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Chapter 1

Introduction

The standard model of particle physics is a successful theory for the physics
of the elementary particles. Nevertheless it has some severe drawbacks. A
promising theory for eliminating these drawbacks is superstring theory. In
the standard model, the elementary particles are described by point-like ob-
jects. In string theory, one chooses instead one dimensional objects - the
strings. Consistency of the theory demands supersymmetry and more that
4 space-time dimensions. Actually, there are more than one string theory,
namely the type I, the type IIA/B, the E8×E8 and the SO(32) [4]. The sev-
eral string theories differ, for example, by the number of supersymmetries.
The type IIA/B theories have two generators of supersymmetry, whereas
the remaining theories have one generator of supersymmetry.

Phenomenology is nowadays predominantly done with one supersymme-
try, corresponding to N = 1, as it would be the simplest extension of the
standard model of particle physics. When considering one of the type IIA/B
theories, one has, in addition to perform the dimensional reduction, to get
rid of the extra supersymmetry. The extra space dimensions are compact-
ified on a Calabi-Yau manifold using the Kaluza-Klein mechanism. These
manifolds are subject to two kinds of deformations. Deformations in the
shape are described by the complex structure moduli, deformatins of the
size by the Kähler moduli. These moduli have no affect on the topology of
the Calabi-Yau manifold [4].

In order to reduce the supersymmetry, one uses the orientifold projection
[1, 2, 3]. An orientifold projection is obtained by dividing a product of an
orientation reversal and of a discrete symmetry group out of a Calabi-Yau
manifold [2]. Actually, the type I theory is obtained from the type IIB the-
ory by performing the orientifold projection [4]. Another evidence for the
necessity of orientifolds stems from the fact that type II compactifications
with Dp-branes, which are introduced to attain a supersymmetric and non-
abelian gauge theory, are often inconsistent or at least unstable [5]. Both
drawbacks, inconsistency and instability, can be eliminated with the help of

5



orientifold projections.
The purpose of this work is to determine the Kähler potential of the

hypermultiplets, appearing in type IIB orientifold projections. This Kähler
potential describes the Kähler moduli of the Calabi-Yau manifold, which is
used to compactify the extra space dimensions. In contrast to the earlier
work performed on this topic [2], we use an alternative approach introduced
in [6], and performed for the O3/O7 orientifold projection in [3]. We per-
form the calculations following [7, 8, 9, 3] by rederiving the general coupling
function for the N = 1 tensor multiplets in type IIB string theory, using
the contour integral approach of [6] involving projective tensor multiplets.
Afterwards we perform the orientifold projection along the lines of [3] on
the projective tensor multiplets, and rederive the Kähler potential for the
O3/O7 orientifold projection. Then, we explicitly determine the Kähler po-
tential for the O5/O9 orientifold projection, as this was not done in [3], and
compare both Kähler potentials with those, derived in [2]. For this purpose,
we also determine the redefinition equations for the involved hypermultiplet
scalars. We find, after the redefining the hypermultiplet scalars, agreement
with the Kähler potentials derived in [2] up to an overall factor of 2. The
origin of this overall factor is presumably the different definitions of the
Kähler metric used in the literature.

This work is organized as follows:

• In chapter two, we introduce the formalism of N = 1 supersymme-
try and try to familiarize the reader with the basic topics, such as
superfield formalism, the different multiplets and their actions.

• Chapter three is dedicated to the N = 2 formulation of supersymme-
try. Again, we explain the N = 2 superfield formalism (though it is not
used extensively), and present the multiplets with the corresponding
actions. We also derive the constraints on the general coupling func-
tion F which appears in self-interacting tensor multiplet formulations.
Afterwards, we determine the bosonic action of such a self-interacting
model and perform the Legendre transformation on the scalar level.

• In Chapter four, we shortly review the type IIB theory and its action
compactified on a Calabi-Yau threefold. We also present the emerging
massless, bosonic spectrum.

• Finally, in chapter five, we determine the general coupling function
F for type IIB tensor multiplets using the contour integral approach.
Afterwards we derive the hyperkähler potential of the target space
geometry by performing the Legendre transformation. Subsequently,
we perform the orientifold projection using O3/O7 respectively O5/O9
planes and determine the corresponding Kähler potentials.
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• In appendix A we present our notation and some identities, which are
very useful when performing calculations with superfields.

• Appendix B is dedicated to the variation rules of superfields, which
play a role when performing duality transformations.

• Furthermore, we present in appendix C some basic facts of nonlinear
σ-models and Kähler geometry as well as an outline of hyperkähler
geometry.

• And finally, in appendix D we introduce the notion of projective su-
perfields, which we use in chapter 4 to perform the calculations.
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Chapter 2

Rigid N = 1 supersymmetry

2.1 N = 1 supersymmetry algebra

This chapter is predominantly a summary of [10]. The notation and summa-
tion convention are the same as in [10] and some important facts are listed
in appendix A.

The most simple supersymmetry algebra contains one set of fermionic
generators of supersymmetry Qα, Q̄α̇. The algebra reads [10]:

{Qα, Q̄α̇} = 2σm
αα̇Pm,

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0,

[Pm, Qα] = [Pm, Q̄α̇] = 0,

[Pm, Pn] = 0,

(2.1)

with α, α̇ = 1, 2 and m = 0, . . . , 3. Pm denotes the energy-momentum four-
vector. Fermionic objects carry spinor indices α, α̇, bosonic objects either
no index or Lorentz indices m.

2.2 N = 1 superfield formalism

After introducing anticommuting parameters ξα, ξ̄α̇ which anticommute with
all fermionic objects and commute with all bosonic ones, allocated

{ξα, ξβ} = {ξα, ξα̇} = {ξα, Qβ} = {ξα, Q̄α̇} = [ξα, Pm] = 0, (2.2)

one can express the algebra (2.1) in terms of commutators:

[ξQ, ξ̄Q̄] = 2ξσmξ̄Pm,

[ξQ, ξQ] = [ξ̄Q̄, ξ̄Q̄] = 0,

[Pm, ξQ] = [Pm, ξ̄Q̄] = 0.

