then perform appropriate coordinate transformations.

c) Compute

$$\frac{\partial^4 Z(J)}{\partial J_i \partial J_j \partial J_k \partial J_l}|_{J=0} = \int_{-\infty}^{\infty} dx_1 \dots dx_N \, x_i x_j x_k x_l \, e^{-\frac{1}{2}x^T \cdot A \cdot x_l}$$

by using the result of b).

Problem 1.2

A one-dimensional harmonic oszillator with external force J(t) is described by the Lagrangian $L = \frac{1}{2}\dot{x}^2 - \frac{1}{2}\omega^2x^2 + Jx.$

a) Give the action in the form

$$S = \int dt \left[\frac{1}{2} x A x + J x \right]$$

and determine the differential operator A.

Hint: Assume that surface terms vanish.

b) The Greens function G(t - t') of A satisfies

$$A(t) G(t - t') = \delta(t - t')$$

Show

$$S = \frac{1}{2} \int dt \, x' A x' - \frac{1}{2} \int dt dt' J(t) G(t - t') J(t')$$

for $x'(t) = x(t) + \int dt' G(t - t') J(t')$.

c) Give the Fourier representation of G(t-t').

Problem 1.3

The action for a gauge boson A_{μ} is given by

$$S = -\frac{1}{4} \int d^4x \, F_{\mu\nu} F^{\mu\nu} \,, \qquad F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$$

a) By using partial integration write the action in the form

$$S = \frac{1}{2} \int d^4x A_\mu D^{\mu\nu} A_\nu$$

and determine the differential operator $D^{\mu\nu}$.

b) By using the Ansatz $A_{\mu}(x) = \int \frac{d^4k}{(2\pi)^4} \tilde{A}_{\mu} e^{-ik\cdot x}$ show that the action in Fourier space takes the form

$$S = \frac{1}{2} \int \frac{d^4k}{(2\pi)^4} \, \tilde{A}_{\mu}(k) \tilde{D}^{\mu\nu}(k) \tilde{A}_{\nu}(-k)$$

and compute $\tilde{D}^{\mu\nu}(k)$.

c) The Greens function $G_{\nu\rho}(x-y)$ of $D^{\mu\nu}$ is defined by

$$D^{\mu\nu}G_{\nu\rho}(x-y) = i\delta^{\mu}_{\rho}\delta^{(4)}(x-y)$$
 . (*)

Show that $G_{\nu\rho}(x-y)$ is ill defined by acting with ∂_{μ} on the defining equation (*).

- d) By using the Ansatz $G_{\nu\rho}(x-y) = \int \frac{d^4k}{(2\pi)^4} \tilde{G}_{\nu\rho}(k) e^{-ik\cdot(x-y)}$ determine the analog of (*) for $\tilde{G}_{\nu\rho}$. How does the problem of c) show up in this equation?
- e) Add to the action S a term

$$\delta S = -\frac{1}{2\xi} \int d^4x (\partial_\mu A^\mu)^2$$

and recompute $D^{\mu\nu}$ and $\tilde{D}^{\mu\nu}$. Show that the problem in c) has gone away.

f) Determine $\tilde{G}_{\nu\rho}$ with the help of the Ansatz

$$\tilde{G}_{\nu\rho} = a(k^2) \, \eta_{\nu\rho} + b(k^2) \, k_{\nu} k_{\rho} \, ,$$

and compute a, b.