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Abstract

This thesis studies the question of how de Sitter vacua and slow-roll infla-
tion may be realized in string-motivated models. More specifically, we con-
sider 4d N = 1 supergravity theories (without vector multiplets) with Kähler
potentials which are ‘no-scale’ at leading order. Such theories frequently arise
in the moduli sector of string compactifications. We discuss a condition on
the scalar geometry (defined by the Kähler potential) and on the direction
of supersymmetry breaking in the scalar manifold, which has to be met in
order for the average of the masses of the sGoldstinos to be positive, and
hence for metastable vacua to be possible. This condition also turns out to
be necessary for the existence of trajectories admitting slow-roll inflation. Its
implications for certain scalar manifolds which arise from Calabi-Yau string
compactifications are discussed. In particular, for two-moduli models arising
from compactifications of heterotic- and type IIB string theory, a simple cri-
terion on the intersection numbers needs to be satisfied for possible de Sitter
phases to exist. In addition, we show that subleading corrections breaking
the no-scale property may allow the condition on the scalar geometry to be
fulfilled, even when it is violated at leading order. Finally, we develop a
procedure to construct superpotentials for a given viable Kähler potential,
such that the scalar potential has a realistic local minimum. We propose
two-moduli models, with superpotentials which could arise from flux back-
grounds and non-perturbative effects, which have a viable vacuum without
employing subleading corrections or an uplifting sector.



Zusammenfassung

Diese Arbeit behandelt die Frage wie de Sitter Vakua und ‘slow-roll’ In-
flation in stringtheoretisch motivierten Modellen realisiert werden können.
Genauer gesagt betrachten wir 4d N = 1 Supergravitations-Theorien (ohne
Vektor Multiplets) mit Kähler Potentialen, die in führender Ordnung eine
‘no-scale’ Eigenschaft haben. Derartige Theorien treten häufig im Moduli-
Sektor von String-Kompaktifizierungen auf. Wir diskutieren eine Bedin-
gung an die skalare Geometrie (die durch das Kähler Potential definiert ist)
und an die Richtung der Supersymmetrie-Brechung in der skalaren Man-
nigfaltigkeit, die erfüllt sein muss, damit der Durchschnitt der Massen der
sGoldstinos positiv ist, und folglich damit metastabile Vakua möglich sind.
Es zeigt sich, dass diese Bedingung auch für die Existenz von Trajekto-
rien, die ‘slow-roll’ Inflation erlauben, notwendig ist. Die Auswirkungen
dieser Bedingung auf bestimmte skalare Mannigfaltigkeiten, die in Calabi-
Yau Kompaktifizierungen auftreten, werden diskutiert. Insbesondere muss
für zwei-Moduli Modelle, die in Kompaktifizierungen von heterotischer- und
Typ IIB String Theorie auftreten, ein einfaches Kriterium an die ‘intersec-
tion numbers’ erfüllt sein, damit de Sitter Zustände möglich sind. Außerdem
zeigen wir, dass nachrangige Korrekturen, welche die no-scale Eigenschaft
verletzen, es ermöglichen können die Bedingung zu erfüllen, auch falls sie in
führender Ordnung verletzt ist. Schließlich entwickeln wir ein Verfahren, um
Superpotentiale für ein vorgegebenes brauchbares Kähler Potential zu kon-
struieren, derart, dass das skalare Potential ein realistisches lokales Minimum
aufweist. Wir schlagen zwei-Moduli Modelle vor, mit Superpotentialen die
aus Hintergründen mit Flüssen und aus nicht-störungstheoretischen Effek-
ten resultieren könnten, welche eine brauchbares Vakuum haben, ohne dass
nachrangige Korrekturen oder ein ‘uplifting’ Sektor benutzt wird.
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1 Introduction

Cosmological observations over the past two decades have significantly
changed our view of the universe. One of the most prominent and important
results of these efforts is the unexpected discovery of the accelerated expan-
sion of the universe, based on observations of type Ia supernovae [1,2]. This
has since been independently confirmed by, for instance, measurements of the
Cosmic Microwave Background (CMB) [3–6] and of the large-scale structure
of the universe [7–9]. It is arguably fair to say that the most straightfor-
ward reason for cosmic acceleration is the presence of some form of dark
energy, i.e. a tiny positive energy density filling the entire space (see, for
instance, [10–13] for a recent review).∗ The previous idea that the vacuum
energy – for some unknown reason – vanishes has been ruled out. While it is
easy to model dark energy in an effective field theory – for instance by means
of a tiny positive cosmological constant –, it is unknown why this parameter
should be so much smaller than other dimensionful parameters of the the-
ory. This ‘cosmological constant problem’ [14] – which is one of the biggest
puzzles at the interface of high energy physics and cosmology – typically
reappears in other disguises in alternative models for cosmic acceleration.

Furthermore, recent cosmological observations are in excellent agree-
ment [3–6, 8, 9] with the predictions of slow-roll inflation [15, 16], which is
another phase of cosmic acceleration (much faster than today’s), that may
have taken place in the very early universe (see e.g. [17–19] for a recent
review). Inflation was originally ‘invented’ to account for the observed ab-
sence of magnetic monopoles. In addition, it serves as an explanation for
the spatial homogeneity, isotropy (both on very large scales) and flatness of
the universe, as verified by measurements of the CMB and large-scale struc-
ture. Finally – and perhaps most importantly – slow-roll inflation can also
provide the ‘seeds’ for the creation of the structure of the universe [20–24].
More precisely, it generates primordial density perturbations which are (for
the simplest models) almost scale-invariant, Gaussian and adiabatic. This
is consistent with cosmological precision measurements. We thus have good
reasons to believe that some form of slow-roll inflation indeed has taken place
in the very early universe.† While it is easy to model inflation at the level of
an effective field theory, a convincing more fundamental explanation is not
agreed on.

∗A different explanation could be the modification of the laws of gravity on large scales
(see also e.g. [10–13] for a review).

†There are however also alternative scenarios that aim to solve the aforementioned
problems, for instance the ‘ekpyrotic model of the universe’ [25].
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1 INTRODUCTION

On the theoretical side, significant progress has been made in the develop-
ment and understanding of string theory over the past decades. Let us recall
the basic principles: String theory is a quantum theory of relativistic strings
(see for instance the textbooks [26–28] for an introduction). Compared to
quantum theories of relativistic particles (such as the Standard Model of par-
ticle physics) the usual concept of quantum mechanics is kept, but point-like
particles are replaced by one-dimensional strings.∗ Analogously, worldlines
become worldsheets and Feynmann diagrams become worldsheets with a cer-
tain topology. This rather simple assumption that the most fundamental ob-
jects are strings rather than particles has remarkable consequences. One of
them – arguably the primary reason why string theory has received so much
attention – is that it can reconcile quantum field theory (QFT) and General
Relativity (GR), i.e. string theory provides a theory of quantum gravity.

There are various reasons why such a theory should exist (see e.g. [30]
for an extensive discussion). One reason is mostly aesthetical: The concept
of unification of forces has proven to be very useful in the history of physics.
One may thus expect that gravity and the three other forces are described by
a single theory – and consequently gravity is also expected to be a quantum
theory. A second reason is that under certain extreme conditions, such as
in the very early universe, the effects of both QFT and GR are expected to
become important.

Unfortunately, it seems to be very hard to make falsifiable predictions
from string theory, in order to gain confidence that it is the correct quantum
theory of gravity and UV completion of the Standard Model.† Actually, it
is not even certain yet that string theory is consistent with the Standard
Models of particle physics and cosmology. It is certainly an important task
to show that known physics can be described by string theory.

The aim of this work is to make some further progress regarding the
question of how dark energy and slow-roll inflation could be realized in string
theory. More specifically, we employ the framework of 4dN = 1 supergravity,

∗As a side remark, note that there is however a crucial conceptual difference between
string theories and relativistic quantum field theories. The former are ‘first-quantized’
in that the canonical commutation relations are applied to the coordinates (or ‘string
embedding functions’) XM (σ, τ) and the corresponding conjugate momenta. The latter
are ‘second-quantized’ in that the canonical commutation relations are applied to the fields
and the corresponding conjugate momenta. This has the consequence that string theory
can only be defined perturbatively, whereas in QFT the perturbation series can be derived.
There are however also theories of second-quantized strings, which are called string field
theories (see e.g. [29] for a review).

†A recent discussion about prospects for testing string theory can for instance be found
in Section 4 of Ref. [31].
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1.1 String model building

which may be a low energy approximation of string theory. We will discuss
conditions which have to be met by such theories in order for them to possibly
include dark energy and slow-roll inflation. Using these conditions, we will
also find examples for string-motivated models which include dark energy.

In Sect. 1.1, we remind the reader of a few basic facts of (aspects of) this
area of research which are relevant for this work, while in Sect. 1.2 we give
a brief introduction to slow-roll inflation. Readers to whom these topics are
familiar may want to skip Sects. 1.1 and 1.2 and to immediately proceed to
Sect. 1.3, where we give a more specific introduction to the present work and
an outline of the thesis.

1.1 String model building

String theory and M-theory

String theories with fermions (the latter are obviously necessary for string
theory to be potentially realistic), called ‘superstring-theories’, can be consis-
tently formulated in up to 10 dimensions. (From now on, when we say ‘string
theory’ we mean ‘superstring-theory’.) There are five different string theo-
ries with a flat 10-dimensional (10d) background. These are called type IIA,
type IIB, type I, heterotic SO(32) and heterotic E8 × E8. All of them have
space-time supersymmetry (SUSY) – the former two have 32 supercharges
while the latter three have 16 supercharges.

Clearly, string theory would lose some of its attractiveness if there are
five different consistent theories rather than one unique theory. However, all
five theories are linked, together with 11d supergravity, in a ‘web of dualities’
which suggests that they are different aspects of a single unified theory (see
e.g. the review [32] and the references therein). Let us briefly summarize
this situation: Type IIA and IIB, respectively the two heterotic theories,
are connected by what is called T-duality. This means that the type IIA
theory compactified on a circle of radius R gives the same theory as the IIB
theory compactified on a circle of radius α′/R, where α′ is the Regge-slope
parameter (and analogous for the heterotic theories).∗ In an analogous way,
S-duality is a weak coupling – strong coupling duality which relates a string
theory at string coupling gs with a string theory at coupling 1/gs. The type I
theory is S-dual to the heterotic SO(32) theory and the type IIB theory is
S-dual to itself. By making use of S-duality, one thus can learn how these

∗T-duality can also be extended to other compactifications. For instance, type IIA
and type IIB compactified on a pair of ‘mirror-CY manifolds’ yield the same theory. This
‘mirror symmetry’ may be understood as a particular case of T-duality [33].
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1 INTRODUCTION

three theories behave at strong coupling.∗ On the other hand, the strong-
coupling regime of the other two theories, type IIA and heterotic E8 × E8,
is believed to be described by what is called M-theory. By compactifying
M-theory on a circle respectively on an interval of length gs

√
α′ one obtains

the type IIA respectively heterotic E8×E8 theories. The low-energy limit of
M-theory, on the other hand, is 11d supergravity. Taking into account also
T- and S-duality, it thus seems plausible that there exists a single theory
unifying the five string theories as well as 11d supergravity.

String compactifications

The first step towards making contact with phenomenology is to approximate
each of the five string theories – for length scales which are much larger than
the string length – by a 10d supergravity field theory. This can be done
by calculating scattering amplitudes for the massless modes of the string
spectrum and then writing down a 10d field theory Lagrangian which at
tree-level yields the same scattering amplitudes.

The second step is to assume a 10d space-time background†

M10 = M4 ×X , (1.1)

where ‘×’ denotes either a direct product or a warped product, M4 is ‘our’
4d non-compact maximally symmetric space-time and X is a 6d space which
is small enough that these extra-dimensions are unobservable by means of
present-day experiments and observations. While the extra dimensions are
not directly observable, the topology of X determines the particle content,
forces and symmetries of the 4d theory. Usually, one also requires that the
4d theory of the Kaluza-Klein zero-modes is supersymmetric, i.e. that super-
symmetry is broken below the compactification scale (which is determined by
the size of X). This is for phenomenological reasons (one would like SUSY
to solve the gauge hierarchy problem) and also for ‘practical’ reasons (the re-
sulting effective theory is under much better control), but (as far as is known
today) not for fundamental reasons coming from string theory. For part of
the 10d SUSY to be preserved in the 4d theory, X must allow for a globally
well-defined nowhere vanishing spinor. Such spaces, by definition, have an
SU(3) structure group. If in addition this spinor is covariantly constant with

∗Let us also mention ‘F-theory’ [34]: The self-S-duality of the type IIB theory can
be extended to a larger SL(2,Z)-symmetry. This symmetry can be given a geometric
meaning by understanding it as the modular group of a torus which is attached to each
point of the 10d space. This is the basic idea of F-theory.

†The procedure is analogous for 11d supergravity, of course, but we focus on 10d
supergravities here.
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1.1 String model building

respect to the Levi-Civita connection, then X further has SU(3) holonomy
and is a Calabi-Yau (CY) manifold (see e.g. Ref. [35] for a review). Even re-
stricting to SUSY-preserving compactifications leaves an enormous freedom
for the choice of X however. Moreover, an explanation for why 6 of the 10
dimensions should be small at all is currently lacking.

Despite of these (so far) unanswered questions, one may nevertheless take
compactification to a 4d space-time with SUSY broken below the compact-
ification scale as an assumption and explore the phenomenological conse-
quences of the 4d supersymmetric effective field theories which are obtained
in this way – this is a common approach for doing ‘string-phenomenology’.
One problem that immediately arises is that the 4d field theories generically
have many fields which are massless at tree level. These ‘moduli’ include for
instance the dilaton, the geometric moduli, which parametrize the size and
shape of the compact space, as well as axions originating from the Ramond-
Ramond (RR) sector of the string spectrum. All moduli need to be ‘made’
massive in order not to be in conflict with observations (more precisely, mass-
less scalars would lead to unobserved long-range forces and/or time-varying
coupling constants). Furthermore, the moduli need to be stabilized at a
point in field space where – for phenomenological reasons – supersymmetry
is broken and the potential has the observed tiny positive value, and – for
consistency – where the volume of X is large compared to the string length
scale and the string coupling gs is small. This is the problem of ‘moduli sta-
bilization’. To stabilize the moduli in a de Sitter vacuum (i.e. with a positive
cosmological constant) is a very important and (perhaps at first sight sur-
prisingly) difficult problem, on which an enormous amount of research has
been done, particularly in the past several years (see for instance the recent
reviews [31, 36–39] and the references therein). Here, we can just touch a
selection of the challenges and possible solutions which were suggested.

To obtain massive moduli in a region in field space where the 4d effective
theory is reliable is a major difficulty. For instance, it is hard to stabilize the
moduli only with perturbative quantum corrections, which lift the flatness
of the potential (this is sometimes referred to as the ‘Dine-Seiberg problem’
(cf. [40])). The reason is the following: In order not to have a runaway of
the modulus to zero or to infinity, but instead to have a minimum of the
potential at a finite field value, one obviously needs to balance at least first
order and second order quantum corrections. If a higher order correction
is of the same order of magnitude as the first order correction, one is (by
definition) outside the regime of weak coupling – unless the coefficient of
the higher order quantum correction is unnaturally large – and the effective
action can no longer be trusted. From this argument, it would seem not un-
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1 INTRODUCTION

likely that ‘our vacuum’ is in a strongly coupled regime and hardly accessible
to calculations [40].

Fluxes and the ‘landscape’

Fortunately however, it was discovered in the mid 90’s that one can also ob-
tain scalar potentials at tree level by ‘turning on fluxes’ [41,42]. The principal
idea is to allow the various field strengths which arise in the 10d supergrav-
ity actions to assume non-zero background values. (In a higher dimensional
space, this can be done in a way that preserves 4d Lorentz symmetry.) Due
to a Dirac quantization condition, these ‘fluxes’ are integrally quantized and
cannot be changed in a continuous way [41]. The gauge potentials for the
field strengths include the Neveu-Schwarz (NS) two-form potential B2 and
the (p+ 1)-form potentials Cp+1 that in addition arise in type II theories. If
one compactifies on a space X which has a nontrivial (p+ 2)-cycle γ, the flux∫
γ
Fp+2 (where locally Fp+2 = dCp+1) can be non-vanishing. Fluxes generate

a potential for (at least some of) the moduli, because the ‘F 2 term’ depends
on the metric of the compact space. An intuitive picture for this is that it
costs energy to deform the space, since fluxes thread cycles in the compact
geometry. Of course, the fluxes cannot be chosen completely arbitrary: The
background fields need to solve the equations of motion and fulfill the Bianchi
identities.

It has been argued that due to the presence of fluxes there exists an
enormous number of vacua in string theory, so that the parameters (like
the cosmological constant) of the effective 4d theory corresponding to each
of them form a ‘discretuum’ of closely adjacent values [43]. The (simpli-
fied) argument is as follows: Assume that X has K different (p+ 2)-cycles
γi, (i ∈ 1, . . . , K) around which fluxes Ni =

∫
γi
Fp+2 can thread. Then, the

vacuum energy generically is of the form

V = V0 +
∑
i

ciN
2
i , (1.2)

where the ci are not unnaturally small or large coefficients and V0 is assumed
to be a large and negative contribution coming e.g. from orientifold-planes
(O-planes) and/or quantum corrections. Further, due to Bianchi identities
the fluxes are constrained by a condition of the form

∑
iN

2
i ≤ L2. For

large enough L, the number of vacua can be approximated by the volume
of a K-dimensional ball with radius L, which is (

√
πL)K/Γ(1 + K/2). The

important point now is that K is usually of order hundreds in Calabi-Yau
compactifications, so that the number of vacua can be very large. In case

12



1.1 String model building

there are at least ∼ 10120 of them, one can expect – by arguing that the values
of the vacuum energy are roughly uniformly distributed among them – that
at least in a few of the vacua the cosmological constant assumes a value
∼ 10−120 in Planck units. The set of metastable vacuum states of string
theory has been termed ‘landscape’ [44]. Systematic analyses of parts of the
landscape have been done, starting with Ref. [45].

