Problem Set 2

Problem 2.1

Consider a complex scalar field ϕ with Lagrangian

$$\mathcal{L} = \partial_{\mu}\phi \,\partial^{\mu}\phi^* - m^2\phi\phi^* \; .$$

a) Show that $\phi \to \phi' = e^{i\alpha}\phi$ is a symmetry of \mathcal{L} for α constant. Compute the associated Noether current \mathbf{j}^{μ} and Noether charge Q. Show that

$$Q = i \int d^3x (\pi \phi - \phi^* \pi^*) ,$$

holds and confirm the conservation laws for j^{μ} und Q.

- b) Compute the energy-momentum-tensor T^{μ}_{ν} and check $\partial_{\mu}T^{\mu}_{\nu} = 0$.
- c) Show $T^{00} = \mathcal{H}$ and $T^{0i} = -(\pi \partial_i \phi + \pi^* \partial_i \phi^*).$

Problem 2.2

The solution of the Klein-Gordon equation can be expressed as

$$\phi(x) = \int \frac{d^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\vec{p}}}} \left(a_{\vec{p}} e^{-ip \cdot x^{\mu}} + a_{\vec{p}}^{\dagger} e^{ip \cdot x} \right) \Big|_{p^0 = E_{\vec{p}}} ,$$

with the conjugated momentum given by

$$\pi(x) = -i \int \frac{d^3p}{(2\pi)^3} \frac{\sqrt{E_{\vec{p}}}}{2} \left(a_{\vec{p}} e^{-ip \cdot x} - a_{\vec{p}}^{\dagger} e^{ip \cdot x} \right) \Big|_{p^0 = E_{\vec{p}}} \, .$$

a) Invert these relation and derive expressions for $a_{\vec{p}}, a_{\vec{p}}^{\dagger}$ in terms of ϕ and π .

Hint:
$$\int_{-\infty}^{\infty} d^3x e^{i\vec{x} \cdot (\vec{p} - \vec{p}')} = (2\pi)^3 \delta^{(3)}(\vec{p} - \vec{p}').$$

b) Show

$$\partial_t a_{\vec{p}} = \partial_t a^{\dagger}_{\vec{p}} = 0$$
.

Hint: Use partial integration and assume that ϕ vanishes at spatial infinity.

Problem 2.3

Show for a real scalar field ϕ

a)

b)

$$H = \frac{1}{2} \int d^3x \left(\pi^2 + (\nabla \phi)^2 + m^2 \phi^2 \right) = \int \frac{d^3p}{(2\pi)^3} E_{\vec{p}} \left(a_{\vec{p}}^{\dagger} a_{\vec{p}} + \frac{1}{2} [a_{\vec{p}}, a_{\vec{p}}^{\dagger}] \right) \,,$$

$$P^{i} = \int T^{0i} d^{3}x = -\int \pi \partial_{i} \phi d^{3}x = \int \frac{d^{3}p}{(2\pi)^{3}} p^{i} \left(a_{\vec{p}}^{\dagger}a_{\vec{p}} + \frac{1}{2}[a_{\vec{p}}, a_{\vec{p}}^{\dagger}]\right) \,.$$

Problem 2.4

Sow that the operators ϕ, π satisfy the Heisenberg equations

$$i\partial_t \phi = [\phi, H]$$
, $i\partial_t \pi = [\pi, H]$.

Hint: In order to show the second equation first derive $[\pi, H] = i(\Delta - m^2)\phi$.