(2.3)
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This may be viewed as a Lie algebra with anticommuting parameters and
one can define a group element, according to

G(xm, θ, θ̄) = ei[−xmPm+θQ+θ̄Q̄]. (2.4)

The multiplication of two group elements induces a motion in the parameter
space and one can express the Q, Q̄ by differential operators. In the following
we will use an equivalent set of differential operators, namely

Dα =
∂

∂θα
+ iσm

αα̇θ̄
α̇∂m,

D̄α̇ = − ∂

∂θ̄α̇
− iθασm

αα̇∂m.

(2.5)

One can now introduce the superspace with the coordinates (x, θ, θ̄) and
define functions on this space. These functions are called superfields and
depend on (x, θ, θ̄). As the parameters θ, θ̄ anticommute, it is obvious that
powers of θ (or θ̄) higher than two vanish. Therefore it is convenient to
expand superfields in power series in θ and θ̄:

f(xm, θ, θ̄) =g(x) + θαφα(x) + θ̄α̇ψ̄
α̇(x) + θαθαm(x) + θ̄α̇θ̄

α̇n(x)+

θασm
αα̇θ̄

α̇vm(x) + θαθαθ̄α̇λ̄
α̇(x) + θ̄α̇θ̄

α̇θαηα(x)+

θαθαθ̄α̇θ̄
α̇d(x).

(2.6)

The coefficient functions depending on the space-time coordinates x are
called component fields.

2.3 The constrained superfields

2.3.1 The chiral superfield

The chiral superfield is one of the irreducible representations of the su-
persymmetry algebra. Its defining relation is the action of the covariant
derivative D̄α̇ introduced in (2.5) on a superfield Φ:

D̄α̇Φ = 0. (2.7)

Introducing the new variable

ym = xm + iθσmθ̄, (2.8)

one observes that the action of D̄α̇ on ym simply is1

1Differentiation with respect to anticommuting variables is introduced in appendix A.2.
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D̄α̇y
m = 0. (2.9)

In addition, the covariant derivation of θ vanishes, too:

D̄α̇θα = 0. (2.10)

This means that any function, which depends only on ym and θ, satisfies the
constraint (2.7). The expansion of the chiral superfield in the coordinates
ym reads:

Φ(y, θ) = A(y) +
√

2θψ(y) + θθF (y). (2.11)

One can now express (2.11) in terms of xm, θ and θ̄:

Φ(x, θ, θ̄) =A(x) + iθσmθ̄∂mA(x) +
1

4
θθθ̄θ̄�A(x)

+
√

2θψ(x) − i√
2
θθ∂mψ(x)σmθ̄ + θθF (x)

(2.12)

Analogously, we can define the antichiral superfield, using the constraint

DαΦ∗ = 0. (2.13)

Its expansion in the variables θ, θ̄ can be obtained by a complex conjugation
of (2.11) respectively (2.12):

Φ∗(x, θ, θ̄) =A∗(x) − iθσmθ̄∂mA
∗(x) +

1

4
θθθ̄θ̄�A∗(x)

+
√

2θ̄ψ̄(x) +
i√
2
θ̄θ̄θσm∂mψ̄(x) + θ̄θ̄F ∗(x)

(2.14)

2.3.2 The vector superfield

The defining constraint of the vector superfield is

V = V ∗. (2.15)

The superfield expansion reads
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V (x, θ, θ̄) =C(x) + iθχ(x) − iθ̄χ̄(x) +
i

2
θθ

(

M(x) + iN(x)

)

+

i

2
θ̄θ̄

(

M(x) − iN(x)

)

− θσmθ̄vm(x)+

iθθθ̄

(

λ̄(x) +
i

2
σ̄m∂mχ(x)

)

− iθ̄θ̄θ

(

λ(x) +
i

2
σm∂mχ̄(x)

)

+

1

2
θθθ̄θ̄

(

D(x) +
1

2
�C(x)

)

.

(2.16)

Comparing the expressions (2.12) and (2.14) with (2.16) one realizes that
the fields C,M,N and χ can be eliminated by choosing a special gauge:

V −→ V + Φ + Φ̄. (2.17)

This gauge is often called Wess-Zumino gauge2 in the literature. The vector
superfield then reduces to a very simple form

V ′ = −θσmθ̄vm(x) + iθθθ̄λ̄(x) − iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x). (2.18)

One can also define chiral and antichiral field strengths which are invariant
under (2.17):

Wα = − 1

4
D̄D̄DαV,

W̄α̇ = − 1

4
DDD̄α̇V.

(2.19)

The invariance of Wα or W̄α̇ under the gauge transformation (2.17) can be
shown by using the the (anti)chirality constraints of Φ and Φ̄. The expansion
in θ, θ̄ is given by3

Wα = −iλα +
[

δ β
α D − i

2
(σmσn) β

α Fmn

]

θβ + θθσm
αα̇∂mλ̄

α̇. (2.20)

Here, Fmn denotes the field strength

Fmn = ∂mvn − ∂nvm. (2.21)

The antichiral field strength W̄α̇ can be obtained by complex conjugation.