If this picture of a landscape of string vacua is true, it has implications
on whether one should consider the fine-tuning of parameters (such as the
cosmological constant) a problem, because the occurrence of very small pa-
rameters in an effective theory can then be explained without the need for
fine-tuned parameters in the fundamental theory (see e.g. [46] for a discus-
sion).∗ One could indeed speculate that there is no fundamental reason that
our universe has such particular properties, in the same way as for instance
there is no fundamental reason that our planet has such particular proper-
ties. String theory (together with ‘eternal inflation’ [47–50], see e.g. [51] for
a review) would then allow for an ‘anthropic selection’ of the cosmological
constant (see e.g. [52]). While this may be true, the major drawback of this
idea is of course that we can only observe ‘our universe’ and it hence seems
impossible to test this idea.

Explicit models

After this rather philosophical parenthesis, let us mention an important no-
go theorem which restricts the construction of de Sitter (dS) vacua using
fluxes only [53–55]. Note that this theorem has nothing to do with su-
persymmetry. The conditions of the theorem are as follows: One starts
with a D-dimensional action (with D > 2) describing Einstein gravity mini-
mally coupled to massless fields (scalars, p-forms) with positive kinetic terms
and with a non-positive potential. Further, one takes a background of the
form (1.1) (but for D dimensions) where in this case X is assumed to be a
smooth compact (D − d)-dimensional space and the metric is

ds2
D = Ω2(y) (gµνdx

µdxν + g̃mndy
mdyn) , (1.3)

where Ω(y) is a warp factor, gµν is the metric of d-dimensional anti de Sitter-,
Minkowski- or de Sitter space and g̃mn is the metric on X. The external part
of the D-dimensional Einstein equations implies

d

(D − 2)ΩD−2
∇̃2ΩD−2 = R(gµν) + Ω2 T̂ , (1.4)

∗Note that if this argument is correct there may also be no gauge hierarchy problem.
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1 INTRODUCTION

where

T̂ ≡ −T µ
µ +

d

D − 2
T L
L , (1.5)

and R(gµν) is the Ricci scalar computed from gµν . It can be shown that the

contribution of a negative potential and of fluxes to T̂ is positive (except for
one-form flux, where it vanishes). After multiplying (1.4) by (ΩD−2)2 and
integrating by parts over the internal space, the left-hand side of (1.4) is
−d/(D − 2)

∫
d(D−d)y

√
g̃ (∇̃ΩD−2)2, which is non-positive. Since T̂ is non-

negative, it immediately follows that compactifications to dS space, where
R(gµν) > 0, are excluded, while compactifications to Minkowski space are
allowed only in case that there is only one-form flux and for constant Ω.

This no-go theorem means that it is not so simple to construct de Sitter
vacua using fluxes as it may have appeared at first sight. However, string the-
ory allows for various ways to circumvent the assumptions of this theorem, for
instance by including localized energy sources (this violates the assumption
that the compact space is smooth) and/or by taking into account corrections
in α′ or the string coupling gs which arise in the 10d effective action (vio-
lating the assumption that there are no higher curvature corrections to the
Einstein-Hilbert term in the higher-dimensional theory). For instance, it was
shown by Giddings, Kachru and Polchinski [56] that in type IIB string the-
ory compactified on Calabi-Yau orientifolds with D-branes wrapping around
cycles and nontrivial background fluxes it is possible to obtain warped com-
pactifications to Minkowski space. At the same time, many of the moduli
present in the 4d N = 1 supergravity are stabilized in this setup. Includ-
ing in addition also non-perturbative effects, all moduli can be stabilized,
but generically in a supersymmetric ground state which is either anti de Sit-
ter (AdS) or Minkowski [57–60], whereas a positive cosmological constant
necessarily requires the breaking of supersymmetry. With a combination of
non-perturbative effects and α′ corrections, it is also possible to obtain non-
supersymmetric AdS vacua [61] (see also [62,63]). For the ‘uplifting’ from an
AdS- or Minkowski vacuum to a dS vacuum, a variety of mechanisms has been
proposed and studied. For example, it was shown by Kachru, Kallosh, Linde
and Trivedi (KKLT) [57] that an explicit supersymmetry-breaking term in-
duced by anti-D3 branes (together with non-perturbative effects) can lead
to dS vacua with realistic cosmological constant and all moduli stabilized.
In the past several years, many more possibilities for realizing dS vacua in
string theory have been explored. (A little more about this will be mentioned
below in Sect. 1.3.)
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1.1 String model building

4d N = 1 supergravity

Before we come back to models with dS vacua in Sect. 1.3, let us briefly
summarize some aspects of 4d N = 1 supergravity which are relevant for this
work. This also serves to introduce our notation. For extensive reviews, see
for instance Refs. [64,65] (see the references therein for the original literature
on supersymmetry and supergravity). Note that this is independent of string
theory and thus somewhat apart from the rest of this section.

Supergravity is, by definition, a field theory which is invariant under local
supersymmetry transformations. It turns out that such a theory necessar-
ily includes gravity, which explains the name. Apart from the supergravity
multiplet (which consists of the graviton and the gravitino), a 4d N = 1 su-
pergravity theory may also contain chiral multiplets and vector multiplets.
Throughout this thesis we consider only theories without vector multiplets.
The theory is in this case completely determined by one real function G(Φ, Φ̄)
of the n chiral multiplets Φi = (φi, χi, F i), (i = 1, . . . , n). Here, φi is a scalar
field, χi is a Weyl-fermion and F i is an auxiliary field. The Kähler function G
can be decomposed in terms of a real Kähler potential K and a holomorphic
superpotential W in the following way:∗

G(Φ, Φ̄) = K(Φ, Φ̄) + log |W (Φ)|2 . (1.6)

This splitting is however ambiguous, because K and W are defined only up
to Kähler transformations K → K + f + f̄ and W → We−f , where f is an
arbitrary holomorphic function of the chiral multiplets.

The bosonic part of the Lagrangian takes the form

L =
1

2
R− gi̄ ∂φi∂φ̄̄ − V (φ, φ̄) . (1.7)

The first term is the Einstein-Hilbert term which will not play an important
role in this thesis. The second term is the kinetic energy of the scalar fields. It
is determined by the sigma-model metric gi̄, which – due to supersymmetry –
is given by the Kähler metric Gi̄ ≡ ∂i∂̄G (= ∂i∂̄K), which defines a Kähler
geometry for the manifold spanned by the scalar fields.† The Kähler metric
is used to raise and lower indices and needs to be positive definite, so that
the kinetic energy of the scalar fields is positive. The last term in (1.7), the
potential energy density, is – again due to supersymmetry – given by

V = eG
(
GiGi − 3

)
. (1.8)

∗We always use Planck units where ~ = 1, c = 1,MP ≡ (8πGN )−
1
2 = 1.

†Derivatives with respect to Φi and Φ̄̄ are denoted by lower indices i and ̄.
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1 INTRODUCTION

The auxiliary fields of the chiral multiplets are fixed by their equations
of motion to be F i = eG/2Gi. Supersymmetry is spontaneously broken if
and only if < F i >6= 0. The Goldstone fermion (which is called ‘Goldstino’)
corresponding to the spontaneous symmetry breaking is η = Giχ

i.∗ It is ‘ab-
sorbed’ by the gravitino in the super-Higgs effect. The mass of the gravitino
is given by m3/2 =< eG/2 >. For the sake of brevity, we will for the rest of
this work omit the brackets ‘< . . . >’ for expressions which are evaluated at
a vacuum. It should always be clear from the context what is meant.

1.2 Slow-roll inflation

History of the theory of inflation

We start with giving a brief sketch of the development of theories of inflation.
‘Inflation’, by definition, is a period of (almost) exponential expansion of the
universe. Such a theory has first been realized by Starobinsky in 1979/80 [66].
This model did however not attempt to solve the cosmological problems of
homogeneity and isotropy, but rather assumed homogeneous and isotropic
initial conditions. The first inflationary model which could solve the above
cosmological problems was constructed by Guth in 1981 [67]. The main idea
of his model, which is often called ‘old inflation’, is that a scalar field –
trapped in a supercooled ‘false vacuum’ – provides a constant energy density
leading to exponential expansion. Inflation ends by quantum-mechanical
tunneling to the ‘true vacuum’. The energy of the bubbles, which are formed
in these (first-order) phase transitions, is almost entirely located in their
walls. If inflation lasts long enough to solve the cosmological problems, the
bubbles never meet (because the background out of which they arise inflates
too fast), leading to distinct bubbles of empty universes. Thus, this model
suffers from the ‘graceful exit problem’ and does not work.

In 1982, Linde [15] and Albrecht and Steinhardt [16] introduced the idea
that inflation could instead be caused by a scalar field which slowly rolls down
a potential (rather than a field trapped in a false vacuum). In these models,
which were named ‘new inflation’, there is no graceful exit problem. Still,
these models had a problem: they assumed a state of thermal equilibrium
as initial condition for inflation.† This was solved in 1983 by Linde with the

∗As a side remark, the name ‘Goldstino’ strictly speaking does not comply with the
otherwise common nomenclature in supersymmetry, because the Goldstino is not the
superpartner of a Goldstone field.

†Besides the problem that it is hard to realize thermal equilibrium due to the usually
very small inflaton coupling, this is a problem since a mechanism to explain the homo-
geneity of the universe which relies on homogeneous initial conditions is not satisfactory.
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1.2 Slow-roll inflation

theory of ‘chaotic inflation’ [68]. The key observation was that – provided
the potential has a flat-enough region somewhere – inflation also occurs if
a scalar field initially varies from place to place in a random way, i.e. if it
has chaotic initial conditions. Essentially, this is because there will be some
patches of space where the scalar field attains a value at which the potential
is flat enough for inflation to last long enough.

Linde also noticed that even monomial potentials can be flat enough, pro-
vided that the scalar field value is much bigger than the Planck mass [68]
(such a large field value makes it hard to make contact with particle physics
however). It should be stressed though that the principle of chaotic initial
conditions applies to any flat-enough potential, such as to a ‘hilltop potential’
(similar to which was used in new inflation) or to a hybrid inflation poten-
tial [69] (where the potential energy responsible for inflation comes from a
different field than the slowly rolling field).∗

Slow-roll background

Let us now briefly review some basic equations of slow-roll inflation. We start
with giving the most general spatially homogeneous and isotropic metric, the
Robertson-Walker metric

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
. (1.9)

Here, a(t) is the scale factor and k/a2(t) is the inverse squared radius of
spatial curvature. One further assumes an energy-momentum tensor which
has the perfect fluid form, i.e.

T µν = pgµν + (p+ ρ)uµuν , (1.10)

where uµ is a normalized four-velocity, p is the pressure and ρ is the energy
density. The Einstein equations, which are in this case called Friedmann
equations, then read

H2 =
ρ

3
− k

a2
(1.11)

ä

a
= −ρ+ 3p

6
, (1.12)

∗Let us give two remarks on the terminology: (1) Often, inflationary models with a
hilltop potential are called ‘new inflation’, even though they assume chaotic initial condi-
tions. (2) The term ‘chaotic inflation’ often more specifically refers only to models with
monomial potentials.
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while the equation for energy momentum conservation reads

ρ̇ = −3H(ρ+ p) . (1.13)

Here, we have defined the Hubble parameter H = ȧ/a.

We now assume that the universe is filled with a single spatially homo-
geneous scalar field φ(t). In this case one has

ρ =
1

2
φ̇2 + V (1.14)

p =
1

2
φ̇2 − V . (1.15)

Then, Eq. (1.13) reads∗

φ̈+ 3Hφ̇+ V ′ = 0 . (1.16)

Almost exponential expansion requires |Ḣ|/H2 � 1. Using (1.11)† and
(1.16), one easily finds Ḣ = −φ̇2/2, so that |Ḣ|/H2 � 1 requires

φ̇2 � V (1.17)

(which means H2 ' V/3). This is the first slow-roll condition. One also
demands a second slow-roll condition,

|φ̈| � |Hφ̇| and |φ̈| � |V ′| , (1.18)

so that 3Hφ̇ ' −V ′. Using this relation, one finds that

Ḣ

H2
' 1

2

(
V ′

V

)2

≡ ε . (1.19)

A necessary condition for slow-roll is thus ε � 1. It is also easy to verify
that in order for (1.18) to be true one needs to have [70]

|η| � 1 where η ≡ V ′′

V
. (1.20)

It should be stressed that the smallness of the flatness parameters ε and
|η| is a condition on the form of the potential only (and not a condition
on the solutions to the field equations). Hence, this is only necessary but
not sufficient for slow-roll, because φ̇ could be arbitrarily large even where ε

∗The prime ’ denotes a derivative with respect to a canonically normalized field.
†Because any spatial curvature which may have been present before inflation is almost

completely ‘diluted’ during inflation, one can neglect the term k/a2.
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1.2 Slow-roll inflation

and |η| are small. Still, generic initial conditions are usually attracted to an
inflationary phase if ε, |η| � 1.∗

Density perturbations

We would also like to summarize a few basic equations regarding the density
perturbations originating from quantum fluctuations of the inflaton field.
These relation are crucial because they allow to constrain and test models of
inflation.

The spectrum of the perturbations of the inflaton is given by [72,73]

Pφ =

(
H

2π

)2

. (1.21)

The inflation field perturbations in turn induce curvature perturbations† [20–
24]

δH(k) = −H
φ̇
δφ . (1.22)

Using the Friedmann equation (1.11) and the slow-roll approximation
3Hφ̇ ' −V ′, one immediately obtains the famous result [21–24]

4

25
PR(k) ≡ δ2

H(k) ' 1

150π2

V

ε
. (1.23)

Here, V and ε have to be evaluated at the epoch of horizon exit (k = aH) of
the scale k. The observed value for the spectrum of curvature perturbations
at the scale k ' 7.5H0, which is often called ‘CMB-constraint’, is given
by [6, 9]

δH(k)|k'7.5H0 ' 1.9× 10−5

⇔ V/ε
∣∣
k'7.5H0

' (6.6× 1016GeV)4 . (1.24)

This means that the scale of inflation must be well below the Planck scale.

∗One can instead of ε, η define slow-roll parameters εH , δH in terms of the Hubble
parameter [71]:

εH ≡ −
Ḣ

H2
, δH ≡ −

φ̈

Hφ̇
.

This has the advantage that no other condition needs to be satisfied for the slow-roll
approximations to be valid.

†The letter k used in the following equations should not be confused with that used
in (1.9).
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Besides the amplitude of the spectrum of curvature perturbations, its
scale-dependence can also be measured. The latter is defined by the spectral
index

ns ≡ 1 +
d lnPR(k)

d ln k
= 1 + 2η − 6ε+ · · · . (1.25)

Another quantity which is useful to constrain models is the tensor fraction

r ≡ PT
PR

= 16ε+ · · · (1.26)

where PT is the spectrum of tensor perturbations. In the above two equations,
the last equalities apply in the slow-roll approximation. Observationally, one
has r . 0.3. Note that this limits the size of ε and hence the scale of inflation.
Regarding the spectral index, the observed value is ns ' 0.95 (if one assumes
r � 0.1) [6, 9].

Finally, the scale-dependence of tensor perturbations is defined by

nT ≡
d lnPT (k)

d ln k
= −2ε+ · · · . (1.27)

The last equality is valid for single-field inflation models. In case nT could
be measured in the future and a significant deviation of this relation would
be detected, one could conclude that multi-field effects are important.

1.3 Introduction to this thesis and outline

We now come to a more specific introduction and preview of this thesis. In
Sect. 1.1, we mentioned the KKLT model, where the moduli are stabilized
in a supersymmetric AdS vacuum which is then uplifted to a dS vacuum
due to the presence of anti-D3 branes. From the low-energy perspective,
this is an explicit SUSY breaking (see also e.g. Refs. [74, 75]). However, it
is desirable to have SUSY broken spontaneously at low energies in order to
have better control over the theory. A multitude of such models have been
proposed in string-theoretical frameworks. One possibility is to consider an
extra SUSY breaking sector, i.e. to include extra light degrees of freedom
for the purpose of breaking SUSY spontaneously by D- or F -terms and for
providing the uplift [76–94]. Another possibility to achieve de Sitter vacua
is to employ subleading corrections in α′ and/or gs to the tree-level Kähler
potential [95–99].

None of these models is of the type, however, where supersymmetry is
broken spontaneously only by the Kähler moduli (or alternatively by the
complex structure moduli) – i.e. without an extra uplifting sector – and also

20



1.3 Introduction to this thesis and outline

without subleading corrections to the Kähler potential. This is a bit surpris-
ing, at first sight, since the no-go theorem [53–55] mentioned in Sect. 1.1 can
easily be circumvented by including localized sources, while the superpoten-
tials available in flux compactifications seem to be sufficiently generic that
one could expect no obstacle towards this end. Nevertheless, it was shown in
Ref. [100] that for N = 1 supergravities describing string compactifications
with a single volume modulus T and a no-scale (defined by KiKi = 3) Kähler
potential

K = −3 log(T + T̄ ) (1.28)

(as used by KKLT), stationary points with positive potential energy V gen-
erated only by F -terms are always characterized by the existence of at least
one tachyonic direction, independently of the superpotential W = W (T ).

