Problem 5.1

In QFT I we determined for massless QED $\left(m_{e}=0\right)$

$$
\begin{aligned}
& \Sigma_{2}(p)=\frac{e^{2}}{(4 \pi)^{2}} \lim _{d \rightarrow 4} \int_{0}^{1} d x((2-d)(1-x) \not p) \frac{\Gamma(2-d / 2)}{(4 \pi)^{d / 2-2}} \frac{1}{\Delta^{(2-d / 2)}} \\
& \Pi_{2}(p)=-\frac{8 e^{2}}{(4 \pi)^{2}} \lim _{d \rightarrow 4} \int_{0}^{1} d x x(1-x) \frac{\Gamma(2-d / 2)}{(4 \pi)^{d / 2-2}} \frac{1}{\Delta^{2-d / 2}}
\end{aligned}
$$

for $\Delta=-x(1-x) p^{2}$.
a) Determine the M-dependence of the counterterms δ_{2}, δ_{3} by imposing the renormalization conditions

$$
\delta_{2}=\left.\frac{d \Sigma_{2}}{d p p}\right|_{p^{2}=-M^{2}}, \quad \delta_{3}=\Pi_{2}\left(p^{2}=-M^{2}\right) .
$$

b) Show that the γ-functions in the Callan-Symanzik eqation at lowest order for massless QED are given by

$$
\gamma_{2}=-\frac{1}{2} M \partial_{M} \delta_{2}, \quad \gamma_{3}=-\frac{1}{2} M \partial_{M} \delta_{3},
$$

and compute γ_{2}, γ_{3} explicitly from the results of a).
c) Show that the β-function in the Callan-Symanzik eqation at lowest order is given by

$$
\beta=M \partial_{M}\left(-e \delta_{1}+e \delta_{2}+\frac{1}{2} e \delta_{3}\right),
$$

and compute β explicitly from the results of a) and $\delta_{1}=\delta_{2}$.
d) Solve

$$
\frac{d \bar{e}\left(p^{\prime}\right)}{d \ln \left(p^{\prime} / M\right)}=\frac{\bar{e}^{3}\left(p^{\prime}\right)}{12 \pi^{2}},
$$

for $\bar{e}(p)$ by separating variables and integrating $p^{\prime} \in[M, p]$ and $\bar{e} \in[\bar{e}(M), \bar{e}(p)]$.

Problem 5.2

Consider the differential equation

$$
\left[\partial_{t}+v(x) \partial_{x}-\rho(x)\right] D(t, x)=0
$$

Show that a solution is given by

$$
D(t, x)=\hat{D}(\bar{x}(t, x)) \exp \left[\int_{0}^{t} d t^{\prime} \rho\left(\bar{x}\left(t^{\prime}, x\right)\right)\right],
$$

with

$$
\begin{equation*}
\partial_{t^{\prime}} \bar{x}\left(t^{\prime}, x\right)=-v(\bar{x}), \quad \bar{x}(0, x)=x, \tag{1}
\end{equation*}
$$

and \hat{D} arbitrary.
Hint: First integrate (1) between x and $\bar{x}(t, x)$ and then differentiate the result with respect to x to show $\left(\partial_{t}+v(x) \partial_{x}\right) \bar{x}=0$.