2or WZ-gauge.
3when using the variable ym.
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2.3.3 The linear superfield

The linear superfield L [11, 12, 13, 14], also known as the real tensor multi-
plet or 2-form multiplet, is subject to the constraint

D2L = D̄2L = 0. (2.22)

Here, L is a real superfield. By virtue of this constraint, the linear superfield
can be defined in another equivalent way using a chiral spinor multiplet[11,
13, 14]:

D̄α̇Ψα = 0. (2.23)

Using (A.25), one can show that the following definition of the linear super-
field obeys the constraint (2.22):

L =
1

2
(DαΨα + D̄α̇Ψ̄α̇). (2.24)

The expansion in θ, θ̄ reads

L = C+θη+ θ̄η̄+θσmθ̄vm− i

2
θθθ̄σ̄m∂mη−

i

2
θ̄θ̄θσm∂mη̄−

1

4
θθθ̄θ̄�C. (2.25)

As the vector vm is subject to the constraint ∂mv
m = 0, it can be written

as

vm =
1

2
εmnopHnop (2.26)

with

Hmno = ∂[mBno] (2.27)

Here, Hmno is the field strength of the antisymmetric tensor Bmn, which is
natural a part of the chiral spinor superfield Ψα introduced in (2.23) and
(2.24).

We now turn to the representation of the linear superfield L in terms of
the chiral spinor multiplet Ψα. The expansion of Ψα in terms of θ, θ̄ can be
found analogous to the scalar chiral superfield Φ. Details are given in [13].
One finds4

Ψα = χα−θβ

(
1

2
δ β
α (C+iE)+

1

4
(σmσ̄n) β

α Bmn

)

+θθ(ηα+iσm
αα̇∂mχ̄

α̇) (2.28)

The antisymmetric tensor Bmn is included directly as a component field
in the θ, θ̄ expansion, in contrast to the linear multiplet where the tensor
appeared only through its field strength Hmno.

4The components are in terms of ym = xm + iθσmθ̄.
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2.4 Supersymmetric Lagrangians

2.4.1 Lagrangian for chiral superfields

The most general and renormalizable Lagrangian for a theory with NC chiral
multiplets is given by [10]:

L = Φ̄iΦi

∣
∣
∣
θθθ̄θ̄

+

[(
1

2
mijΦiΦj +

1

3
gijkΦiΦjΦk + λiΦi

)∣
∣
∣
∣
θθ

+ h.c.

]

, (2.29)

i, j, k = 1, . . . , NC . When introducing an arbitrary coupling function f , one
is led to a nonlinear σ-model (cf. appendix C).

2.4.2 Lagrangians for the vector superfields

To motivate the construction of the Lagrangian (see [10]) for a free, mass-
less vector multiplet, we recall that the field strengths Wα, W̄α̇ of the vector
multiplet contain only the gauge invariant components λα, D and Fmn of
the vector multiplet V . They can therefore be used to construct a gauge
invariant Lagrangian. Furthermore, the Lagrangian must be Lorentz invari-
ant. Hence, we have to take a product of the form W αWα, in order to
achieve a renormalizable Lagrangian. The supersymmetric, gauge invariant
generalization of a Lagrangian for a free, massless vector field therefore is

L =
1

4

(

WαWα

∣
∣
∣
θθ

+ W̄α̇W̄
α̇
∣
∣
∣
θ̄θ̄

)

. (2.30)

The next step to more general Lagrangian is to allow NV vector multi-
plets coupled by a symmetric coupling function fAB with A,B = 1, . . . , NV .
However, in the following we consider a more general scenario. We couple
the NV vector multiplets to NC chiral multiplets using a chiral multiplet
dependent coupling function fAB(Φi), i = 1, . . . , NC [13, 14]:

L =
1

4

∫

d2θfAB(Φ)WAWB + h.c.. (2.31)

The explicit form of the Lagrangian in components is determined in [14, 13].
The bosonic terms finally read:

L = −1

4
RefABF

A
mnF

Bmn +
1

8
ImfABε

mnopFA
mnF

B
op. (2.32)

2.4.3 Lagrangians for the linear superfields

We restrict ourselves to the massless case [15, 16, 17, 12, 13, 14]. In a
renormalizable scenario, the gauge invariant Lagrangian is given by the θ2θ̄2

component of L2, that is
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Lkin = −L2
∣
∣
∣
θθθ̄θ̄

. (2.33)

The tensor multiplet can also possess self-interactions, which we can include
when writing the Lagrangian as an arbitrary, real function F (L):

Lkin = −F (L)
∣
∣
∣
θθθ̄θ̄

. (2.34)

In components, this Lagrangian admits the following form (details are given
in the appendix of [13]):

Lkin = − 1

4

∂2F

∂C2

[

∂mC∂
mC + i(ησmη̄ + η̄σ̄mη) +

3

2
HmnoH

mno
]

− 1

8

∂3F

∂C3
ησmη̄εmnopH

nop − 1

48

∂4F

∂C4
ηηη̄η̄.

(2.35)

The linear multiplet is dual to the chiral multiplet. To show this, one intro-
duces the first order action5

S =

∫

d4xd2θd2θ̄
(

− 1

2
V 2 + (Φ + Φ̄)V

)

(2.36)

where V is a general, real superfield. Using the rules for variation of super-
fields6, we notice that variation of S with respect to V yields the following
equation of motion

V = Φ + Φ̄. (2.37)

Inserting (2.37) back into (2.36) results in the action for a free chiral multi-
plet.

Now we vary with respect to the (anti-)chiral multiplets Φ, Φ̄. As a con-
sequence of the anticommuting character of the Dα, D̄α̇, a chiral superfield
can be written as

Φ = D̄2Λ, (2.38)

with Λ being a general superfield. The first order action reads, after inte-
grating by parts,

S =

∫

d4xd2θd2θ̄
(

− 1

2
V 2 + (D2V )Λ + (D̄2V )Λ̄

)

. (2.39)

The equations of motion for the general superfields Λ, Λ̄ are

5Here we also introduced integration over anticommuting variables. An introduction
to this topic is given in appendix A.