It turns out that this is only a special case of a much more general no-go
theorem. Namely, one can show that – for an arbitrary 4d N = 1 supergrav-
ity theory – in order for the scalar potential to have local minima with F -term
SUSY breaking, with a vacuum energy V and a gravitino mass m3/2 – a nec-
essary condition is that, in the direction f i ≡ Gi/

√
GkGk of SUSY breaking,

the ‘holomorphic sectional curvature’ R(f i) ≡ Ri̄mn̄f
if ̄fmf n̄ of the mani-

fold spanned by the scalar fields must fulfill∗ [102–105]

R(f i) <
2

3

1

1 + γ
where γ ≡ V

3m2
3/2

. (1.29)

(This is only a preview to Sect. 2 where this theorem will be derived and
explained in detail.) Note that this condition is independent of the no-go
theorem [53–55] mentioned in Sect. 1.1. It is an additional restriction which
has to be met for successful models. The result found in Ref. [100] follows
from the general condition (1.29) since the sectional curvature calculated
from Eq. (1.28) is 2/3 so that (1.29) can never be fulfilled for V ≥ 0.

The condition (1.29) was applied in Ref. [102] to compactifications for
which the Kähler geometry spanned by the moduli is factorized into sub-
manifolds of constant curvature. More precisely, it was shown that also for
the no-scale Kähler potential

K = −
∑
i

ni log(T i + T̄ i) with
∑
i

ni = 3 , (1.30)

stationary points with V > 0 have at least one tachyonic direction (which can
become marginally flat when V = 0), independently of W . In light of this

∗A similar strategy has been used in Ref. [101] to explore the statistics of supersym-
metry breaking vacua in certain classes of string models.
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fact, it is instructive to consider some known results about the existence or
non-existence of de Sitter vacua. First, one immediately sees that in the case
where the dilaton S (with Kähler potential K = − log(S + S̄)) dominates
supersymmetry breaking, it is not possible to have a metastable minimum
(except if there are large corrections to K, see e.g. [107]), as was already
concluded in Ref. [100,108]. Second, for models with a single overall volume
modulus with K = −3 log(T + T̄ ), the condition (1.29) is (as already men-
tioned above) violated, but only marginally (for γ � 1), so that small cor-
rections violating the no-scale structure of K may help. The situation is the
same [103] forK = −3 log(T + T̄ − 1/3

∑
i |Φi|2), which for instance was con-

sidered in Ref. [109]. Finally, for canonical Kähler potentials, K =
∑

i |Φi|2,
the scalar field space is flat, so that the condition (1.29) is always fulfilled and
it is possible to build models with de Sitter or Minkowski vacua and broken
supersymmetry. A simple example realizing this (which is hard to motivate
from string theory however) is, for instance, the ‘Polonyi model’ [110], where
K = |Φ|2 and the superpotential is of the form W = µ2(Φ + β). Choosing
β = 2 −

√
3 leads to a non-supersymmetric vacuum at φ =

√
3 − 1 with

vanishing vacuum energy and gravitino mass m3/2 = µ2e(2−
√

3).

We now turn to inflation. While much progress has been made on the
issue of realizing slow-roll inflation in supergravity and string theory, a com-
pletely satisfactory model has remained elusive, the main reason for this
being the difficulty of ensuring the flatness of the inflaton potential [111].
Similar to the construction of models possessing dS vacua, due to the large
amount of freedom for achieving potentials in string compactifications, one
may expect no obstacles for obtaining scalar potentials with flat directions.
However, in early attempts to achieve inflation, it was already understood
that there are actually severe restrictions towards this possibility, particu-
larly for the identification of the inflaton within the moduli sector [112–114].
Nevertheless, many interesting models of ‘modular inflation’ have recently
been constructed (see e.g. [115–127]). These models typically have an extra
uplifting sector beyond the moduli, and/or make use of subleading correc-
tions.

It would certainly be interesting to have at hand models where inflation
is realized in the moduli sector of string compactifications, without an uplift-
ing sector and without relying on subleading corrections. Progress has been
made very recently towards an understanding of the origin of the difficulties
associated with this [128, 129]. As a matter of fact, the problem of find-
ing viable models of slow-roll inflation turns out to be closely related to the
problem of finding metastable vacua [105]. In Sect. 2, we will give, based on
Ref. [105], a more general characterization for the possibility (or impossibil-
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ity, depending on the point of view) to realize models of slow-roll inflation:
the inequality (1.29) has to be fulfilled approximately. The reason that a
condition arises, which is approximately the same as that for the possibility
of realizing dS vacua, is actually easy to understand: an inflationary trajec-
tory roughly corresponds to an ‘almost metastable’ de Sitter state. The word
‘almost’ is the reason why (1.29) has to be fulfilled only up to corrections
determined by the flatness parameters – this will be rendered more precise
in Sect. 2.

In summary, the inequality (1.29) poses an important necessary condition
for the possibility to implement de Sitter vacua as well as slow-roll inflation
in N = 1 supergravity models. In fact, as we will argue in Sect. 2, this
is also a sufficient condition provided one has the freedom to fine-tune the
superpotential in an arbitrary way.

Above, we have already stated that for multi-field no-scale Kähler poten-
tials of the form (1.30) (which occur for instance in orbifold compactifications
of string theory), this condition cannot be met, independently of the super-
potential. It is then natural to ask if this is the case for all no-scale Kähler
potentials. The answer is no, as we will show in Sect. 3. More precisely, we
will analyze, based on Refs. [104, 130], a class of no-scale Kähler potentials
arising from Calabi-Yau compactifications of string theory, where the Kähler
geometry spanned by the moduli is ‘more complicated’. We will nevertheless
identify a surprisingly simple criterion (for models with two fields) which
allows us to immediately decide if a given such Kähler potential allows for
building models with dS vacua (and slow-roll inflation) or not. For those
no-scale models where it turns out that (1.29) cannot be fulfilled, it would
further be interesting to know under what conditions this can be circum-
vented by including subleading corrections breaking the no-scale property of
the Kähler potential. Moreover, one would like to know if, when the latter
turns out to be possible, the condition (1.29) nevertheless implies impor-
tant general restrictions (such as upper bounds on masses or on the scale
of inflation) for constructing models. This will be explored and answered
affirmatively in Sect. 3.3.1.

Once one has at hand a criterion to decide which Kähler potentials from
string compactifications can be used to build viable models, one would like
to go ahead and actually do the latter, i.e. to find a superpotential such that
the scalar potential indeed has a metastable vacuum with realistic vacuum
energy and masses.∗ This is the topic of Sect. 4, which is based on Ref. [130].
To find such superpotentials, one could in principle make an ansatz for it,
find the stationary points of the resulting scalar potential and then choose

∗Building models which also have an inflationary phase is left for future research.
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suitable parameters. Since it is in practice however extremely difficult to
find non-supersymmetric stationary points, we will follow a more feasible
route, namely to first specify field values where we wish the scalar potential
to have a minimum and then to construct a superpotential which at these
field values has the desired properties. We will describe how this can be
accomplished in Sect. 4.1. In a second step, this ‘local superpotential’ can
then be matched to a string-motivated one. This leads to several explicit
examples, which we present in Sect. 4.2. Note that the Kähler potentials
which we use for these examples can be considered as string-derived. For the
superpotentials, on the other hand, we content ourselves with a form that is
string-motivated. This may be justified due to the huge amount of freedom
(from fluxes and non-perturbative effects) for the choice of the parameters of
the superpotential.

Finally, our conclusions and an outlook to future research will be pre-
sented in Sect. 5. Note that, for the convenience of the reader, we will
provide at the end of each of the main sections 2, 3 and 4 a brief summary
of that section.
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2 A stability condition in 4d N = 1 super-

gravity

2.1 Condition for metastable vacua

The aim of this section is to derive a necessary condition on the geometry of
the scalar manifold and on the SUSY breaking direction in the scalar manifold
for the existence of metastable vacua [102–105]. By definition, metastable
vacua are stationary points of the potential, which are stable against small
fluctuations of the fields.∗ The latter is the case if and only if all masses are
positive (for Minkowski and de Sitter space), respectively if and only if all
masses are larger than the negative Breitenlohner-Freedman bound [131] (for
anti de Sitter space).

In this work we only discuss Minkowski and de Sitter vacua. This is for
phenomenological reasons: the universe is in a de Sitter state today and also
is likely to have undergone a period of slow-roll inflation (corresponding to an
‘almost stationary’ de Sitter state) at very early times. It is straightforward to
extend the condition we will find to AdS space, however [132]. Furthermore,
we are interested in vacua with spontaneously broken SUSY (the latter is
necessary for de Sitter vacua, but not for Minkowski vacua). In summary,
we consider local minima of the potential at which F i 6= 0 and V ≥ 0.

We consider 4d N = 1 supergravity theories with n chiral multiplets and
no vector multiplets. There are n complex stationarity conditions which are
derived by computing Vi. Since V is a scalar with respect to the Kähler
geometry, one has Vi = ∇iV where ∇i is a covariant derivative. The co-
variant derivative of some vector field vj is given by ∇ivj = ∂ivj − Γkijvk
and ∇ı̄vj = ∂ı̄vj − Γkı̄jvk. Here, Γkij = Γkji = gkl̄∂igjl̄ (and analogous for the
complex conjugates) are the only non-vanishing connection coefficients of the
Kähler geometry (i.e. Γkı̄j = 0). (See Ref. [65] for more details on Kähler
geometry.) From (1.8) one then immediately finds

Vi = eG
(
Gi +Gk∇iGk

)
+GiV = 0 . (2.1)

The 2n-dimensional mass matrix for scalar fluctuations around a vacuum

∗We use the term ‘metastable vacua’ (as opposed to ‘stable vacua’), since states in
a local minimum could decay via quantum tunneling to a state with lower energy. The
lifetime depends on the details of the action. Strictly speaking, one should only call a
state metastable once one has found that the lifetime is larger than the age of the universe.
However, we do not discuss this issue here.
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takes the form

VIJ̄ ≡
(
Vi̄ Vij
Vı̄̄ Vı̄j

)
, (2.2)

where I = (i, ı̄) and J̄ = (̄, j). The second derivatives of the potential, Vi̄
and Vij, may also be computed using covariant derivatives, i.e. Vi̄ = ∇i∇̄V
(since Γkı̄j = 0) and Vij = ∇i∇jV . The latter uses the stationarity, since

∇i∇jV = ∇iVj = Vij − ΓkijVk. One easily finds∗

∇i∇̄V = eG
(
gi̄ +∇iGk∇̄G

k −Ri̄mn̄G
mGn̄

)
(2.3)

+ (gi̄ −GiG̄)V + 2G(i∇̄)V ,

∇i∇jV = eG
(
2∇(iGj) +Gk∇(i∇j)Gk

)
(2.4)

+
(
∇(iGj) −GiGj

)
V + 2G(i∇j)V ,

where the last terms in (2.3) and (2.4) of course vanish at stationary points.
In (2.3), Ri̄mn̄ is the Riemann tensor of the scalar geometry (see Appendix A
for our conventions). A necessary and sufficient condition for metastability is
the requirement that the 2n-dimensional mass matrix (2.2) should be positive
definite.† It is known from elementary linear algebra that a matrix is positive
definite if and only if all of its principal submatrices are positive definite (a
p× p matrix P is a principal submatrix of a q × q matrix Q, if one obtains
P by removing any q − p rows of Q and the same q − p columns of Q).
Hence, a necessary condition for positive-definiteness of VIJ̄ is the positive-
definiteness of its upper-left block Vi̄. By definition, this means that ziVi̄z̄

̄

must be positive for all non-vanishing complex vectors zi.

In particular, ziVi̄z̄
̄ > 0 must hold for the special vector zi = f i, where

f i ≡ Gi

√
GkGk

(2.5)

is the normalized Goldstino vector, i.e. the direction of SUSY breaking in
the space of chiral fermions. We then finally get the metastability condition

m2 ≡ f iVi̄f
̄ > 0 . (2.6)

∗The round brackets around tensor indices denote, as usual, symmetrization of indices:

T ...(µ1...µp)... =
1
p!

(T ...µ1...µp... + sum over all permutations of indices µ1 . . . µp) .

The prefactor 1/p! is chosen such that for symmetric tensors one has T(µ1...µp) = Tµ1...µp .
†Note that the eigenvalues of VIJ̄ are not the canonically normalized squared masses if

the kinetic term is not canonical. In order to determine the canonical masses, one has to
perform a field-redefinition φi → φie mi , where e mi is (the vev of) the holomorphic n-bein
of the scalar geometry, i.e. gi̄ = e mi e n̄̄ ηmn̄. Because the kinetic term is positive definite,
this field redefinition does not affect the metastability condition however.
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One can find a more explicit expression for m2. Using Eqs. (2.1) and
(2.3), one obtains

m2 =
[
2− 3(1 + γ)R(f i)

]
m2

3/2 , (2.7)

where we defined
R(f i) ≡ Ri̄mn̄f

if ̄fmf n̄ (2.8)

and

γ ≡ V

3m2
3/2

. (2.9)

The quantity R(f i) actually has a geometrical interpretation: it is the holo-
morphic sectional curvature of the scalar manifold along the direction f i.
R(f i) is determined by the Riemann-tensor Ri̄mn̄ of the scalar manifold and
by the SUSY breaking direction f i. The condition m2 > 0 implies then the
constraint [102–105]

R(f i) <
2

3

1

1 + γ
. (2.10)

Note that the larger γ, the harder it is to fulfill this condition.

Note also that in the particular case of only a single chiral multiplet, this
condition also follows from the supertrace

STrM2 ≡
∑
spins J

(−1)2J(2J + 1)TrM2
J (2.11)

of the mass matrix, which (for n chiral multiplets) is found to be [133,134]

STrM2 =
[
2(n− 1)(1 + 3γ)− 8γ2 − 6(1 + γ)Ri̄f

if ̄
]
m2

3/2 . (2.12)

To check that for n = 1 the condition TrM2
J=0 > 0 is equivalent to (2.10), one

needs to use that the mass of the spin 1/2 particle in (2.11), the Goldstino,
is mη = −2γm3/2.∗

Before closing this section, we would like to explain in more physical
terms why the requirement that the projection of Vi̄ along the direction f i

(and not some other direction) should be positive is a particularly interesting
condition. First, we show how m2 (≡ f iVi̄f

̄) is related to the masses of the
two real components of the complex scalar η̃ = Giφ

i (called ‘sGoldstino’) in
the Goldstino multiplet. To this end, it is useful to define the 2n-dimensional
unit vector

f I(α) ≡ (eiαf i, e−iαf ı̄)/
√

2 , (2.13)

∗Indeed, using the stationarity condition (2.1) one immediately finds that the mass
matrix for the Weyl-fermions χi (see [135]) has an eigenvalue mη with eigenvector propor-
tional to Gi.
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where α is an angle. Choosing the two values (say) α = 0 and α = π/2 in
f I(α) defines two orthogonal real sGoldstino directions. The squared masses

of these two sGoldstino fields are then given by m2
(α) ≡ f I(α)VIJ̄ f̄

J̄
(α), for α =

0 respectively α = π/2. Now, using (2.2) and the definition of f I(α) one
immediately sees that

m2
(α) = m2 + Re{e2iαf iVijf

j} . (2.14)

Since (m2
(0) +m2

(π/2))/2 = m2, m2 is the average (the arithmetic mean) of the

two sGoldstino squared masses [132]. If Vij = 0, then both sGoldstinos have
a squared mass m2, otherwise the masses split and m2 is an upper bound for
one of them.∗

The crucial point now is that the Goldstino multiplet cannot receive a
supersymmetric mass, since in the limit of rigid supersymmetry the fermionic
component must be massless. This means that – if the squared masses which
the sGoldstinos receive from supersymmetry breaking turn out negative – one
cannot render them positive by simply adding supersymmetric mass terms.
This is reflected in the expression (2.7) by the fact that the average sGold-
stino squared mass m2 depends on the superpotential only via the vector f i

(which defines the SUSY breaking direction) and the gravitino mass (which
for Minkowski vacua is an order parameter of SUSY breaking).†

By contrast, the masses of the remaining (2n−2) real scalar fields can be
tuned positive (and in fact arbitrarily large) by a suitable choice of the super-
potential. This can be seen from the mass matrix (2.2). Recall that Gi, ∇iGj

and ∇i∇jGk depend, respectively, on (logW )i, (logW )ij and (logW )ijk and
hence – for a given fixed K – can be tuned to any desired values. For instance,
one can first choose ∇i∇jGk such that the elements of Vij are zero. Then,
one just has to make sure that the block Vi̄ is positive definite. This can be
achieved by tuning ∇iGj, which occurs in Vi̄ via the positive semidefinite
part eG∇iGk∇̄G

k of Vi̄. While fk∇iGk – and hence f ieG∇iGk∇̄G
kf ̄ –

∗Notice that even when Vij = 0 and hence m2
(α) = m2, the Goldstino direction fj is

in general not an eigenvalue of V j
i . Interestingly, it turns out, however, that the ‘optimal

direction’ f0j which – for some given vev – extremizes m2, is always an eigenvector of V j
i

with eigenvalue m2
0 [130]. To show this, one has to vary m2 with respect to fi, enforcing

f ifi = 1 with a Lagrange multiplier. This gives an implicit equation for f0j . Using this
and the stationarity condition (2.1) one arrives at V j

i f0i = m2
0f0i. The direction which

maximizes m2 will be determined in Sect. 3.2 for the particular scalar geometries discussed
in that Section.

