Problem 2.1

Consider the generating functional $Z[J]$

$$
Z[J]=\int D \phi e^{i \int d^{4} x\left(\mathcal{L}_{0}[\phi]+J \phi\right)}=Z[0] e^{-\frac{1}{2} \int d^{4} x d^{4} y J(x) G_{F}(x-y) J(y)}
$$

for $\mathcal{L}_{0}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}$ and $G_{F}(x-y)=i \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{-i k \cdot(x-y)}}{k^{2}-m^{2}}$.
a) Compute

$$
\langle 0| T\left\{\phi\left(x_{1}\right) \ldots \phi\left(x_{4}\right)|0\rangle=\frac{1}{Z[0]} \int D \phi \phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right) e^{i \int d^{4} x \mathcal{C}_{0}[\phi]}\right.
$$

as a function of G_{F} by explicitly computing the path integral.
Hint: Follow the same steps as done in lecture 2.
b) Compute $\langle 0| T\left\{\phi\left(x_{1}\right) \ldots \phi\left(x_{4}\right)\right\}|0\rangle$ by taking appropriate derivatives of $Z[J]$ and compare the results.

Problem 2.2

Consider an interacting theory with Lagrangian $\mathcal{L}=\mathcal{L}_{0}-\frac{\lambda}{4!} \phi^{4}$.
a) Display $Z[J]$ as a power series in λ.
b) Express $Z[J]$ with the help of appropriate derivatives of $Z[J]$ and show

$$
Z[J]=e^{i S_{I}\left(\phi=-i \frac{\delta}{\delta J}\right)} Z[J] .
$$

What is S_{I} ?
c) Show

$$
\left(\frac{\delta^{4} \log Z[J]}{\delta J\left(x_{1}\right) \ldots \delta J\left(x_{4}\right)}\right)_{J=0}=\left\langle T\left\{\phi\left(x_{1}\right) \ldots \phi\left(x_{4}\right)\right\}\right\rangle_{\text {conn. }},
$$

$$
\text { for }\left.\frac{\delta Z[J]}{\delta J}\right|_{J=0}=0 \text {. }
$$

a) Show

$$
\operatorname{det}\left(e^{A}\right)=e^{\operatorname{tr}(A)}
$$

for a symmetric matrix A.
b) Use a) to compute

$$
\frac{\partial \operatorname{det}(B)}{\partial B_{i j}}
$$

c) Compute

$$
\int d x^{1} \ldots d x^{n} e^{-f\left(x^{1}, \ldots, x^{n}\right)}
$$

by expanding the real function f around its minimum to second order in x^{i}.
Hint: Use the results of problem 1.1.