6The rules are given in the appendix B.
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D2V = D̄2V = 0, (2.40)

which is exactly the constraint for a real, linear superfield. Putting (2.40)
back into (2.36) reveals the action for a free linear multiplet.
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Chapter 3

Rigid N = 2 supersymmetry

The most simple extension of the N = 1 supersymmetry is to introduce
another generator of supersymmetry. We choose an algebra without any
central charges. The algebra then is

{Qi
α, Q̄α̇j} = 2σm

αα̇Pmδ
i
j,

{Qi
α, Q

j
β} = {Q̄α̇i, Q̄β̇j} = 0,

[Pm, Q
i
α] = [Pm, Q̄α̇i] = 0,

[Pm, Pn] = 0,

(3.1)

with i, j = 1, 2. All other indices are treated as in the case of N = 1, that
is α, α̇ = 1, 2 and m = 0, . . . , 3.

3.1 N = 2 superspace

In the N = 1 case, one can introduce the superspace with the coordinates
(xm, θα, θ̄α̇) (see chapter 2.1). This formulation can be easily carried over to
the N = 2 theory by introducing the coordinates

(xm, θα
i , θ̄

i
α̇). (3.2)

The spinor variables form a doublet under SU(2) [18, 19], and as in the
N = 1 case, they are totally anticommuting. One can also define a group
element [17]:

G(xm, θα
i , θ̄

i
α̇) = ei[−xmPm+θα

i Qi
α+θ̄i

α̇Q̄α̇
i ]. (3.3)

Under the action of a supersymmetry transformation G(0, ξα
i , ξ̄

i
α̇), a point

in superspace (xm, θα
i , θ̄

i
α̇) is transformed into
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xm′ = xm + iθα
i σ

m
αα̇ξ̄

α̇i − iξα
i σ

m
αα̇θ̄

α̇i,

θα′
i = θα

i + ξα
i ,

θ̄i′
α̇ = θ̄i

α̇ + ξ̄i
α̇.

(3.4)

The generators of supersymmetry are in terms of the differential operators
Qi

α, Q̄α̇i given by [20]

Qi
α =

∂

∂θα
i

− iσm
αα̇θ̄

α̇i∂m,

Q̄α̇i = − ∂

∂θ̄α̇i
+ iθα

i σ
m
αα̇∂m.

(3.5)

A superfield F shall transform under a supersymmetry transformation as
follows:

δξF = (ξα
i Q

i
α + ξ̄i

α̇Q̄
α̇
i )F. (3.6)

The covariant derivatives Di
α, D̄α̇i admit the following form [21, 20, 22]

Di
α =

∂

∂θα
i

+ iσm
αα̇θ̄

α̇i∂m,

D̄α̇i = − ∂

∂θ̄α̇i
− iθα

i σ
m
αα̇∂m,

(3.7)

and the anticommutation relations for vanishing central charge are given by:

{Di
α, D̄α̇j} = −2iδi

jσ
m
αα̇∂m,

{Di
α, D

j
β} = 0,

{D̄α̇i, D̄β̇j} = {Di
α, Q

j
β} = {D̄α̇i, Q

j
β} = {Di

α, Q̄β̇j} = {D̄α̇i, Q̄β̇j} = 0.

(3.8)

Superfields can be expanded in powers of the variables θα
i , θ̄

i
α̇. Examples for

the superfield expansions are given in [21, 16]. However, this rather compli-
cated description is not necessary. One can describe the N = 2 multiplets
and interactions in terms of N = 1 superfields which describe their N = 1
submultiplets [16].

3.2 Scalar hypermultiplet

According to [23, 24, 16, 15], the hypermultiplet is described by a SU(2)
doublet of N = 1 chiral multiplets ΦA, A = 1, 2. The off-shell field content
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Field Type Degrees of freedom

AA complex scalars 4 bosonic

ψA doublet of chiral fermions 8 fermionic

FA complex scalars 4 bosonic

Table 3.1: Component content of the N = 2 hypermultiplet

is shown in table 3.1. The off-shell multiplet content of the hypermultiplet
is given in [25, 26].

One possibility for a free action is

S =

∫

d4xd4θΦ̄AΦA. (3.9)

The chosen description admits an algebra which closes only on-shell, so that
the supersymmetry transformations depend on the action. For the action
above, the first supersymmetry is manifestly implemented by the integral
over the anticommuting parameters, the second supersymmetry transforma-
tions are generated by [15], using the N = 1 covariant derivatives,

δΦA = ±D̄2(ξ̄Φ̄A),

δΦ̄A = ±D2(ξΦA).
(3.10)

The supersymmetry parameter ξ is space-time independent and chiral, i.e.
D̄α̇ξ = 0 and has the following expansion:

ξ = z + θζ − θθq. (3.11)

The parameter z generates the central charge transformations (which we set
to zero), ζ generates the additional supersymmetry and q rotates the two
supersymmetries into each other (SU(2) symmetry of the two supersymme-
tries) [15, 16].

3.3 Vector multiplet

The component content of the N = 2 vector multiplet consists of 8 + 8 off-
shell degrees of freedom [26], namely a complex scalar, a doublet of chiral
fermions, a vector gauge field and a triplet of real SU(2) scalars. It is
summarized in table 3.2. The real triplet of scalars satisfies YAB = YBA.