†As mentioned before, in supergravity, the (would-be) Goldstino, which is absorbed
by the gravitino in the super Higgs effect, has a in general non-vanishing mass param-
eter mη = −2γm3/2. The fact that the sGoldstinos cannot have supersymmetric mass
contributions is however unaffected by this.
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2.2 Condition for slow-roll inflation

is constrained by the stationarity condition (2.1), the projection along di-
rections perpendicular to f i – and hence all masses but the two sGoldstino
masses – can be tuned to any desired values by a suitable choice of the su-
perpotential. How this can be done in practice will be discussed in some
detail in Sect. 4, where we will also present explicit two-field models (with
string-motivated superpotentials) where all moduli are stabilized.

2.2 Condition for slow-roll inflation

In this section we show that in order for viable models of slow-roll inflation
to exist, the condition Eq. (2.10) also needs to be fulfilled, up to corrections
(which will be made more precise below) which are suppressed by the flatness
parameters of the potential: [105]

R(f i) .
2

3

1

1 + γ
. (2.15)

Notice the meaning of the parameter γ in terms of the Hubble parameter
during inflation: Recalling from Sect. 1.2 that H2 ' V/3, one has

γ ≡ V

3m2
3/2

' H2

m2
3/2

. (2.16)

Here, m3/2 is the gravitino mass during inflation, which in general differs
from the gravitino mass today.

Even though (2.15) is of course valid for any positive value of the pa-
rameter γ, for generic and realistic slow-roll inflation models it is natural to
have γ � 1. The reason is that H should be much larger than the weak
scale, while m3/2 is expected to be not much larger than the weak scale.
Of course, the gravitino mass during inflation is not identical to that today
(which should be not much higher than the weak scale in order for SUSY to
solve the hierarchy problem), so that one could in principle also build models
with a large m3/2. However, it is a reasonable assumption that the gravitino
masses during inflation and today are at least roughly of the same order of
magnitude in generic models (i.e. without fine-tuning). Then, one indeed
expects H � m3/2 (i.e. γ � 1) for phenomenologically viable inflationary
models. This means that the condition on the sectional curvature is more
restrictive for achieving realistic inflationary models than it is for achieving
realistic vacua (where γ � 1).

We now proceed with proving (2.15). In essence, the reason why (2.10)
has to be approximately fulfilled in order for inflation to be possible is simply
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2 A STABILITY CONDITION IN 4D N = 1 SUPERGRAVITY

that an inflationary phase is similar to a metastable vacuum, the difference
being that (i) an inflationary trajectory corresponds to ‘almost’ (rather than
exactly) stationary points and that (ii) one of the squared masses may be
slightly negative. We will now discuss this quantitatively and give a detailed
derivation of (2.15).

For a successful inflationary model, the potential should be sufficiently
flat in order for inflation to last long enough to produce our spatially flat,
homogeneous and isotropic universe. For models with a single real scalar
field, as discussed in Sect. 1.2, this necessitates the smallness of the flatness
parameters ε = 1/2(V ′/V )2 and η = V ′′/V . In case of several fields, the
flatness parameters can be generalized to (cf. for instance [136,137])∗

ε =
∇iV∇iV

V 2
, (2.17)

η = min eigenvalue {N} . (2.18)

Here, the (2n× 2n)-matrix N is defined as

N I
J =

LIP̄VP̄ J
V

=
1

V

(
∇i∇jV ∇i∇̄V
∇ı̄∇jV ∇ı̄∇̄V

)
, (2.19)

where we used

LIJ̄ ≡
(
gi̄ 0
0 gı̄j

)
, (2.20)

respectively its inverse LJ̄I , to raise indices.

Next, notice that for any unit vector uI one has†

η ≤ uIN
I
Ju

J . (2.21)

∗A more rigorous and very general characterization of slow-roll conditions for multi-
field models with noncanonical kinetic terms can be found in Ref. [138]. In particular,
a distinction between dynamical effects parallel and perpendicular to the inflaton’s tra-
jectory (which at leading order in the slow-roll approximation is ∝ ∇IV ) can be made.
Instead of the single-field parameter η, one then has two parameters η|| and η⊥, where η||
roughly corresponds to the projection of N along the direction ∇IV of the inflationary
trajectory and η⊥ corresponds to those elements of N mixing the vector ∝ ∇IV with the
normal vector relative to the inflaton’s trajectory. Since η⊥ vanishes in the single-field
case, it is a measure of the multi-field effects.

In any case, the condition |η| � 1 (for η as defined in (2.18)) is a necessary condi-
tion, because it is not stronger than demanding |η||| � 1 (due to η ≤ η|| which follows
from (2.21)). Actually, it is also not much weaker than demanding |η||| � 1: In order for
isocurvature perturbations to be not too large (which is a phenomenological requirement),
the projection of N along directions perpendicular to ∇IV should be much larger than η||.
This means that η ' η||, as contributions to η coming from projecting N along directions
perpendicular to ∇IV have to be suppressed.

†Indeed, one can always decompose uI as uI =
∑
k c(k)ω

I
(k), where the ωI(k)’s represent
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2.2 Condition for slow-roll inflation

In particular, one may choose the sGoldstino direction, i.e. uI = f I(α)

(see (2.13)). This yields, in analogy to (2.14),

η ≤ ∇i∇̄V

V
f if ̄ + Re

{
e2iα∇i∇jV

V
f if j

}
. (2.22)

Furthermore, one can average over two orthogonal sGoldstino directions
(e.g. α = 0 and α = π/2) which results in the weaker (but simpler) bound

η ≤ ∇i∇̄V

V
f if ̄ . (2.23)

This inequality should be contrasted with (2.6). Using Eq. (2.3), one finds
after some algebra that

∇i∇̄V

V
f if ̄ =

[
2− 3(1 + γ)R(f i)

] 1

3γ
(2.24)

+
4√

3(1 + γ)
Re

{
∇iV

V
f i
}

+
γ

1 + γ

∇iV∇iV

V 2
.

The terms in the second line, which do not occur in the corresponding
Eq. (2.7), are due to the non-vanishing of the first derivatives of the poten-
tial. Also, note that the factor 1/(3γ), multiplying the rectangular bracket
in the first line, comes just from the factor 1/V in the definition of η (com-
pared to the definition of m2). Since f i is a unit vector, it is clear from the
definition of ε that |f i∇iV/V | ≤

√
ε. This inequality, together with (2.23)

and Eq. (2.24), then implies∗

R(f i) ≤ 2

3

1

1 + γ
+

4√
3

γ

(1 + γ)
3
2

√
ε+

(
γ

1 + γ

)2

ε− γ

1 + γ
η . (2.25)

We now see quantitatively what was meant with the ‘ . ’-symbol in (2.15),
namely the disregard of the second, third and fourth terms of the right-
hand side of (2.25). Neglecting these terms is certainly justified for slow-roll
inflation where ε � 1, |η| � 1. Note that for γ � 1, these three terms
are not only small because of the smallness of the flatness parameters, but
they are also suppressed by the smallness of γ. For the (more realistic) case

a basis of orthonormal eigenvectors of N with eigenvalues λ(k). Since the uI ’s are unit
vectors, the coefficients c(k) satisfy

∑
k |c(k)|2 = 1 and so it immediately follows that

uIN
I
Ju

J =
∑
k |c(k)|2λ(k) ≥ min{λ(k)} = η.

∗As a check, one immediately sees that for ε = η = 0 (and replacing ≤→< so that all
masses are positive and not only nonnegative), one reobtains the condition (2.10) for the
existence of metastable vacua.
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2 A STABILITY CONDITION IN 4D N = 1 SUPERGRAVITY

γ � 1, on the other hand, the second term is in addition suppressed by a
factor 1/

√
γ. Denoting by Rmax the right-hand side of the inequality (2.25),

we have for different regimes of γ

Rmax =


2
3

+O(γ) for γ � 1
2
3

1
1+γ

+O(max{
√
ε, η}) for γ ∼ 1

0 +O(max{ε, η, 1/γ,
√
ε/γ}) for γ � 1

(2.26)

Notice also that the corrections coming from the non-vanishing of the slow-
roll parameters are positive (i.e. they make the condition slightly milder) as
long as η < 0. Using for instance a canonical Kähler potential for which
R(f i) = 0, it is thus always possible to build viable models with η < 0.

Summary of Section 2:

The main results are the inequalities (2.10) and (2.25) (actually, (2.10) can be
considered a special case of (2.25)). Both are conditions on R(f i), i.e. the sec-
tional curvature of the manifold spanned by the scalar fields along the Gold-
stino direction; (2.10) is necessary for metastable vacua with non-negative
energy density V = 3γm2

3/2 to exist, while (2.25) is necessary for inflationary

trajectories with Hubble parameter H2 = γm2
3/2 to exist. We have explained

that these conditions, which are valid for 4d supergravity theories without
vector multiplets, are equivalent to the requirement that the average of the
squared masses of the sGoldstinos is positive (respectively only slightly neg-
ative in case of inflation). We have also argued that the squared masses
of all remaining scalars can be made arbitrarily large by a tuning of the
superpotential.
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3 Implications for scalar manifolds from

string theory

The objective of this Section is the computation of R(f i) for certain ‘inter-
esting’ classes of scalar geometries. R(f i) depends on the point in the scalar
manifold (i.e. on the values of the moduli) and on the direction f i, which
in turn, for a given K, depends on the parameters of the superpotential as
well as on the values of the moduli. While R(f i) is of course not constant
in general, it turns out that in some cases the range of R(f i) is restricted.
More precisely, for certain scalar geometries one finds that R(f i) ≥ 2/3, so
that both de Sitter vacua and inflation are excluded (and this cannot be
remedied by any fine-tuning of the superpotential). We will show that this
property holds for particular scalar manifolds which are obtained from string
compactifications (in the large-volume- respectively large-complex-structure-
and weak-coupling-limit). In Sect. 3.3, in turn, we will show that this may
be circumvented by subleading corrections, which slightly modify the scalar
geometry.

3.1 No-scale Kähler potentials

Before we come to specific scalar manifolds from string compactifications, let
us first consider the general class of Kähler manifolds (of which the scalar
manifolds from string compactifications which we will consider in Sect. 3.2 are
a subclass) defined by no-scale Kähler potentials. The latter are characterized
by the property [139]

KiKi = 3 . (3.1)

As will be reviewed within Sect. 3.2, such Kähler potentials arise for the ge-
ometric moduli of both heterotic and IIB string compactifications at leading
order in the perturbative expansion. In this section, we will discuss some
interesting properties of R(f i) which are valid for no-scale Kähler potentials
in general. First, we consider completely arbitrary no-scale Kähler poten-
tials. Then, in addition to the no-scale Kähler property, we will impose also
a ‘shift symmetry’ (which also occurs in string-derived Kähler potentials, as
we will see in Sect. 3.2). Finally, we will further specify to the particular
case of models with only two fields. The results we will find here will be very
useful later on.

For arbitrary no-scale Kähler potentials, the property (3.1) implies

Ri̄mn̄K
iK ̄KmK n̄ = 6 , (3.2)

Ri̄mn̄K
̄KmK n̄ = 2Ki , (3.3)
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3 IMPLICATIONS FOR SCALAR MANIFOLDS FROM STRING THEORY

as one finds by taking two derivatives ∂i∂̄ of Eq. (3.1) and contracting the
result with KiK ̄ respectively K ̄. From Eq. (3.2) we see that

R(ki) =
2

3
, (3.4)

where we have defined the normalized vector

ki ≡ Ki√
KjKj

=
Ki

√
3
. (3.5)

Recall that 2/3 is the critical value to violate the inequality (2.10) (respec-
tively (2.15)) in the case γ = 0.

Furthermore, from (3.3) it follows that R(f i) is stationary at f i = ki, i.e.

δ

δf i
R(f i)|f i=ki = 0 . (3.6)

To verify this (and also for later purposes), it is useful to decompose the
vector f i into a part which is parallel to ki and a part which is orthogonal
to ki:

f i = eiϕ
(
sinχki + eiφ cosχni

)
, fi = e−iϕ

(
sinχki + e−iφ cosχni

)
,

f ı̄ = e−iϕ
(
sinχki + e−iφ cosχnı̄

)
, fı̄ = eiϕ

(
sinχki + eiφ cosχnı̄

)
. (3.7)

Here, we have nini = 1 and niki = 0 by definition, and χ, ϕ, φ are an-
gles.∗ Notice that the term in R(f i) which is linear in ni is proportional to
Ri̄mn̄n

ik̄kmkn̄ and hence vanishes by Eq. (3.3) and niki = 0. This means
that R(f i) is indeed stationary at f i = ki.

To decide if (2.10) respectively (2.15) can be satisfied for some f i or not,
we need to know if the stationary point f i = ki is a minimum, a maximum
or a saddle point (i.e. the convexity of R(f i) at f i = ki). De Sitter vacua
and inflation are excluded if it is a minimum. Otherwise, they are possible,
given a suitable superpotential. It turns out, however, that the convexity is
not determined by the no-scale property. In the following paragraphs, we
can at least show that R(f i) either has a saddle point or a minimum if one
in addition has a shift-symmetry.

Let us then make the further assumption, besides the no-scale property,
that K depends only on Φi + Φ̄i, but is independent of the imaginary part

∗For the sake of brevity, we will set the overall phase ϕ to zero in most equations.
We have actually already done this for (3.4) and (3.6), which are also true if there is an
additional phase ki → eiϕki.
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3.1 No-scale Kähler potentials

of Φi. (Such a shift-symmetry is actually realized for the string-derived no-
scale Kähler potentials which will be discussed in Sect. 3.2.) In this case, we
can drop the distinction between holomorphic and antiholomorphic indices in
quantities deduced only from K. However, for quantities which depend also
on the superpotential (such as fi, Gi or ni), this distinction cannot simply be
dropped, because such quantities are not real. In order to get rid of indices
with bars also for these quantities, we introduce the following new notation
by making the replacements

fi → fi, fı̄ → f̄i, f i → f̄ i, f ı̄ → f i , (3.8)

and analogously for Gi, ni etc.

For no-scale Kähler potentials with shift symmetry, there exists a special
coordinate frame in which e−K is a homogeneous function of degree 3 in
Φi+Φ̄i. This means that (Φi + Φ̄i) d

dΦi e
−K = 3e−K which immediately implies

−
(
Φi + Φ̄i

)
Ki = 3 . (3.9)

Taking a derivative of (3.9), it follows that

Ki = −
(
Φi + Φ̄i

)
. (3.10)

Note that this equation, together with (3.9), implies the no-scale property
(3.1). Finally, taking two more derivatives and contracting with Ki’s, one
finds that

RijmnK
m = Kijn , (3.11)

RijmnK
mKn = RimjnK

mKn = 2 gij . (3.12)

As we now discuss, using the above expressions one finds that R(f i)
either has a minimum or a saddle point at f i = ki, but not a maximum. For
convenience (and in order to comply with the notation of Refs. [104,105,130]),
we introduce the quantity

σ̂(f i) ≡ 2

3
−R(f i) . (3.13)

After some algebra and with the help of Eqs. (3.11) and (3.12), one finds
that

σ̂(f i) = ω̂ − 2ŝiŝi , (3.14)

where

ω̂ =

[
2

3
gijgmn −Rijmn +

1

2
KijkP

klKlmn

]
nin̄jnmn̄n cos4 χ (3.15)

ŝi =

[
2√
3

e−iφni + eiφn̄i

2
tanχ+

1

2
P ijKjmnn

mn̄n
]

cos2 χ . (3.16)
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3 IMPLICATIONS FOR SCALAR MANIFOLDS FROM STRING THEORY

Here, we have used the projector

P ij ≡ gij − kikj (3.17)

on the subspace orthogonal to ki. We now see that σ̂(f i) does not have a
minimum (corresponding to a maximum of R(f i)) at f i = ki, because σ̂(f i)
can always be made negative by choosing a value for χ such that tanχ is large
enough that the negative term −2ŝiŝi dominates over the term ω̂ (whose sign
we cannot tell just from the no-scale property and the shift symmetry). It
seems that for no-scale Kähler potentials with shift symmetry, both situations
(R(f i) having a saddle point or a minimum) can arise. (In Sect. 3.2 we will
see that this expectation is correct.)

For the particular case of models with only two fields, Eqs. (3.15) and
(3.16) can be further simplified. Since by definition niki = 0, we have
(n1, n2) ∝ (k2,−k1) in this case. In particular, we may choose ni to be real
(i.e. ni = n̄i). Including the correct normalization for a unit vector, one finds
that

(n1, n2) =
√

det g (k2,−k1) , (n1, n2) =
1√

det g
(k2,−k1) . (3.18)

Since the scalar manifold is two-dimensional, the vectors ki and ni span a
basis. Therefore, the projector is simply

P ij = ninj . (3.19)

It follows that (3.15) and (3.16) now simplify to

ω̂ =

[
2

3
−Rijmnn

injnmnn +
1

2

(
Kijkn

injnk
)2
]

cos4 χ , (3.20)

ŝi = ni
[

2√
3

cosφ tanχ+
1

2
Kjmnn

jnmnn
]

cos2 χ . (3.21)

In particular, (3.21) shows that one can always tune ŝi = 0 by choosing an
appropriate value for χ and cosφ 6= 0 (note that χ and φ depend on the
superpotential). This in turn means that in order to find out if R(f i) has
a saddle point or a minimum at f i = ki, for the case of two-field models we
just have to check whether the quantity ω̂ can be positive or not. In the next
section, we will identify a (surprisingly simple) criterion on Kähler potentials
from heterotic respectively IIB string compactification to decide this.
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3.2 String compactifications

3.2 String compactifications

At low energies, i.e. below the mass scale set by the characteristic length
scale of the strings, it is justified to approximate a string theory by a 10d
supergravity field theory. Dimensional reduction of the latter on 6d compact
spaces then leads to a 4d field theory. How much of the original supersym-
metry of the 10d theory remains in 4d depends on the type of the compact
6d space. For instance, in case of Calabi-Yau manifolds, one quarter of the
original SUSY is preserved.