The N = 2 vector multiplet can be described by a N = 1 vector multiplet
V and a N = 1 chiral multiplet Φ in the adjoint representation of the internal
symmetry group [16, 27]. One supersymmetry is manifested in contrast to
the other one, which has to be implemented explicitly in the transformation
rules and mixes the superfields V and Φ:
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Field Type Degrees of freedom

X complex scalar 2 bosonic

ψA doublet of chiral fermions 8 fermionic

vm gauge vector 3 bosonic

Y(AB) real SU(2) triplet of scalars 3 bosonic

Table 3.2: Component content of the N = 2 vector multiplet

δΦ = −iW αDαξ

e−V δeV = ξ̄Φ + ξΦ̃.
(3.12)

Here, Φ̃ = e−V Φ̄eV , Wα = iD̄2(e−V DαeV ) and ξ is again a constant chiral
superfield as defined in (3.11). The covariant derivative Dα is given by
the covariant derivative of N = 1 case (2.5). This algebra closes without
imposing any field equations, which means that the transformations are, in
contrast to the hypermultiplet case, independent of the action. The action
is given by [16]

S =

∫

d4xd4θΦ̄Φ +

{
1

4

∫

d4xd2θWαWα + h.c.

}

. (3.13)

Of course, one can generalize this action to more than one vector mul-
tiplet. In that case, the N = 2 vector multiplets are described by n N = 1
vector multiplets V i and n N = 1 chiral multiplets Φi in the adjoint represen-
tation of some group, with i = 1 . . . n. The supersymmetry transformations
are generalized in the following way [27]:

δΦ = −iW αDαξ, Φ = ΦiTi

e−V δeV = ξ̄Φ + ξΦ̃, V = V iTi,
(3.14)

where (Ti)
j
k = if j

ik ,Φ̃ = e−V Φ̄eV , W iα = iD̄2(e−V DαeV )i and ξ is a con-
stant chiral superfield (3.11). As before, this algebra closes without imposing
any field equations. The action is given by [27]

S =

∫

d4xd4θK(Φ, Φ̃) +

{
1

4

∫

d4xd2θFijW
iαW j

α + h.c.

}

. (3.15)

In order that (3.15) is invariant under N = 2 supersymmetry transforma-
tions, one has to require that the function K and the matrix Fij can be
expressed by one single holomorphic function F (Φ) [27]:
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K =
1

2
(Φ̄iFi + ΦiF̄i),

Fi =
∂F

∂Φi
,

Fij =
∂2F

∂Φi∂Φj
.

(3.16)

3.4 Tensor multiplet

We now discuss the N = 2 tensor multiplets and its actions [15, 16, 26].
A N = 2 tensor multiplet consists of a SU(2) triplet of scalars, a doublet
of spinors and a Lorentz vector, which is the subject to a constraint. The
defining relation of the multiplet is, that the triplet of scalars transform
under supersymmetry into the spinors. In table 3.3, the component content
is shown.

Field Type Degrees of freedom

CAB real SU(2) triplet of scalars 3 bosonic

ψA doublet spinor 8 fermionic

vm Lorentz vector 3 bosonic

F complex scalar 2 bosonic

Table 3.3: Component content of the N = 2 linear multiplet

The formulation of the N = 2 tensor multiplets in terms of N = 1
superfields is well known [15, 16]. They consist of a chiral superfield Φ and
a spinor gauge field Ψα with the field strength L = 1

2(DαΨα + D̄α̇Ψ̄α̇),
satisfying the constraint of the N = 1 linear multiplet D2L = D̄2L = 0
(2.25).

The N = 2 supersymmetry transformations read

δξΦ = (D̄α̇L)(D̄α̇ξ̄),

δξΨα = −ΦDαξ.
(3.17)

As before, ξ is a constant and chiral superfield (3.11), describing the N = 2
supersymmetry transformations. But, in contrast to the transformations of
the hypermultiplet, these transformations close off-shell. As a consequence,
the sum of invariant actions is again invariant under the transformations
given above.

The most simple, N = 2 invariant action is given by

S =

∫

d4xd4θ
[

− 1

2
L2 + Φ̄Φ

]

. (3.18)
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The proof of invariance under (3.17) is straightforward. Thereby we as-
sume D2ξ = 0, which breaks the internal SU(2) symmetry between the two
supersymmetries [15, 16]:

δS =

∫

d4xd4θ
[

− LδL+ Φ̄δΦ + ΦδΦ̄
]

.

The transformation for the linear multiplet L reads:

δL = −1

2

[

(DαΦ)(Dαξ) + (D̄α̇Φ̄)(D̄α̇ξ̄)
]

(3.19)

Converting the θ-integration into covariant derivatives using (A.22), one
finds

δS = −1

4

∫

d4xd2θ̄D2

{[

L(DαΦ) + Φ(DαL)
]

(Dαξ)

}∣
∣
∣
∣
θ=0

+ h.c..

This can be simplified using the product rule as follows

δS = −1

4

∫

d4xd2θ̄D2

{

Dα(LΦ)(Dαξ)

}∣
∣
∣
∣
θ=0

+ h.c.,

which is equal to zero, when using (A.24) and D2ξ = 0.
A first step to generalize this simple action is to permit a general coupling

function F (L,Φ, Φ̄):

S =

∫

d4xd4θF (L,Φ, Φ̄). (3.20)

The proof of invariance under the transformations (3.17) can be performed
in a similar way as before:

δS = δ̂S + h.c.,

with

δ̂S =

∫

d4xd4θ

{[

− ∂F

∂L
(DαΦ) +

∂F

∂Φ̄
(DαL)

]

(Dαξ)

}

. (3.21)

We now focus on the first part δ̂S of δS, as the hermitian conjugated part can
be treated analogously, and perform the θ-integration using the covariant
derivatives:
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δ̂S = −1

4

∫

d4xd2θ̄Dβ

{[

− ∂2F

∂L∂L
(DβL)(DαΦ) − ∂2F

∂L∂Φ
(DβΦ)(DαΦ)

− ∂F

∂L
(DβD

αΦ) +
∂2F

∂Φ̄∂L
(DβL)(DαL)

+
∂2F

∂Φ̄∂Φ
(DβΦ)(DαL)

]

(Dαξ)

}∣
∣
∣
∣
θ=0

.