Here, we are interested in the for contact to particle phenomenology most
interesting case – where the 4d theory has N = 1 SUSY. It turns out that –
at tree-level in the string coupling – the Kähler potential for the Kähler mod-
uli has a no-scale structure in the limit where the length scale of the compact
space is much larger than the length scale of the strings (this is the ‘large-
volume limit’), while the Kähler potential for the complex structure moduli –
which in general is not of the no-scale type even at large volume – has a no-
scale structure in the ‘large-complex-structure limit’.∗ One can distinguish
between (at least) two types of such no-scale Kähler potentials arising from
string compactifications. The first one, which we treat in Sect. 3.2.1, arises
for instance – but not only – for the Kähler moduli of Calabi-Yau compacti-
fications of the heterotic string. The second one (Sect. 3.2.2) occurs for the
Kähler moduli of IIB string theories compactified on Calabi-Yau orientifolds
with O3/O7 planes.

Note that we always assume that the dilaton and either the complex
structure moduli (if we consider the Kähler potential for the Kähler moduli)
or the Kähler moduli (if we consider the Kähler potential for the complex
structure moduli) are stabilized in a way that they can be integrated out
without affecting the low energy dynamics. Under what conditions this is
justified is a subtle issue which we will not touch here (see e.g. [59,141–144]
for recent studies in this direction).

∗The large-complex-structure limit can roughly be understood as follows: Mirror sym-
metry identifies the moduli space for the Kähler moduli of a manifold X with the moduli
space for the complex structure moduli of a ‘mirror manifold’ X̃. Since the former moduli
space obeys the no-scale property in the limit where X is large, the moduli space for the
complex structure moduli of the corresponding mirror manifold X̃ should also be of the
same no-scale form. This limit for the moduli space of the complex structure moduli of
X̃ is called ‘large-complex structure limit’ (see e.g. Ref. [140]).
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3 IMPLICATIONS FOR SCALAR MANIFOLDS FROM STRING THEORY

3.2.1 Heterotic moduli spaces

The moduli of Calabi-Yau compactifications of the heterotic string include
the dilaton/axion and the deformations of the Calabi-Yau metric. The latter
are divided into deformations of the Kähler class and deformations of the
complex structure. Locally, the moduli spaceM is (at tree-level) the product
manifold [145]

M =Mks ×Mcs × SU(1, 1)

U(1)
, (3.22)

where Mks is the space spanned by the Kähler moduli, Mcs is spanned by
the complex structure moduli while the dilaton/axion are the coordinates of
the last factor. One has

K = − log Y , (3.23)

where in the large-volume limit Y cs/ks are given by [145–147]

Y cs = i

∫
X

Ω ∧ Ω̄ , Y ks = V ≡ 4

3

∫
X

J ∧ J ∧ J . (3.24)

Here Ω and J are, respectively, the holomorphic (3, 0)-form and the Kähler
(1, 1)-form of the Calabi-Yau threefold. V is the classical volume in that the
equality Y ks = V only holds in the large-volume limit, and is modified by α′-
and worldsheet-instanton corrections.

For concreteness, let us focus on the Kähler moduli sector in the large-
volume limit and assume that it induces supersymmetry breaking. Of course
we could equally well consider the complex structure moduli in the large-
complex-structure limit which – due to mirror symmetry – would lead to an
identical analysis.

Since J is harmonic, it can be expanded in a h1,1-dimensional basis wi,
i = 1, . . . , h1,1 of the cohomology group H1,1 via J = viwi.

∗ The NS two-form
has a similar expansion B2 = biωi. The coefficients in these expansions vi and
bi are scalar fields which combine into the complex coordinates T i = vi + ibi.
Inserting this into (3.24), one obtains

K = − logV , with V =
1

6
dijk (T i + T̄ i)(T j + T̄ j)(T k + T̄ k) , (3.25)

where dijk =
∫
X
wi ∧ wj ∧ wk are the Calabi-Yau intersection numbers.

Before we continue let us emphasize that such a Kähler potential also ap-
pears as a sub-sector of other string compactifications, for example, in Calabi-
Yau compactifications of type IIB with O5/O9-orientifold planes [148].

∗Recall that the cohomology group Hp,q for a manifold consists of the equivalence
classes of closed (p, q)-forms on that manifold.
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3.2 String compactifications

Therefore the following analysis is not only valid for heterotic compactifi-
cations, but rather for any moduli-sector with a Kähler potential of the form
given in Eq. (3.25).

In order to compute σ̂(f i) let us first recall a few further properties of
K (for more details on the following computations we refer the reader to
Appendix A). Its first derivatives read

Ki = −Vi
V
, where Vi =

1

2
dijk(T

j + T̄ j)(T k + T̄ k) . (3.26)

The Kähler metric is then given by

gij = −Vij
V

+
ViVj
V2

= eKdijkK
k +KiKj , (3.27)

where the matrix Vij = dijk(T
k + T̄ k) has a signature (1, h1,1 − 1) for all

allowed values of T i + T̄ i, i.e. those values for which V is positive and the
Kähler metric is positive-definite [145]. The inverse metric is conveniently
expressed in terms of the matrix V ij which is defined as the inverse of Vij,
i.e. V ijVjk = δik. Multiplication with T k + T̄ k gives 2V ijVj = T i + T̄ i = −Ki.
Using this, one easily finds that∗

gij = −VV ij +
1

2
KiKj . (3.28)

Using (3.26) – (3.28) one also easily computes the third derivatives of K and
the Riemann tensor of the Kähler manifold:

Kijk = −eKdijk + gijKk + gikKj + gjkKi −KiKjKk , (3.29)

Rijmn = gijgmn + gingmj − e2Kdimpg
pqdqjn . (3.30)

The reason why Rijmn has this specific simple form is that Mks (and
also Mcs) is not only a Kähler manifold, but moreover a ‘special
Kähler’ manifold, meaning that its Kähler potential can be expressed
in terms of a holomorphic function F = F (Φ) (the ‘prepotential’) via
Y = −2(F + F̄ ) + (Fk + F̄k̄)(Φ

k + Φ̄k) [149]. Indeed, K in Eq. (3.25) can
be derived from the prepotential F (T ) = 1/6 dijkT

iT jT k. Actually,Mks and
Mcs are special Kähler manifolds not only in the large-volume large-complex-
structure limit. The specific form of the Riemann tensor holds for any special
Kähler manifold, with dijk replaced by the third derivative Fijk of the pre-
potential [150].

∗As a check, note that (3.26) and (3.28) indeed imply the no-scale condition (3.1) and
also the homogeneity property (3.9).
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3 IMPLICATIONS FOR SCALAR MANIFOLDS FROM STRING THEORY

We will now determine R(f i) (respectively σ̂(f i)) – specifying to models
with two moduli. We do so by making use of the decomposition σ̂ = ω̂ − 2ŝiŝi
which we found in Sect. 3.1. Inserting (3.29) and (3.30) into (3.20) and (3.21),
one finds (using in particular (3.27)) that

ω̂ =

[
3

2

(
eKdpqrn

pnqnr
)2

− 1

]
cos4 χ , (3.31)

ŝi = ni
[

2√
3

tanχ cosφ− 1

2
eKdpqrn

pnqnr
]

cos2 χ , (3.32)

where i, p, q, r ∈ {1, 2}, since we have two moduli. Let us now define the
quantity

aH ≡
3

2

(
eKdpqrn

pnqnr
)2

− 1 , (3.33)

so that ω̂ = aH cos4 χ. Using Eq. (3.18), one finds after some algebra that

aH = −∆

24

e4K

(det g)3
, (3.34)

where ∆ is the discriminant of the cubic polynomial defined by dijkv
ivjvk

after scaling out one variable,∗ and reads

∆ ≡ −27
(
d2

111d
2
222 − 3 d2

112d
2
122 + 4 d111d

3
122 + 4 d3

112d222 − 6 d111d112d122d222

)
.

(3.35)
This is the most important result of this section: Since det g > 0, it means
that the sign of ω̂ is the sign of −∆, which is independent of the value of
the moduli. Hence, for Kähler potentials of the form (3.25) with two moduli
and with ∆ < 0, de Sitter vacua and inflation are possible, whereas they are
excluded if ∆ > 0.

Let us now proceed and determine, for two-field models with ∆ < 0 and
for some fixed value of aH ∈ (0,+∞),† the maximal value of σ̂ which may be
obtained by tuning φ and χ (i.e. by tuning the Goldstino direction). Inserting
the definition (3.33) into (3.32), one immediately finds

ŝi = ni
2√
3

[
tanχ cosφ− sH

√
1 + aH

8

]
cos2 χ , (3.36)

where sH = sign(dpqrn
pnqnr). Then, one has

σ̂ =

aH − 8

3

(
tanχ cosφ− sH

√
1 + aH

8

)2
 cos4 χ . (3.37)

∗Hereby, we mean the cubic polynomial P (x2) = dijkx
ixjxk with x1 ≡ 1.

†That indeed aH can be arbitrarily large can be seen in simple examples.
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3.2 String compactifications

In the following, we provide some details on how to find the maxi-
mum of σ̂ (which we denote by σ̂0). First, one finds that at station-
ary points of σ̂ one has cosφ ∈ {0,±1}. One can check however that at
a maximum one needs to have cosφ ∈ {±1}. Since σ̂ is invariant under
(tanχ→ − tanχ, cosφ→ − cosφ), we can take cosφ0 = 1 without loss of
generality. Next, it is convenient to define the new variable ε by

tanχ ≡ sH

√
1 + aH

8
(1 + ε) . (3.38)

The condition ∂σ̂/∂ε |cosφ=1= 0 then determines the stationary points. Solv-
ing this equation amounts to finding the roots of a cubic polynomial in ε.
Luckily, this polynomial factorizes in a linear and a quadratic part, so that
the expressions for the roots are relatively simple. The solution which turns
out to correspond to a maximum of σ̂ is given by

ε0 =
3

2

(√
1 + aH/9

1 + aH
− 1

)
. (3.39)

Plugging (3.38), (3.39) and cosφ0 = 1 back into (3.37) one finds that the
maximum is given by

σ̂0 =
128

3

aH + 9
√

(1 + aH)(1 + aH/9)− 9(
21 + aH − 3

√
(1 + aH)(1 + aH/9)

)2 . (3.40)

From Eq. (3.40) one sees that σ̂0 grows asymptotically as 2aH/3 for large
values of aH and can thus be made arbitrarily large and positive.∗ This
means that for heterotic models (with ∆ < 0⇔ aH > 0), by an appropriate
tuning of the superpotential (i) the average sGoldstino squared mass

m2 = [3(1 + γ)σ̂ − 2γ]m2
3/2 (3.41)

can be made arbitrarily large, and (ii) the condition for slow-roll inflation
can always be fulfilled (see (2.15)).

In the following subsection, we will repeat the analysis of this subsec-
tion for a different class of Kähler potentials which is obtained in type IIB

∗Note that for the simple choice of parameters cosφ = 1 and ε = 0 one has
σ̂ = 64 aH/(9 + aH)2, which is always positive (but of course smaller than the maximum
σ̂0 found in (3.40)). This choice was adopted in [105]. However, ε0 (see (3.39)) is close to
zero only for small aH so that σ̂0 will depart significantly from the approximate expression
64 aH/(9 + aH)2 for large values of aH.
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3 IMPLICATIONS FOR SCALAR MANIFOLDS FROM STRING THEORY

orientifold compactifications. While the equations turn out to be more com-
plicated, we can follow exactly the same logic. One important difference will
be, however, that for orientifold models with two moduli the corresponding
quantity σ̂0 cannot be arbitrarily large, so that there is an upper bound for
the masses of the moduli in terms of the gravitino mass.

3.2.2 IIB orientifold moduli spaces

In contrast to the heterotic string, type IIB Calabi-Yau compactifications
give theories with N = 2 supersymmetry in 4 dimensions [151–156]. The
RR forms which are present in 10d type II supergravities lead to additional
massless 4d fields which, together with the geometric moduli, arrange into
N = 2 supermultiplets. The scalars in the vector multiplets span again a
special Kähler manifoldMSK whereas the scalars in the hypermultiplet span
a ‘dual quaternionic’ manifold MQ.

One way to obtain a theory with N = 1 supersymmetry is to impose an
orientifold projection. In type IIA, this involves O6-planes while in type IIB
one has O3/O7 or O5/O9-planes [157,158]. The moduli space in all of these
three cases has the form [148,159] (a review can be found in Ref. [140])

M̃ = M̃SK × M̃Q , (3.42)

where M̃SK is a special Kähler submanifold of the ‘parent’ N = 2 moduli
space MSK while M̃Q is a Kähler submanifold of MQ. In the large-volume
large-complex-structure limit, the M̃SK factor satisfies the no-scale property
and the Kähler potential does in fact coincide with the Kähler potential of
Eq. (3.25). Therefore the analysis of Sect. 3.2.1 holds unmodified for the
moduli of M̃SK. On the other hand the M̃Q sector, which includes the
dilaton, satisfies KiKi = 4, and if the dilaton is fixed, the latter sector is
also no-scale [148]. However, the Kähler potential of M̃Q is different for the
three orientifold compactifications.

For concreteness let us focus on type IIB with O3/O7 planes, where
the Kähler potential in the large-volume limit reads KQ = K − log(S + S̄)
with [148]

K = −2 logV , where V =
1

48
dijkvivjvk . (3.43)

V is the classical volume of the Calabi-Yau orientifold, S is the dilaton/axion
and the vi, i = 1, . . . , h1,1

+ are the Kähler moduli of the Calabi-Yau orientifold.
In order to comply with the standard notation whereby chiral coordinates
carry upper indices, we have interchanged the positions of the indices of
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3.2 String compactifications

the Kähler moduli vi and the intersection numbers dijk in comparison to
Sect. 3.2.1. We stress that they are exactly the same objects as in the het-
erotic case. However, the vi do not appear as components of chiral multiplets
in the low energy effective action here. Instead, they determine the real part
of the Kähler coordinates T i = ρi + iζ i via the quadratic relation∗

ρi =
1

16
dijkvjvk . (3.44)

Due to this relation the Kähler potential of Eq. (3.43) cannot explicitly be
expressed in terms of the coordinates T i in general, but is only implicitly
defined through Eq. (3.44). As in the previous section we assume that the
dilaton is fixed to a supersymmetric configuration and focus only on the
Kähler moduli.

The metric can be conveniently expressed in terms of

dij ≡ ∂ρi

∂vj
=

1

8
dijkvk , dij ≡

∂vi
∂ρj

. (3.45)

Using (3.43) – (3.45), one computes (where Ki ≡ ∂K/∂T i)

Ki = − 1

2
eK/2vi , dij = − 1

4
e−K/2dijkKk . (3.46)

This in turn determines the Kähler metric and its inverse to be

gij =
1

2
KiKj −

1

4
eK/2dij , gij = 4 ρiρj − 4 e−K/2dij . (3.47)

One can now check that K satisfies the no-scale property KiKi = 3 as well
as the special identity Ki = −(T i + T̄ i), which again results from the fact
that e−K is a homogeneous function of degree 3 in T i + T̄ i. This can be used
to slightly rewrite the inverse metric as

gij = e−KdijkKk +KiKj . (3.48)

Notice that the inverse metric is, up to a factor, equal to the metric
(3.27) of the heterotic case (see Appendix B for more details).† In this sense,

∗The spaces Hp,q each split into even and odd spaces under the orientifold projection,
i.e. Hp,q = Hp,q

+ ⊕ Hp,q
− . Here, we assume for simplicity that hp,q− = dim(Hp,q

− ) = 0.
Otherwise, there would be – in addition to the h1,1

+ coordinates T i – also h1,1
− coordinates

Gα with couplings specified in [148].
†Let us clarify that this means that the inverse of the ‘orientifold metric’ and the

‘heterotic metric’ are (up to a factor) the same functions of the Kähler moduli, but they
are of course different functions of the Kähler coordinates of the orientifold- respectively
heterotic geometry.
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3 IMPLICATIONS FOR SCALAR MANIFOLDS FROM STRING THEORY

the Kähler geometry discussed in this section is dual to the one which one
obtains from heterotic compactifications [160]. This duality will be used
below to infer the quantity ω̂ for IIB O3/O7 Kähler geometries from the
expression (3.34) found in the last section for the heterotic case.

We also need the third derivatives of K and the Riemann tensor. Using
the relations (3.45) – (3.47) one finds after some algebra that [161] (see
Appendix A for more details)

Kijm = e−K d̂ijm − 3 g(ijKm) +KiKjKk , (3.49)

Rijmn = −gimgjn + 2 e−2K d̂i(j|kg
kld̂l|n)m + 6 g(ijKmKn)

−3KiKjKmKn − 4 e−K d̂(ijmKn) , (3.50)

where we abbreviated
d̂ijk ≡ gipgjqgkld

pql . (3.51)

As in Sect. 3.2.1, we now determine R(f i) (respectively σ̂(f i)) – spec-
ifying to models with two moduli – by making use of the decomposition
σ̂ = ω̂ − 2ŝiŝi. Inserting (3.49) and (3.50) into (3.20) and (3.21), one finds
(using in particular (3.48)) that

ω̂ =

[
1− 3

2

(
e−Kdpqrnpnqnr

)2
]

cos4 χ , (3.52)

ŝi = ni
[

2√
3

tanχ cosφ− 1

2
e−Kdpqrnpnqnr

]
cos2 χ . (3.53)

Let us also, in analogy to Eq. (3.33), define the quantity

aO ≡ 1− 3

2

(
e−Kdpqrnpnqnr

)2
. (3.54)

Notice the similarity of the expression for aO and the expression for aH
(Eq. (3.33)). In fact, one can show that aO = −aH (this is done in Ap-
pendix B). This is a consequence of the duality between the heterotic- and
orientifold scalar geometries, which was mentioned above. Also, one can show
(see Appendix B) that under this duality the right-hand side of Eq. (3.34) is

‘mapped’ to −∆
24

(det g)3

e4K , where ∆ is defined as in (3.35), but with intersection
numbers with upper indices.∗ Hence, Eq. (3.34) implies that†

aO =
∆

24

(det g)3

e4K
. (3.55)

∗Recall that raising the indices of the intersection numbers is only a convention.
†This can also be determined by a ‘brute force’ calculation from the Kähler poten-

tial (3.43). This is very cumbersome however, because performing the change of variables
(3.44) involves finding the roots of a quartic polynomial.
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3.2 String compactifications

We conclude that for orientifold models the situation is exactly the opposite
as that for heterotic models: Here, the sign of ω̂ is the sign of ∆, so that de
Sitter vacua and inflation are possible for ∆ > 0, but excluded for ∆ < 0.