(3.22)

The second covariant derivative reveals1

δ̂S = −1

4

∫

d4xd2θ̄

{[

− FLLL(LβLβΦα) − FLLΦ(ΦβLβΦα)

+ FLL(LβD
βΦα) − FLΦL(LβΦβΦα)

− FLΦΦ(ΦβΦβΦα) − FLΦ(DβΦβ)Φα

+ FLΦ(Φβ)(DβΦα)

− FLL(Lβ)(DβΦα) − FLΦ(Φβ)(DβΦα)

+ FΦ̄LL(LβLβL
α) + FΦ̄LΦ(ΦβLβL

α)

+ FΦ̄ΦL(LβΦβL
α) + FΦ̄ΦΦ(ΦβΦβL

α)

+ FΦ̄Φ(DβΦβ)(Lα)
]

(Dαξ)

}∣
∣
∣
∣
θ=0

.

(3.23)

Note, that the terms ΦβΦβΦα and LβLβL
α vanish due to the anticommu-

tation relations spinor-indexed quantities (2.2).
The terms in (3.23) containing two linear multiplets and one chiral multiplet
can be simplified as follows

−FLLL(LβLβΦα) + FΦ̄LΦ(ΦβLβL
α) + FΦ̄ΦL(LβΦβL

α) =

−FLLL(LβLβΦα) + 2FΦ̄ΦL(ΦβLβL
α) =

−FLLL(LβLβΦα) − 2FΦ̄ΦL

1

2
δ α
β (ΦβLγLγ) =

−
[

FLLL + FΦ̄ΦL

]

(LβLβΦα).

(3.24)

Similarly, one can summarize the terms in (3.23) containing one linear mul-
tiplet and two chiral ones:

1We introduced the abbreviations FL = ∂F
∂L

, FLΦ = ∂2F
∂L∂Φ

etc. as well as Lα = DαL

and Φα = DαΦ.
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−FLLΦ(ΦβLβΦα) − FLΦL(LβΦβΦα) + FΦ̄ΦΦ(ΦβΦβL
α) =

FΦ̄ΦΦ(ΦβΦβL
α) − 2FLLΦ(LβΦβL

α) =

FΦ̄ΦΦ(ΦβΦβL
α) + 2FLLΦδ

α
β

1

2
(LβΦγΦγ) =

[

FLLΦ + FΦ̄ΦΦ

]

(ΦβΦβL
α).

(3.25)

The terms in (3.23) proportional to FLΦ vanish

−FLΦ

[

(DβDβΦ)(DαΦ) − (DβΦ)(DβDαΦ) + (DβΦ)(DβD
αΦ)

]

=

−FLΦ

[

(DβDβΦ)(DαΦ) + 2(DβΦ)(DβD
αΦ)

]

=

−FLΦ

[

(DβDβΦ)(DαΦ) − (DαΦ)(DβDβΦ)
]

= 0,

and for the terms in (3.23) containing one chiral multiplet and one linear
multiplet one finally finds

FLL

[

(DβL)(DβDαΦ) − (DβL)(DβD
αΦ)

]

+ FΦ̄Φ(DβDβΦ)(DαL) =

−2FLL(DβL)(DβD
αΦ) + FΦ̄Φ(DβDβΦ)(DαL) =

[

FLL + FΦ̄Φ

]

(DβDβΦ)(DαL).

(3.26)

One condition for invariance under the supersymmetry transformations
therefore is

FLL + FΦ̄Φ = 0, (3.27)

and in fact, this is the only condition as one can rewrite the remaining terms
(3.24) and (3.25) in the following way:

−FLLL − FΦ̄ΦL =
∂

∂L

[

− FLL − FΦ̄Φ

]

= 0

FLLΦ + FΦ̄ΦΦ =
∂

∂Φ

[

FLL + FΦ̄Φ

]

= 0.

The solutions for the differential equation (3.27) are known, as it is just
the three-dimensional Laplace equation.

The final step of generalization is to allow NT tensor multiplets. They are
described byNT chiral multiplets ΦI and linear multiplets LI , I = 1, . . . , NT .
The supersymmetry transformations generalize as follows
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δξΦ
I = D̄2(ξ̄LI)

δξΦ
I
α = −ΦIDαξ,

(3.28)

and the action simply reads

S =

∫

d4xd4θF (LI ,ΦI , Φ̄I). (3.29)

The constraint for the invariance of the action under the transformations
(3.28) can be derived in a similar way as in the case for one tensor multiplet.
The transformed action reads

δS = δ̂S + h.c.,

with

δ̂S =

∫

d4xd4θ

{[

− FLI (DαΦI) + FΦ̄I (DαLI)
]

(Dαξ)

}

, (3.30)

and after rewriting the θ-integration in terms of covariant derivatives and
performing the first covariant derivative, one obtains (up to the hermitean
conjugated part)

δ̂S = −1

4

∫

d4xd2θ̄Dβ

{[

− FLILJ (DβL
J)(DαΦI)

− FLIΦJ (DβΦJ)(DαΦI)

− FLI (DβD
αΦI) + FΦ̄ILJ (DβL

J)(DαLI)

+ FΦ̄IΦJ (DβΦJ)(DαLI)
]

(Dαξ)

}∣
∣
∣
∣
θ=0

.

After a circuitous calculation one arrives at
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δ̂S = −1

4

∫

d4xd2θ̄

{[

−FLILJLK (DβLK)(DβL
J)(DαΦI)

+ 2FΦ̄IΦKLJ (DβΦK)(DβL
J)(DαLI)

+ FΦ̄IΦJΦK (DβΦK)(DβΦJ)(DαLI)

− 2FLILKΦK (DβLK)(DβΦJ)(DαΦI)

+ FΦ̄ILJLK (DβLK)(DβL
J)(DαLI)

− FLIΦJΦK (DβΦK)(DβΦJ)(DαΦI)

+
(

FLILJ + FΦ̄IΦJ

)

(DβDβΦJ)(DαLI)

+
(

FLJΦI − FLIΦJ

)

(DβDβΦJ)(DαΦI)
]

× (Dαξ)

}∣
∣
∣
∣
θ=0

.