We now determine, for a fixed value of aO ∈ (0, 1] (note that from (3.54)
it follows that aO ≤ 1), the maximal value of σ̂ which may be obtained by
tuning φ and χ. We proceed as in Sect. 3.2.1. Using the definition (3.54)
and introducing the sign sO = sign(dpqrnpnqnr), one finds

σ̂ =

aO − 8

3

(
tanχ cosφ− sO

√
1− aO

8

)2
 cos4 χ . (3.56)

As for (3.37) in Sect. 3.2.1, the maximum is at cosφ0 = 1. We also define

tanχ = sO

√
1− aO

8
(1 + ε) . (3.57)

One then has

σ̂|cosφ=1 = 64
aO − (1− aO) ε2/3

[8 + (1− aO)(1 + ε)2]2
. (3.58)

One sees that one gets a lower bound 64 aO/(9− aO)2 on σ̂0 by setting ε = 0.
This lower bound grows as aO is increased until the point aO = 1, where
it reaches its maximal value 1. The exact maximum of σ̂ for a given aO
occurs for a in general non-vanishing value ε0 (and hence is larger in general),
determined by ∂σ̂/∂ε|cosφ=0 = 0. Solving this equation again amounts to
solving a cubic polynomial, which – unlike in Sect. 3.2.1 – does not factorize,
so that the expression for the value of ε0 is somewhat complicated. One finds

ε0 =

√
1 + 5 aO/9√

1− aO
(
3 sin θ −

√
3 cos θ

)
, (3.59)

where

θ ≡ 1

3
arccos

(
aO√

3

√
1− aO

(1 + 5 aO/9)3/2

)
. (3.60)

Plugging this into (3.58), one finds that the exact maximal value σ̂0 is given
by a relatively complicated expression, which we do not report here. Fortu-
nately, one can however check that the quantity ε0 given by (3.59) is always
quite small for any value of aO ∈ (0, 1]. In particular, one easily verifies
that also the exact σ̂0 increases monotonically as a function of aO, and that
for aO = 1 one obtains σ̂0 = 1. In practice one can then approximate the
maximal value of σ̂ with the one associated with ε = 0, namely

σ̂0 '
64 aO

(9− aO)2
. (3.61)
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3 IMPLICATIONS FOR SCALAR MANIFOLDS FROM STRING THEORY

Notice finally that the fact that σ̂(f i) can be at most 1 implies the follow-
ing upper bound for the sGoldstino mass scale m (the fact that σ̂(f i) ≤ 1 is
however not relevant for the possibility of building inflationary models, since
even for γ � 1 it is always possible to fulfill the condition (2.15)):

m2 ≤ (3 + γ)m2
3/2 . (3.62)

It means that there is at least one scalar field whose mass is not larger than√
3 + γ times the gravitino mass – independently of the superpotential. This

is an interesting result concerning the phenomenology of IIB O3/O7 orien-
tifold compactifications, which may point towards a large gravitino mass to
ease the cosmological moduli problem∗ (unless there is a phase of ‘Thermal
Inflation’ [162]).

3.3 Subleading corrections

So far we have analyzed models that respect the no-scale property KiK
i = 3.

This property is however violated when α′-, worldsheet-instanton- or string-
loop-corrections to the Kähler potential are taken into account, although
they are suppressed in the large-volume and weak-coupling limit. It is there-
fore interesting to study how R(f i) (or equivalently σ̂(f i)) is modified by
these effects, particularly for those models for which σ̂(f i) ≤ 0 at leading
order, which therefore have neither de Sitter vacua nor inflation at lowest
order in the perturbative expansion. For concreteness we here consider only
α′ corrections, but the effect of other corrections can be studied in a similar
way. Note that the analysis of this section holds for an arbitrary number of
moduli.

3.3.1 Heterotic moduli spaces

If one takes α′ corrections into account, the Kähler potential for the Kähler
moduli of Calabi-Yau compactifications of the heterotic string is K = − log Y
where [169]

Y = V + 4ξ . (3.63)

The quantity ξ = −ζ(3)χ/2 is a real constant determined by the Euler char-
acteristic of the Calabi-Yau manifold, which is given by χ = 2(h1,1 − h2,1).
The geometry is still of the special Kähler type, with prepotential

∗Recall that the cosmological moduli problem [163–167] is the problem that light scalar
fields may either overclose the universe (if they are stable and have a mass & 10−26 eV)
or that they may spoil nucleosynthesis (if they are unstable, gravitationally coupled and
lighter than ∼ 100 TeV). A brief review of this can for instance be found within [168].
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3.3 Subleading corrections

F (T ) = 1/6 dijkT
iT jT k − ξ. However, as mentioned above, α′ corrections

break the no-scale property (3.1), which is seen from Eqs. (A.2) and (A.3) of
Appendix A with n = 1 and θ = (3/2)V/(V + 4ξ).

The natural small dimensionless parameter controlling the effect of α′ cor-
rections relative to the leading-order Kähler potential (3.25) is given by

δH =
4ξ

V
. (3.64)

In the following, we work at leading order in this parameter (this is signaled
by the use of the symbol ‘'’), which is small when the volume is large. Using
Eqs. (A.1) and (A.3) with θ ' 3/2(1− δH), one then finds that

KiK
i ' 3 + 6 δH . (3.65)

The Riemann tensor is given by Eq. (A.7). The quantities Fijk in that equa-
tion are as before given by the intersection numbers, whereas the metric
gij and its inverse gij are affected by the corrections and can be computed
from (A.1).

In order to understand how α′ corrections modify the sectional curvature
along the Goldstino direction, let us compute the function σ̂(f i) up to second
order in the ni’s. To this end one needs the contractions

RijmnK
jKn ' 2gim + 18δH(gim −KiKm)

RijmnK
mKn ' 2gij − 12δHKiKj

RijmnK
jKmKn ' 2(1− 18δH)Ki

RijmnK
iKjKmKn ' 6(1− 16δH) , (3.66)

which are computed using the formulae found in Appendix A. As a check, one
immediately verifies that for δH = 0 one reobtains Eqs. (3.2), (3.3) and (3.12).
Using furthermore the definition (3.7) of f i, the definition ki = Ki/

√
KjKj

and Eq. (3.65), one finds

σ̂(f i) ' 40

3
δH sin4 χ− 2

3
sin2 χ cos2 χ (3.67){

(1− 4 δH) 2 gijn
in̄j + (1 + 7 δH)(e2iφgijn̄

in̄j + c.c.)
}

+O
(
(ni)3

)
.

One observes that, also in the presence of subleading corrections breaking
the no-scale property, σ̂(f i) is stationary at ni = 0 (since there is no term
linear in ni), but its value at the stationary point now is

σ̂(ki) ' 40

3
δH (3.68)
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rather than zero. If one has χ < 0 (i.e. h2,1 > h1,1) this is positive.

This is particularly important for models where σ̂(f i) ≤ 0 at leading
order. For such models, the maximal value which the sGoldstino mass
scale (3.41) can attain (by choosing f i = ki) is given by

m2 ' [40(1 + γ) δH − 2γ]m2
3/2 . (3.69)

For a realistic vacuum we need γ � 1, so that the metastability condition
can be fulfilled as long as δH & γ/20. This gives a criterion on how large
α′ corrections have to be for a given γ in order to admit vacua with all moduli
stabilized.∗ Notice however that m2 is suppressed with respect to m2

3/2 by
δH. In order not to have too light particles to be in conflict with cosmological
lower bounds on moduli masses, δH would need to be correspondingly larger.
For instance, requiring m & 100 TeV (cf. the comment on the cosmological
moduli problem in the footnote ∗ on page 46) means that one would need
δH & γ/20 + (100 TeV/m3/2)2/40 ' (100 TeV/m3/2)2/40.

Regarding the realization of inflationary models (for Kähler potentials for
which σ̂(f i) ≤ 0 at leading order), for a given value of δH the bound (2.15)
is equivalent to a bound on the ratio of the Hubble scale H to the gravitino
mass m3/2 (recall γ ' H2/m2

3/2):

γ

1 + γ
.

3

2
σ̂(ki) ' 20 δH . (3.70)

Since the left-hand side is always less than one (even for γ � 1), models with
an arbitrarily large Hubble scale can be realized as long as δH & 1/20, which
may still be considered subleading. However, for values of δH which are much
smaller than this (which rather should be considered the generic situation
for a subleading correction), the Hubble scale is bounded by γ . 20 δH, i.e.

H .
√

20 δH m3/2 . (3.71)

3.3.2 IIB orientifold moduli spaces

We now include α′ corrections in orientifold compactifications. When these
corrections are taken into account, the Kähler potential (see Eq. (3.43)) is
modified to KQ = −2 log Y − log(S + S̄), where [62]

Y = V +
ξ

2

(
S + S̄

2

)3/2

. (3.72)

∗One should bear in mind, however, that other subleading corrections to the Kähler
potential could compete against α′ corrections and modify this result.
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3.3 Subleading corrections

One difficulty arises from the fact that these corrections depend on the dila-
ton which, strictly speaking, now should be considered a dynamical quantity.∗

This is due to the fact that in the presence of α′ corrections the Kähler poten-
tial is not anymore a sum of a part which depends only on the Kähler moduli
and a part which depends only on the dilaton (as one sees from Eq. (3.72))
and hence the metric is not block-diagonal with one block for the Kähler
coordinates and one block for the dilaton. For simplicity, we nevertheless
assume that the dilaton is fixed to a constant value in Eq. (3.72), and define
the new constant ξ̃ = (ξ/2)[(S + S̄)/2]3/2. We expect that the results of this
Section would not be qualitatively different in the full computation with a dy-
namical dilaton, assuming that S is fixed to a supersymmetric configuration
GS = 0.

As before, α′ corrections break the no-scale property (3.1), which can
be seen from Eqs. (A.2) and (A.3) of the Appendix with n = 2 and
θ = 3V/(V + ξ̃). The small dimensionless parameter controlling the relative
effect of the α′ corrections is in this case given by

δO =
ξ̃

V
. (3.73)

We will work at leading order in this parameter. Using the results of Ap-
pendix A with θ ' 3(1− δO), one then finds that

KiK
i ' 3 + 3/2 δO . (3.74)

As was done in Sect. 3.3.1 for the case of heterotic compactifications,
one may compute σ̂(f i) up to second order in ni (the computation is
more tedious now, however). The Riemann tensor, given by Eq. (A.5),
can be evaluated by using Yij = 1/8 dij, Yijm = −1/128 dirdjsdmtd

rst and
Yijmn = 24Yijsd

srYrmn. In order to compute the contractions of Rijmn with
two, three and four Ki’s, we need the contractions YijK

iKj = 3 (θ − 1)−2V ,
YijmK

iKj = Y/2 (θ − 1)−2Km and YijmnK
iKjKmKn = 9 (θ − 1)−4V . This

leads to

RijmnK
jKn ' 2gim +

27

8
δO (2gim −KiKm)

RijmnK
mKn ' 2gij −

3

8
δO (6gij − 5KiKj)

RijmnK
jKmKn '

(
2− 27

8
δO

)
Ki

RijmnK
iKjKmKn ' 6− 41

8
δO . (3.75)

∗Here we mean that one should first take derivatives of K with respect to the dilaton
and then evaluate these at the vev of the dilaton.
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In the same way as in Sect. 3.3.1, one then finds

σ̂(f i) ' 35

24
δO sin4 χ− 2

3
sin2 χ cos2 χ (3.76){(

1 +
5

4
δO

)
2 gijn

in̄j +

(
1 +

23

8
δO

)
(e2iφgijn̄

in̄j + c.c.)

}
+O

(
(ni)3

)
.

Again, σ̂(f i) is stationary at ni = 0 with a value

σ̂(ki) ' 35

24
δO . (3.77)

The only difference in comparison to the result (3.68) found for heterotic
models is the numerical factor in front of δO, which is of order unity now
rather than O(10) in (3.68). The implications for the realization of de Sitter
vacua and slow-roll inflation (for Kähler potentials with σ̂(f i) ≤ 0 at lead-
ing order) are thus similar to those for heterotic models: (i) The maximal
sGoldstino mass scale (3.41) is given by

m2 '
[

35

8
(1 + γ) δO − 2γ

]
m2

3/2 , (3.78)

which is suppressed by δO. (ii) Inflationary models with a parameter
γ ' H2/m2

3/2 are possible as long as

γ

1 + γ
.

3

2
σ̂(ki) ' 35

16
δO . (3.79)

Since the numerical factor in front of δO is smaller here (compared to (3.70)),
one cannot have inflationary models with γ ∼ 1 or larger, as that would ne-
cessitate δO ∼ 1, which is a contradiction to δO being a subleading correction.
We thus have γ � 1, and more precisely – for a (positive) subleading correc-
tion δO – we obtain the bound

H . m3/2

√
35δO/4 . (3.80)

Summary of Section 3:

In this Section we have discussed the implications of the metastability bound
for certain scalar geometries which arise from string compactifications. In a
first step, we discussed what can be said about the sectional curvature for gen-
eral no-scale models. We have shown thatR(f i) is stationary for f i = ki, with
critical value 2/3. We have further shown that, assuming in addition a shift

50
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symmetry, σ̂(f i) ≡ 2/3−R(f i) can be written in the form σ̂(f i) = ω̂ − 2ŝiŝi.
For two-field models, the negative semi-definite part −2ŝiŝi can always be
set to zero independently of ω̂, so that for such models, in order to know if
de Sitter vacua and inflation are possible, it is sufficient to find out if ω̂ can
be positive.

We have done this in Sect. 3.2 for two classes of scalar manifolds which
arise, on the one hand, (for instance) from heterotic Calabi-Yau compactifi-
cations and, on the other hand, from IIB Calabi-Yau orientifold compatic-
tifications with O3/O7 planes. For the former, we could show that the sign
of ω̂ is minus the sign of ∆ (the discriminant of the cubic function defin-
ing K), while for the latter the situation is the other way around (this is a
consequence of a duality between both geometries). We have also demon-
strated that – if ∆ has the right sign – in the heterotic case all moduli can
be made arbitrarily heavy by choosing a suitable superpotential, whereas for
orientifold geometries at least one of the scalar’s masses is not larger than√

3 + γ m3/2.

We have finally analyzed in Sect. 3.3 what happens to R(f i) if the no-
scale property of the Kähler potentials of Sect. 3.2 is sligthly violated by
α′ corrections. It turned out that the effect of the latter is to move the
critical value of R(f i) a little bit away from the value 2/3 obtained for no-
scale models – in which direction depends on the sign of the α′ correction.
This is similar for heterotic and orientifold geometries, the difference being
just the numerical factors.
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4 Constructing string-inspired models

4.1 General procedure

We now come to the question of how, for a given two-field Kähler potential
which satisfies the necessary condition for metastability on the sign of ∆ (as
discussed in Sect. 3.2), one may find (preferably string-motivated) superpo-
tentials such that the resulting scalar potential has a local minimum with a
tiny positive cosmological constant. In principle, one could achieve this by
making an ansatz for W with enough free parameters, then determine the
stationary points as a function of the parameters, and finally choose param-
eters such that V and all masses have the desired positive value. However, it
is very hard to find non-supersymmetric stationary points as soon as there
are n > 1 complex fields and several parameters. The reason is that find-
ing the stationary points amounts to solving a set of 2n coupled nonlinear
equations.∗

Our strategy will instead be to assume some reference values (T 1
0 , T

2
0 )

for the fields and then to ‘construct’ a superpotential such that, at these
reference values, the scalar potential has a local minimum with the desired
vacuum energy.† The four masses of scalar fluctuations around the vacuum
depend on the Taylor expansion (around the reference values) of W up to
third order, i.e. we need to consider

W (T 1, T 2) = W0 +Wi(T − T0)i +
1

2
Wij(T − T0)i(T − T0)j

+
1

6
Wijk(T − T0)i(T − T0)j(T − T0)k + · · · . (4.1)

The goal is to determine suitable coefficients W0, Wi, Wij and Wijk. Since
we are demanding stabilization at field values (T 1, T 2) = (T 1

0 , T
2
0 ), these co-

efficients depend on (T 1
0 , T

2
0 ) via K and its derivatives evaluated at these

field values. More precisely, they depend only on ReT 1,2
0 , because of the

shift symmetry of K. Hence, the vevs of the axions ImT 1,2 do not affect
the coefficients in Eq. (4.1). This means that – once one has found suit-
able coefficients W0, Wi, Wij and Wijk – one can insert arbitrary values for
ImT 1,2

0 in (4.1) and the resulting scalar potential has a stationary point with

∗For this purpose, the algebraic method for finding stationary points (and the cor-
responding computer program) developed in Ref. [170] can be helpful. Still, in case of
several free parameters, we could not find solutions in a reasonable time even using that
powerful computer program.

†Of course, we do not solve the cosmological constant problem, but we can fine-tune
the vacuum energy to a realistic value.
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4 CONSTRUCTING STRING-INSPIRED MODELS

all four masses positive at that given vev. After having constructed the
Taylor coefficients, one can then, in a final step, propose a string-motivated
superpotential which has the required local behavior at (T 1, T 2) = (T 1

0 , T
2
0 ).

Let us now describe a systematic procedure for constructing the coeffi-
cients W0, Wi, Wij and Wijk. Of course, we have in principle already done
this at the end of Sect. 2.1, but we here outline the procedure in much more
detail for the case of two-field models. Before starting, notice that the free-
dom in choosing the two vevs T 1,2

0 can be used to achieve any desired value
for the volume V , and a suitable positive value for the parameter aH respec-
tively aO. More precisely, the value of aH respectively aO fixes the ratio of T 1

0

and T 2
0 , whereas the value of the volume V fixes their overall size. Note also

from Eq. (4.1) that rescaling the vevs of the fields T 1,2
0 can be compensated

by rescaling the coefficients appropriately, after factorizing out the overall
superpotential scale W0.

Tuning W0

The coefficient W0 is fixed, up to an irrelevant phase which we set to zero,
by the gravitino mass and the volume. The relation m3/2 = eG/2 means that

|W0| = m3/2 e
−K/2 . (4.2)

Due to the different dependence of the Kähler potentials of heterotic and
orientifold models on the volume, this equation translates into different re-
lations between m3/2 and V in heterotic and orientifold models. In the two
cases one finds respectively

|W0| = m3/2

√
VH , |W0| = m3/2VO , (4.3)

In any case, the value of |W0| fixes the overall scale of the potential.

Tuning Wi

The two coefficients Wi are fixed by the parameter γ and the direction of
supersymmetry breaking that one desires to achieve. Indeed, one has by
definition Gi = Ki +Wi/W0, and Gi can be parametrized in terms of γ and
fi as Gi =

√
3(1 + γ)fi. Recalling also the definition Ki =

√
3 ki, it follows

then that
Wi

W0

=
√

3
(√

1 + γ fi − ki
)
. (4.4)

This fixes Wi/W0 in terms of γ and fi. The direction fi which we have
parametrized by χ, φ and ϕ in Eq. (3.7) must be chosen such that m2 > 0.
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4.1 General procedure

Tuning Wij

The three coefficients Wij are fixed by demanding stationarity of the potential
at the reference field values, ∇iV = 0, and positivity of the two-dimensional
diagonal blocks Vi̄ of the mass matrix, which is necessary for positivity of
the full mass matrix. It is convenient to first implement the stationarity
conditions (2.1). This implies the following two relations, which allow to fix
two of the three parameters Wij in terms of the last one (understanding now
Gi as fixed):

Wij

W0

Gj = −(1 + 3γ)Gi −Gı̄ + ΓkijGkG
j +

WiWj

W 2
0

Gj . (4.5)

The remaining parameter among the Wij which is still free is then fixed by
demanding positive-definiteness of the two-dimensional matrix Vi̄. We have
already ensured that the projection m2 = Vi̄f

if ̄ is positive in the last step.
In order to see how Vi̄ may be tuned to be positive definite, one calculates
the projection of Vi̄ along the direction ui orthogonal to f i, defined (up to
an overall phase) by

ui = cosχki − eiφ sinχni , ui = cosχki − e−iφ sinχni ,

uı̄ = cosχki − e−iφ sinχni , uı̄ = cosχki − eiφ sinχni . (4.6)

Using the fact that ∇iGju
if j = 0 by the stationarity condition, one finds

Vi̄u
iu̄ =

[
1 + 3γ − 3(1 + γ)Rijmnu

iu̄fmf n̄ + |∇iGju
iuj|2

]
m2

3/2 (4.7)

Vi̄u
if ̄ = −3(1 + γ)Rijmnu

if ̄fmf n̄m2
3/2 . (4.8)

From Eq. (4.7) we see that it is always possible to tune the quantity ∇iGj in
order to make the last positive term arbitrary large and achieve Vi̄ u

iu̄ > 0.
This is compatible with the two stationarity conditions that also involve
∇iGj, since there are three parameters Wij. Notice also that the off-diagonal
elements (4.8) are independent of ∇iGj, so that it is always possible to make
Vi̄ u

iu̄ large enough that both eigenvalues of Vi̄ are positive.

Tuning Wijk

Finally, the four coefficients Wijk need to be chosen in such a way that all
of the four eigenvalues of the full mass matrix VIJ̄ are positive when taking
into account the effect of the off-diagonal block Vij. Solving the expression
for Vij in terms of the Wijk, one deduces the following three relations (where
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4 CONSTRUCTING STRING-INSPIRED MODELS

now both Gi and ∇iGj are understood as fixed):

Wijk

W0

Gk =

[
RijkmG

m̄ + Γmij∇mGk + Γm(ik∇mGj) − 2
WiWjWk

W 3
0

+2
W(iWj)k

W 2
0

+
WkWij

W 2
0

+ Γm(ik

(
Wmj)

W0

−
WmWj)

W 2
0

)]
Gk

−(2 + 3γ)∇(iGj) + 3γ GiGj +
Vij
m2

3/2

. (4.9)

Recall that for Vij = 0, the mass spectrum is degenerate, with two states for
each of the two eigenvalues of Vi̄, which have already been adjusted to be
positive in the previous step. When instead Vij 6= 0, the spectrum splits and
one has to make sure that no eigenvalue becomes negative. This represents
three constraints on the four parameters Wijk. If for simplicity one requires
Vij = 0, then these become three relations, which allow to express three of
the four parameters Wijk in terms of the last one. More generally, however,
one can leave Vij arbitrary and compute the four eigenvalues as functions of
the Wijk’s. In generic situations it is hard to do this by hand, but it can easily
be done with computer assistance. One can then scan the multi-parameter
space of the Wijk’s for regions where all masses are positive.

The next step is to match these ‘local superpotentials’ with the expan-
sion of some string-motivated superpotential around the given vevs. To this
end we will consider in the next section superpotentials with enough pa-
rameters and determine these parameters in such a way that the Taylor
expansion around the reference field values matches the cubic superpotential
constructed as we just outlined.

4.2 Explicit examples

Let us now apply the procedure described in the last subsection to construct
some illustrative examples of string models with a sector of two volume mod-
uli admitting a metastable dS vacuum. The value of the vacuum energy re-
quired to explain the observed accelerated expansion of the universe is of the
order V ∼ 10−120 in Planck units. This is so small that we can set γ = 0
for the numerical examples we will discuss. Also, we will assume that the
superpotentials are separable:

W (T 1, T 2) = W (1)(T 1) +W (2)(T 2) . (4.10)

This choice implies further restrictions on the coefficients of the
Taylor expansion of the superpotential about the vacuum, namely
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4.2 Explicit examples

W12 = W112 = W221 = 0. The existence of a solution with these characteris-
tics is no longer guaranteed from the beginning. For instance, in the third
step (‘tuning Wij’), one has only two free parameters in this case. It turns
out however that it is nevertheless possible to find simple examples of this
type.

4.2.1 IIB orientifold models

Let us start with type IIB orientifold models. For these models, a way in
which the dilaton and the complex structure moduli may be stabilized is
well understood [56], and restricting to the sector of volume moduli may
be justified because the other moduli are generically stabilized at a higher
mass scale than the Kähler moduli. In this case, the necessary condition for
metastability is that the discriminant ∆ (see (3.35)) should be positive. As
a prototype example, let us take a CY manifold with intersection numbers
given by d111 = −1, d112 = 0, d122 = 1 and d222 = 0, for which ∆ = 108 > 0.
Using (3.43) and (3.44), the Kähler potential is then found to be

K = − log

[
8

9

(
(T 1+ T̄ 1) +

√
(T 1+ T̄ 1)2+ (T 2+ T̄ 2)2

)
(4.11)(

(T 2+ T̄ 2)2+ (T 1+ T̄ 1)2− (T 1+ T̄ 1)
√

(T 1+ T̄ 1)2+ (T 2+ T̄ 2)2

T 2+ T̄ 2

)2]
.

For definiteness we require that aO = 1 at the stationary point. As
seen in Sect. 3.2.2, this choice allows to maximize the sGoldstino mass and
corresponds to setting ŝi = 0. Using the definitions of aO and VO, one finds
that the condition aO = 1 fixes the vevs of the real parts of the two fields to
the following values, in units of V2/3

O :

ReT 1
0 0.412741

ReT 2
0 0.714888

(4.12)

We then apply the procedure described in the previous section: |W0| is fixed
by Eq. (4.3), W1 and W2 are fixed by the choice of the Goldstino direction,
W11 and W22 are determined by the stationarity condition, while W111 and
W222 are determined by computing the four masses as a function of W111 and
W222 and searching for a region of parameters where all masses are positive.
In this way we find that the local behavior that the superpotential needs to
have is specified by, for instance, the following Taylor coefficients, which are
given in units of m3/2VO for W0, m3/2V1/3

O for Wi, m3/2V−1/3
O for Wii and
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m3/2V−1
O for Wiii:

∗

W0 1.000000
W1 2.021311
W2 0.931223
W11 0.999657
W22 −0.797685
W111 −0.827204
W222 3.308820

(4.13)

For this example, the four physical square-mass eigenvalues m2
i at the min-

imum, obtained after canonically normalizing the fields, are given by 2.77,
2.95, 3.86, 5.14 in units of m2

3/2.

Notice that the coefficients (4.13) scale in the following way with the size

T0 ∼ V2/3
O of the field vevs:

W0 : Wi : Wii : Wiii ∼ 1 : T−1
0 : T−2

0 : T−3
0 . (4.14)

This scaling can be understood as naturally following from the structure of
Eqs. (4.4), (4.5) and (4.9) (to see this, note that Ki ∼ T−1

0 , gij ∼ T−2
0 etc). It

is conceivable however that this scaling could be avoided with some additional
fine-tuning of the parameters of the theory. This relation calls nevertheless
for superpotentials with derivatives satisfying (T )n(( ∂

∂T
)nW )/W ∼ 1.

Let us now try to match the coefficients (4.13) of the local expansion with
an explicit superpotential of a form that may plausibly arise in type IIB orien-
tifold models. The simplest possibility is to try with an exponential effective
superpotential that typically arises from gaugino condensation. This has the
simple form W = Ae−aT (where A and a are parameters), provided that
aT � 1, corresponding to a weakly coupled 4d low-energy effective theory.
For this type of superpotential, however, one gets (T )n(( ∂

∂T
)nW )/W ∼ (aT )n,

which is much larger than 1 as soon as aT � 1. It is then not possible to re-
produce the scaling (4.14). This problem might however be cured by adding
a constant term W = Λ, or possibly also a linear term W = FT , which may
arise from fluxes.† Notice also that one needs a superpotential with at least

∗It should be clear that there is much freedom in this procedure and the parameters
we provide are far from unique. We also stress that the fact that we choose to present
the parameters with an accuracy of 6 digits does not mean that viable models involve a
fine-tuning with a 6-digit-accuracy.

†The linear terms, which can result from metric fluxes and/or non-geometric
fluxes [171], do not arise in Calabi-Yau compactifications (see [172] for a recent review).
Note that the Kähler potential is at tree level unaffected by the presence of these fluxes.
Such fluxes have also been used to construct supersymmetric vacua. See for instance
Refs. [173,174].
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7 free parameters in order to be able to match all the local coefficients.

As a simple and ‘symmetric’ possibility to try out, one could then consider
a superpotential with a constant term plus two exponential terms for each
field:

W = Λ + A1e
−a1T 1

+ A2e
−a2T 2

+B1e
−b1T 1

+B2e
−b2T 2

. (4.15)

Such a combination of exponentials could arise for instance from gaugino con-
densation on two sets of D7-branes wrapping cycles controlled by the moduli
T 1 and T 2, each giving rise to a gauge group consisting of two semisimple
factors. This W has 9 coefficients which have to satisfy 7 equations. This
allows to express 7 of them in terms of the other 2, say b1 and b2, and of
the coefficients of the local superpotential. Among other relations, one finds
that

ai = −biWii +Wiii

biWi +Wii

. (4.16)

One can then choose the values of bi in such a way that biT
i
0 � 1, but

by Eq. (4.14) one will then get aiT
i
0 ∼ 1. This means that the constant

term allows to make only some of the exponents in the exponential terms
large, and some of them remain of order one, so that higher-order corrections
may become relevant. We nevertheless present a numerical example of this
type, given by the following values of the parameters, in units of m3/2VO for

Λ, Ai, Bi and V−2/3
O for ai,bi:

Λ 2.63036× 101

A1 7.37726× 101

B1 −9.77287× 101

A2 −1.50213× 100

B2 −2.80545× 100

a1 3.49830× 10−1

b1 2.79764× 10−1

a2 7.30908× 100

b2 4.19646× 10−1

(4.17)

These numbers are obtained by expanding the superpotential defined in
Eq. (4.15) about the vev and then determining the Taylor coefficients of
this expansion such that they match the values found in (4.13). Of course,
this process is not unique, since there are 9 parameters for 7 equations.

A more satisfactory but slightly more complicated model may be obtained
by adding linear terms. Let us consider for example the following form of
the superpotential:

W = Λ +F1T
1 +F2T

2 +A1e
−a1T 1

+A2e
−a2T 2

+B1e
−b1T 1

+B2e
−b2T 2

. (4.18)

While one still has Wiii/Wii = −ai, as this condition is unaffected by the
addition of a linear term, the relation between the coefficients ai, bi and
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Wiii/Wii gets now more complicated and less constraining. This allows to find
parameters such that all the exponents in the exponential terms are large. A
working example of this type is obtained with the choice of parameters (4.19),

in units of m3/2VO for Λ, Ai, Bi, m3/2V1/3
O for Fi and V−2/3

O for ai, bi.

Λ −4.83093× 10−1

A1 5.14986× 109

B1 −1.55366× 1010

A2 −4.16798× 108

B2 2.38480× 1010

a1 6.69463× 101

b1 6.99410× 101

a2 3.55839× 101

b2 4.19646× 101

F1 2.05036× 100

F2 8.92014× 10−1

(4.19)

Note that in order to achieve large values of the exponents aiT
i
0, biT

i
0

at the minimum in this kind of models, one necessarily needs a hierarchy
between the coefficients Ai, Bi of the gaugino condensation terms and the
coefficients Λ and (if present) Fi. Indeed, in order for all the terms in W
to be of comparable size at the minimum, the ratio of these two kinds of
coefficients must be of order eaiT

i
0 , ebiT

i
0 . In (4.17) such a hierarchy is absent,

because the exponents are of order one, whereas in (4.19) it is large, because
the exponents are large.

The particular numbers chosen in the second example serve as an il-
lustration but can correspond to realistic values for physical parameters.
For a weak scale gravitino mass m3/2 ∼ 10−16MPl ∼ 100 GeV and a rea-

sonably large volume in Planck units VO ∼ 103, one has A
1/3
i , B

1/3
i ∼

10−1MPl ∼ 1017 GeV, which is a not unrealistic gaugino condensation scale,
and Λ1/3 ∼ 10−4MPl ∼ 1014 GeV, which could also be reasonable.

4.2.2 Heterotic models

Let us now consider heterotic models. In this case, the way in which the
dilaton and the complex structure moduli may be stabilized (in particular at
a high scale and at supersymmetric points) is less understood, but we will
nevertheless assume that these do not play any role and focus on two volume
moduli. As an explicit example satisfying the necessary condition ∆ < 0,
let us consider a CY manifold with intersection numbers d111 = 1, d112 = 0,
d122 = 1 and d222 = 0, for which ∆ = −108 < 0. Using Eq. (3.23), the
corresponding Kähler potential is found to be

K = − log
[1

6
(T 1+ T̄ 1)3 +

1

2
(T 1+ T̄ 1)(T 2+ T̄ 2)2

]
. (4.20)
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We choose in this case the vevs in such a way that aH = 9. The motivation
for this choice is that for heterotic models we decide to fix the sGoldstino
direction such that ŝi = 0, and in that case the maximal value of σ̂ is reached
for aH = 9, as one easily checks. This choice ŝi = 0 does not correspond to
the largest possible sGoldstino mass (which is achieved for ŝi 6= 0), but it
has the virtue of maintaining some similarity with the orientifold examples.
The condition aH = 9 leads then to the following values of the vevs, in units
of V1/3

H :

Re T 1
0 0.405666

Re T 2
0 0.749277

(4.21)

Applying the same procedure as for orientifold models, one finds the
following set of local parameters, in units of m3/2V1/2

H for W0, m3/2V1/6
H for

Wi, m3/2V−1/6
H for Wii and m3/2V−1/2

H for Wiii:

W0 1.00000
W1 1.64415
W2 2.60392
W11 −17.4400
W22 3.82418
W111 616.732
W222 2.31275

(4.22)

In this model, the four physical square-mass eigenvalues m2
i at the minimum

are given by 4.43, 5.95, 203.88 and 311.92 in units of m2
3/2.