One condition for invariance therefore is

FLILJ + FΦI Φ̄J = 0. (3.31)

By imposing the symmetry2

FLJΦI − FLIΦJ = 0, (3.32)

we show in the following, that the remaining terms vanish, too. Using the
formula

(ψ1ψ2)(ψ3ψ4) = −(ψ1ψ3)(ψ2ψ4) − (ψ1ψ4)(ψ2ψ3)

for arbitrary spinors, we find

(DβΦK)(DβΦJ)(DαΦI)(Dαξ) = − (DβΦK)(DβΦI)(DαΦJ)(Dαξ)

− (DβΦK)(Dβξ)(D
αΦJ)(DαΦI).

With the help of the symmetry property (3.32), this relation reduces to

(DβΦK)(DβΦJ)(DαΦI)(Dαξ) = −2(DβΦK)(DβΦI)(DαΦJ)(Dαξ)

which is equal to zero.
In an analogous manner we can eliminate the term proportional to

2According to [16, 15], the term proportional to the symmetry constraint should vanish.
However, one can choose FLIΦJ to be symmetric in I, J as we will see in the following
section. In this case the symmetry constraint is automatically fulfilled.
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(DβLK)(DβL
J)(DαLI),

and the transformation of the action is reduced to

δ̂S = −1

4

∫

d4xd2θ̄

{[

− FLILJLK (DβLK)(DβL
J)(DαΦI)

+ 2FΦ̄IΦKLJ (DβΦK)(DβL
J)(DαLI)

+ FΦ̄IΦJΦK (DβΦK)(DβΦJ)(DαLI)

− 2FLILKΦJ (DβLK)(DβΦJ)(DαΦI)
]

(Dαξ)

}∣
∣
∣
∣
θ=0

.

(3.33)

For the term in (3.33) proportional to FLILJLK , the following relation holds

FLILJLK (DβLK)(DβL
J)(DαΦI)(Dαξ) =

FLILJLK

[

− (DβLK)(DβΦI)(DαLJ)(Dαξ)

− (DβLK)(Dβξ)(D
βLJ)(DαΦI)

]

=

− 2FLILKLJ (DβLJ)(DβΦK)(DαLI)(Dαξ).

Analogously, one can rewrite the term in (3.33) proportional to FΦ̄IΦJΦK .
The transformation of the action finally reads

δ̂S = −1

4

∫

d4xd2θ̄

{[

2
(

FLILJLK + FΦ̄IΦKLJ

)

(DβΦK)(DβL
J)(DαLI)

− 2
(

FΦ̄IΦJΦK + FLILKΦJ

)

(DβLK)(DβΦJ)(DαΦI)

+
(

FLILJ + FΦ̄IΦJ

)

(DβDβΦJ)(DαLI)

+
(

FLJΦI − FLIΦJ

)

(DβDβΦJ)(DαΦI)
]

(Dαξ)

}∣
∣
∣
∣
θ=0

,

which is evidently equal to zero when imposing the constraints (3.31) and
(3.32), because the remaining constraints are obviously fulfilled:

FLILJLK + FΦ̄IΦKLJ =
∂

∂LJ

[

FLILK + FΦ̄IΦK

]

= 0

FΦ̄IΦJΦK + FLILKΦJ =
∂

∂ΦJ

[

FLILK + FΦ̄IΦK

]

= 0.

To find the Lagrangian in components, one has to perform the full inte-
gration over θ and θ̄. Using (A.22), the action reads
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S =
1

16

∫

d4x
{

D2D̄2F (LI ,ΦI , Φ̄I)
}∣

∣
∣
θ=θ̄=0

,

and applying the covariant derivatives leads to

S =
1

16

∫

d4x

{

D2
[

FLILJ (D̄α̇L
J)(D̄α̇LI) + FLI Φ̄J (D̄α̇Φ̄J)(D̄α̇LI)

+ FΦ̄ILJ (D̄α̇L
J)(D̄α̇Φ̄I) + FΦ̄I Φ̄J (D̄α̇Φ̄J)(D̄α̇Φ̄I)

+ FΦ̄I (D̄α̇D̄
α̇Φ̄I)

]}
∣
∣
∣
∣
θ=θ̄=0

.

In the following sections, we will restrict ourselves to the bosonic part of
the N = 2 tensor multiplet Lagrangian. Higher order derivatives of the
function F , i.e. terms containing for example FLILJLK or FLILJLKLM , will
lead to terms containing fermions, which will be omitted in the following.
The bosonic part of S is then given by

S =
1

16

∫

d4x
{

2FLI LJ (DαD̄α̇L
J)(DαD̄α̇LI)

− 2FLI Φ̄J (DαD̄α̇Φ̄J)(DαD̄
α̇LI)

− 2FΦ̄I LJ (DαD̄α̇L
J)(DαD̄

α̇Φ̄I)

+ 2FΦ̄I Φ̄J (DαD̄α̇Φ̄J)(DαD̄α̇Φ̄I)

+ FΦ̄IΦJ (DαDαΦJ)(D̄α̇D̄
α̇Φ̄I)

+ FΦ̄I (DαDαD̄α̇D̄
α̇Φ̄I)

}∣
∣
∣
θ=θ̄=0

.