We may now proceed as for orientifold models and fit these coefficients
with a superpotential involving exponential, constant or linear terms. In this
case, however, the possible origin of such terms is less clear as for orientifolds.
For instance, gaugino condensation produces exponential contributions, but
with an exponent involving in the first approximation only the dilaton. It
is however common that the effective gauge coupling receives perturbative
threshold corrections depending on the volume moduli as well. Assuming
then that the dilaton does not play any role and the volume moduli are
large, one can be left with an exponent linear in T . Notice moreover that,
taking this perspective, there is no reason to require any longer that the
exponent should be large and positive (see for example [175,176]). As a toy
illustrative example with enough parameters, we can thus again consider a
superpotential of the form (4.15). In the same way as for orientifold models,
one can then, for example, reproduce the local coefficients (4.22) with the

following values of parameters, in units of m3/2V1/2
H for Λ, Ai, Bi and V−1/3

H

61



4 CONSTRUCTING STRING-INSPIRED MODELS

for ai, bi:

Λ −5.97604× 10−1

A1 −3.62358× 105

B1 −1.46692× 100

A2 7.98841× 10−1

B2 7.49672× 10−1

a1 4.36876× 101

b1 2.66924× 100

a2 −1.28225× 100

b2 5.33848× 100

(4.23)

As before, the hierarchy arising between some of the coefficients Ai, Bi and
Λ is related to the fact that some of the exponents aiT

i
0, biT

i
0 are large at the

minimum. In this case, for m3/2 ∼ 10−16 and VH ∼ 103 in Planck units, the

particular numbers chosen in the example yield A
1/3
i , B

1/3
i ∼ 1013−1015 GeV

and Λ1/3 ∼ 1013GeV.

Summary of Section 4:

The aim of this Section has been to build viable models, starting with
a string-derived two-field no-scale Kähler potential for which models with
metastable dS vacua are possible (i.e. ∆ has the right sign, as discussed in
Sect. 3.2). In other words, the task has been to find a corresponding string-
motivated superpotential, such that the resulting scalar potential has a local
minimum with realistic vacuum energy at a point in the moduli space where
the effective 4d supergravity approximation can be trusted. To this end
one could in principle have made an ansatz for the superpotential, identified
the stationary points of the resulting scalar potential and chosen parameters
such that all masses are positive. Since it is in practice however extremely
difficult to find non-supersymmetric stationary points, we followed a more
feasible route: We first specified field values where we wish the scalar poten-
tial to have a minimum and then constructed a superpotential which at these
field values has the desired properties (but is not yet string-motivated). We
outlined how this can be achieved in Sect. 4.1. In a second step, this ‘local
superpotential’ could then be matched to a string-motivated one. The scalar
potential which results from such a string-motivated W (and the correspond-
ing K) then has a minimum at the field values which were specified in the
beginning.

We presented explicit examples in Sect. 4.2, focussing on separable su-
perpotentials. For IIB compactifications, where integrating out the complex
structure moduli and the dilaton can be justified, we found a working exam-
ple which employs terms arising both from fluxes and from nonperturbative
effects (Eq. (4.18)). The coefficients we presented are given in units of the
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4.2 Explicit examples

gravitino mass and the volume, so that we in fact exhibited a whole fam-
ily of examples. For illustration, we also presented heterotic examples (even
though in this case it is not so clear that neglecting the effects of the complex
structure moduli and the dilaton can be justified).
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5 Conclusions and outlook

The main objective of this thesis has been to make progress on the question
of how dark energy and slow-roll inflation could be realized in string theory.

After motivating this area of research and briefly reviewing some back-
ground material in Sect. 1, we derived in Sect. 2, following Refs. [102–105], a
necessary condition (which we called ‘metastability condition’) which has to
be met in order for local minima with energy V = 3γ m2

3/2M
2
pl in the scalar

potential of arbitrary 4d N = 1 supergravity theories (without vector mul-
tiples however) with supersymmetry broken spontaneously by F -terms to
exist: Along the sGoldstino direction, the holomorphic sectional curvature
R(f i) of the Kähler manifold spanned by the scalar fields must be smaller
than 2/[3(1 + γ)]. (This is a consequence of the structure of supergravity
theories and is independent of whether the supergravity theory is derived
from string theory or not.)

Furthermore, we have proven in Sect. 2, following Ref. [105], that – up to
small corrections determined by the flatness parameters – the same condition
has to be satisfied in order for models of slow-roll inflation with a Hubble
parameter H =

√
γ m3/2 to be possible. In practice, the main difference

between both situations is then that in realistic models of inflation the Hub-
ble parameter is usually much larger than the gravitino mass so that one
needs R(f i) . 0, whereas for a realistic vacuum one has γ ' 0 so that only
R(f i) . 2/3 is required.

The sectional curvature R(f i) at a certain point in the moduli space de-
pends both on the Riemann curvature tensor of the scalar manifold, which
is defined by the Kähler potential of the supergravity theory, and on the
direction f i of supersymmetry breaking, which depends also on the superpo-
tential. However, in some cases the range ofR(f i) is restricted, independently
of the superpotential, so that – if it turns out that R(f i) cannot be smaller
than 2/[3(1+γ)] – one obtains a no-go theorem which, for the corresponding
Kähler potentials, excludes dS vacua respectively inflation (with a scale de-
termined by γ) independently of the form of the superpotential. On the other
hand, for those cases where a given Kähler potential does allow to fulfill the
metastability condition, we could show that it is always possible to stabilize
all moduli – given the freedom to choose an arbitrary superpotential. In this
sense, the condition that R(f i) must be smaller than 2/[3(1 + γ)] may be
considered not only a necessary, but also a sufficient condition for building
viable models. Of course, if one insists that the superpotential should come
from string theory, the choice for it is restricted. Nevertheless, there is still
a very large amount of freedom (such as from fluxes and nonperturbative
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effects) to obtain superpotentials in string theory.

The topic of Sect. 3 has been, following Ref. [104] and also [130], to analyze
R(f i) for certain classes of scalar geometries which occur in 4d low-energy
effective theories derived from heterotic CY compactifications and type IIB
CY orientifold compactifications. In particular, our interest was in the Kähler
potentials for the geometric moduli of such string compactifications. In the
limit of large volume (respectively large complex structure), these exhibit
a no-scale structure. Motivated by this, we first studied in Sect. 3.1 the
properties of R(f i) for arbitrary no-scale Kähler potentials. This lead to the
interesting result that R(f i) is stationary for f i = ki with critical value 2/3,
implying that in order to decide if de Sitter vacua are possible or not one
needs to know the convexity of R(f i) at that point. In Sect. 3.2, we were able
to show that, in case of two-moduli models, the latter is determined by the
discriminant ∆ of the cubic function which specifies the Kähler potential.

The final point of Sect. 3 has been the investigation of the effects which
subleading corrections to the no-scale property of the scalar geometry in
α′ have on the sectional curvature. We have demonstrated that this effect
consists in moving the critical value slightly away from the value 2/3, thus
allowing to circumvent the no-go theorem (this should be qualitatively the
same for other corrections, such as string loop corrections). It is then fea-
sible to also construct practicable models with Kähler potentials which are
excluded at leading order. The restriction is however that the squared mass
of the lightest scalar, respectively the square of the Hubble parameter, can in
this case be at most of the order of m2

3/2 times the small parameter specifying
the corrections.

Section 4, which is based on Ref. [130], was devoted to building concrete
models, i.e. to finding suitable string-motivated superpotentials which to-
gether with an eligible Kähler potential (which was found in Sect. 3) yield
a scalar potential with a realistic metastable vacuum. This was not as sim-
ple as it may have appeared at first sight due to the difficulty of identifying
non-supersymmetric stationary points in multi-field models. For this rea-
son, we developed a systematic procedure to ‘construct’ viable models by
imposing on them the desired properties only locally at the vacuum. In this
way, we were able to find classes of string-motivated models admitting viable
metastable vacua, both for type IIB CY orientifold compactifications and for
heterotic CY compactifications. The superpotentials in these examples were
of a form which can emerge from fluxes and gaugino condensation effects.
The fact that these models need to have more than one dynamical field and
at least seven independent parameters in the superpotential to allow for the
construction is probably the reason why such models have not been noticed
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earlier. It is still an open question to study more realistic, more generic and
more minimal models, but there now exist working examples for dS vacua
arising from simple F -term supersymmetry breaking in both type IIB and
heterotic compactifications.

We believe that these results emphasize in a clear way that it is actually
possible to achieve genuine metastable dS vacua even in models satisfying the
no-scale property, provided that the scalar geometry is sufficiently generic.
This is the case for the volume moduli sector in the large-volume limit of
smooth CY compactifications when at least two moduli arise. But of course,
the examples we provide should be considered as toy models. In order to
construct fully realistic models, there are several other issues to be addressed.
One of them is the detailed mechanism stabilizing the other moduli and the
impact of their dynamics on the dS vacuum admitted by the volume moduli
sector (see e.g. [59, 141–144]). Another is the life-time of the metastable dS
vacuum against decay to other supersymmetric AdS vacua that generically
arise at different values of the fields (see e.g. [177–180]).

Also, we would like to stress that the presence of vector multiplets giving
D-term contributions to supersymmetry breaking (which we have assumed
to play no role in our analysis) can potentially further improve the situ-
ation [106]. More precisely, increasing the ratio between the D-term and
F -term contributions (for a fixed value of V ) has the net effect of making
the left-hand side of (2.10) smaller and therefore making that constraint
milder [106].

Let us finally give an outlook to future directions of research.

It would certainly be interesting to extent the analysis of Sect. 4 in such
a way as to find examples which not only have a realistic vacuum, but also
include a trajectory which is suitable for slow-roll inflation. To do this in a
systematic way will be more challenging than finding models which only have
a realistic vacuum, because in this case – in order to obtain a model leading to
a viable cosmological evolution – it is not enough to impose local properties
at one point in field space, but a whole trajectory has to be specified in
principle. Nevertheless, we believe that this should be manageable.

Furthermore, it would be very useful to investigate how the results which
were obtained in Sect. 3.2 are modified for related, but more general scalar
geometries. For instance, one may wonder if a simple condition also arises
in case that the coordinates of the moduli space for type IIB orientifolds
with O3/O7 planes are not given by the relation (3.44), (which applies when
dim(Hp,q

− ) = 0), but by a more complicated relation, as specified in Ref. [148]
(which applies when dim(Hp,q

− ) 6= 0). Besides that, one would like to know
what can be said for scalar geometries of the type discussed in Sect. 3.2, but
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with more than two moduli. At least for situations where supersymmetry
breaking is dominated by two moduli, one may expect that an analysis similar
to that done in Sect. 3.2 can be performed.
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A Details of Kähler geometries

In this Appendix, we collect some useful formulae concerning the geometry
of Kähler manifolds, which are needed in some derivations in the main text.

A.1 Logarithmic Kähler potentials

Let us consider a Kähler potential of the form K = −n log Y , where Y is
some real function of the scalar fields φi and n is a real number. Denoting
by Y i̄ the inverse of Yi̄, one easily finds

Ki = −nYi
Y
,

gi̄ = −nYi̄
Y

+ n
YiY̄
Y 2

= −nYi̄
Y

+
1

n
KiK̄ ,

gi̄ = −Y Y
i̄

n
+

1

n

1

θ − 1
Y ir̄Yr̄Y

̄sYs = −Y Y
i̄

n
+
θ − 1

n
KiK ̄ ,

Ki = − 1

θ − 1
Y ir̄Yr̄ . (A.1)

The quantity θ is defined as

θ ≡ YiY
i̄Y̄
Y

, (A.2)

and controls the value of the contraction defining the no-scale property:

KiKi = n
θ

θ − 1
. (A.3)

The third derivatives of K are

Ki̄m = − n
Y
Yi̄m +

n

Y 2
(YiY̄m+ YmY̄i + Y̄Yim)− 2n

Y 3
YiY̄Ym ,

Ki̄n̄ = − n
Y
Yi̄n̄ +

n

Y 2
(Y̄Yin̄+ Yn̄Yi̄ + YiY̄n̄)− 2n

Y 3
YiY̄Yn̄ . (A.4)

Finally, the Riemann tensor for the Kähler manifold is

Ri̄mn̄ = Ki̄mn̄ −Kimr̄g
r̄sKs̄n̄

=
1

n

(
gi̄ gmn̄ + gin̄ gm̄

)
− n

Y
Yi̄mn̄ −

n

Y 2
(nYims̄g

s̄rYr̄n̄ +
1

θ − 1
YimY̄n̄)

+
n2

Y 3
(YimY̄n̄rg

rs̄Ys̄ + Y̄n̄Yims̄g
s̄rYr) . (A.5)
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A DETAILS OF KÄHLER GEOMETRIES

A.2 Special Kähler geometries

We now consider the case of special Kähler geometries, for which the Kähler
potential K = − log Y itself admits a holomorphic prepotential F , in terms
of which [149]

Y = −2(F + F̄ ) + (Fk + F̄k̄)(φ
k + φ̄k) . (A.6)

The Riemann tensor simplifies substantially in this case. Indeed, one eas-
ily computes Yi + Yı̄ = Nij

(
φj + φ̄̄

)
and Yi̄ = Nij, where Nij = Fij + F̄ı̄̄.

Combining these two expressions, one gets then Y i̄(Yj + Y̄) = (φi + φ̄ı̄). Fi-
nally, combining this result with Yij = Fijk

(
φk + φ̄k̄

)
and Yijk̄ = Fijk, one

obtains the relation Yijs̄Y
s̄r
(
Yr + Yr̄

)
= Yij. Using these relations, one finally

finds [150]

Ri̄mn̄ = gi̄ gmn̄ + gin̄ gm̄ −
1

Y 2
Fimrg

rs̄F̄s̄̄n̄ . (A.7)

A.3 Kähler geometries from IIB orientifolds

Here we provide some details on how the Riemann tensor for the particular
geometry which is discussed in Sect. 3.2.2 (defined by the Kähler potential
(3.43)) can be calculated. To this end, it is convenient to first compute
derivatives of

gij = e−KdijkKk +KiKj . (A.8)

Using the relations (3.45) – (3.47) one finds[
gij
]
k

= e−Kdijmgmk − (gij −KiKj)Kk − δikKj − δjkK
i , (A.9)[

gij
]
mn

= −e−2Kdijpgpqd
qrsgrmgsn + δimδ

j
n + δinδ

j
m . (A.10)

The third derivatives of K and the Riemann tensor are expressed in terms
of these derivatives as

Kijm = −gip[gpq]jgqm , (A.11)

Rijmn = −gipgqj[gpq]mn + gir[g
rp]mgpq[g

qs]ngsj . (A.12)

This then leads to

Kijm = e−K d̂ijm − 3 g(ijKm) +KiKjKk , (A.13)

Rijmn = −gimgjn + 2 e−2K d̂i(j|kg
kld̂l|n)m + 6 g(ijKmKn)

−3KiKjKmKn − 4 e−K d̂(ijmKn) , (A.14)

where we abbreviated
d̂ijk ≡ gipgjqgkld

pql . (A.15)
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B Dual Kähler geometries

Here, we would like to prove that Eq. (3.34) implies Eq. (3.55). To this end,
we make use of a ‘duality’ between, on the one hand, the scalar geometry (a)
which was discussed in Sect. 3.2.1 and is defined by the Kähler potential

K = − logV , with V =
4

3
dijk v

ivjvk , (B.1)

with coordinates
T i = vi + ibi , (B.2)

and, on the other hand, the scalar geometry (b), which was discussed in
Sect. 3.2.2 and is defined by the Kähler potential∗

K̂ = 2(K + log 64) (B.3)

with coordinates T̂i = ρi + iζi, where

ρi =
1

16
dijkv

jvk . (B.4)

Note that in this Appendix we label the Kähler potential, the coordinates
and derived quantities of the scalar geometry (b) with a ‘hat’ in order to
distinguish them from those of the ‘heterotic geometry’ (a). Also, we inter-
changed upper and lower indices in comparison to the notation of Sect. 3.2.2,
which is more convenient for the purposes of this Appendix.

One can then rewrite the metric of the heterotic geometry (3.27) and the
inverse of the metric of the orientifold geometry (3.47) as

gij =
1

4V2

(
∂V
∂vi

∂V
∂vj
− V ∂2V

∂vi∂vj

)
(B.5)

ĝij =
4

642

(
∂V
∂vi

∂V
∂vj
− V ∂2V

∂vi∂vj

)
. (B.6)

We stress that in this notation ĝij is the inverse metric for (b) while gij is
the metric for (a), as explained above. The two geometries (a) and (b) are
thus dual, in the sense that [160]

ĝij =
V2

28
gij . (B.7)

∗The constant ‘2 log 64’ is introduced in order to have the same ‘normalization’ for
the Kähler potential as in Sect. 3.2.2. Note that in this Appendix, V is always defined by
V = 4

3 dijk v
ivjvk.
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B DUAL KÄHLER GEOMETRIES

In particular, this implies

(det g)−1 = det ĝ(24e−K̂)n , (B.8)

for n-dimensional Kähler manifolds. Using this and (B.3), one immediately
finds for the case n = 2 that

e4K

(det g)3
=

(det ĝ)3

e4K̂
. (B.9)

One also easily finds that Ki = (16/V)K̂i. Using this, (B.3), (B.8) and the
definition (3.18) of the unit vector ni orthogonal to Ki for two-field models,
one finds that

(n1, n2) = 4e−K̂/2(n̂1, n̂2) . (B.10)

Using this and (B.3), one finds that

eKdijkn
injnk = e−K̂dijkn̂

in̂in̂k , (B.11)

which shows that aO = −aH (see the definitions (3.33) and (3.54)). Then,
using (B.9) one sees that indeed Eq. (3.34) implies Eq. (3.55).
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pers, I would like to thank Marta Gómez-Reino, Gonzalo Palma and Claudio
Scrucca. I am indebted also to Clare Burrage, Susha Louise Parameswaran,
Paul Smyth and Hagen Triendl for helpful comments on the manuscript. For
various interesting and useful conversations and discussions, I am grateful
to Thomas Danckaert, Manuel Hohmann, Torben Kneesch, Danny Manuel
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