(3.34)

Using the anticommutation relations of the Dα and D̄α̇ one determines

DαD̄α̇Φ̄I
∣
∣
∣
θ=θ̄=0

=
[

− 2iσm
αα̇∂mΦ̄I − D̄α̇DαΦ̄I

︸ ︷︷ ︸

=0

]∣
∣
∣
θ=θ̄=0

, (3.35)

that is in components, using (2.12),

DαD̄α̇Φ̄I
∣
∣
∣
θ=θ̄=0

= −2iσm
αα̇∂mĀ

I . (3.36)

With (2.25) one can determine the similar expression for the linear multiplet

DαD̄α̇L
I
∣
∣
∣
θ=θ̄=0

= σm
αα̇

[

vI
m − i∂mC

I
]

. (3.37)

The remaining terms involving the chiral multiplets (2.12) give rise to
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DαDαΦI
∣
∣
∣
θ=θ̄=0

= 4F I

D̄α̇D̄
α̇Φ̄I

∣
∣
∣
θ=θ̄=0

= 4F̄ I

DαDαD̄α̇D̄
α̇Φ̄I

∣
∣
∣
θ=θ̄=0

= 16�ĀI .

(3.38)

Inserting the expressions (3.36)-(3.38) in (3.34), the action reads, after using
the fact that FLI Φ̄J is symmetric in I, J

S =

∫

d4x

{

FCICJ

[

− 1

4
vmIv J

m +
i

2
(∂mCI)v J

m +
1

4
(∂mCI)(∂mC

J)
]

+

FCI ĀJ

[

i(∂mĀJ)v I
m + (∂mĀJ)(∂mC

I)
]

+

FĀI ĀJ (∂mĀJ)(∂mĀ
I) + FĀIAJF J F̄ I + FĀI �ĀI

}

.

(3.39)

Integrating the term containing �ĀI by parts, one obtains up to boundary
terms

−(∂mFĀI )(∂mĀ
I) = −FĀICJ (∂mCJ)(∂mĀ

I)−
FĀI ĀJ (∂mĀJ)(∂mĀ

I) − FĀIAJ (∂mAJ)(∂mĀ
I).

Keeping in mind that ∂mvm = 0, one finds

∂m
[

FCJv J
m

]

= FCICJ (∂mCI)v J
m + FAICJ (∂mAI)v J

m + FĀICJ (∂ĀI)v J
m .

Therefore, the final action reads

S =

∫

d4x

{

FCICJ

[

(∂mAJ)(∂mĀ
I) +

1

4
[(∂mCI)(∂mC

J) − vmIv J
m ]

]

+

i

2

[

FCI ĀJ (∂mĀJ ) − FCIAJ (∂mAJ)
]

v I
m + FĀIAJF J F̄ I

}

.

(3.40)

The last step is to eliminate the auxiliary fields F I by using their equations
of motion, which yield F I = 0, and one rederives the action of [6].
When fixing the linear multiplets LI by choosing constant chiral spinor
multiplets ΨI

α, one finds a Lagrangian corresponding to a nonlinear σ-model
(cf. (C.2)) with the Kähler potential F (AI , ĀI).
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L = −FĀIAJ

[

(∂mAJ )(∂mĀ
I) − FĀIAJF J F̄ I

]

. (3.41)

For fixed AI , one is led to the Lagrangian

L =
1

4
FCICJ

[

(∂mCI)(∂mC
J) − vmIv J

m

]

.

We can reexpress the vectors vmI in terms of the field strength HnopI with
the help of

v I
m =

1

2
εmnopH

nopI ,

and the resulting Lagrangian reads due to the antisymmetry of Hnop

L =
1

4
FCICJ

[

(∂mCI)(∂mC
J) +

3

2
HnopIH J

nop

]

,

which is the generalization of the bosonic part of (2.35) to an arbitrary
number NT of linear multiplets.

We now study the duality properties of the N = 2 tensor multiplet. It
turns out that the N = 2 tensor multiplet is dual to the hypermultiplet in
the same way as the N = 1 linear multiplet is dual to the N = 1 chiral
multiplet (see section 2.4.3).

We start from a first order action corresponding to (3.20) [15], with
χI , χ̄I being (anti)-chiral superfields:

S =

∫

d4xd4θ
[

F (V I ,ΦI , Φ̄I) − V I(χI + χ̄I)
]

. (3.42)

Due to the (anti)-chirality of χI , χ̄I , we can rewrite them in terms of a
general superfield ΣI :

χI = D̄2ΣI χ̄I = D2Σ̄I .

Performing the variation with respect to the fields ΣI , Σ̄I using the variation
rule (B.2), one immediately finds that in order to get a stationary action,
the following property holds for the real superfields V I

D2V I = 0.

An analogous property is found when varying with respect to the Σ̄I and
one realizes that the V I are indeed linear multiplets. Reinserting in (3.42)
latter yields to (3.29). The variation of (3.42) with respect to V I reads,
according to the variation rules of the appendix B,

δS =

∫

d4xd4θ

{[

F I
V − (χI + χ̄I)

]

δV

}

.
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Since the variation of the action should vanish for any variation of the su-
perfield V , one is led to

(χI + χ̄I) = F I
V . (3.43)

Equation (3.43) defines the V I in terms of (χI + χ̄I) and ΦI , Φ̄I . Thus, one
finds the Legendre transformation of F with respect to the V I .

3.5 Hyperkähler geometry and tensor multiplet
Lagrangians

In the previous section we rederived the results of [15, 16, 6]. We deter-
mined the bosonic part of a general N = 2 supersymmetric Lagrangian for
NT tensor multiplets. We also showed, that in order to obtain an action
that is invariant under the N = 2 supersymmetry transformations, the gen-
eral coupling function F (CI , AI , ĀI) is subject to the constraints (3.31) and
(3.32). We then performed the duality transformation of the tensor mul-
tiplets to hypermultiplets and obtained the Legendre transformation of F
with respect to L (3.43).

In this section we perform the duality transformation, following [6], in
terms of the component fields in order to examine the geometry of the target
space, spanned by the hypermultiplet scalars.

The bosonic part of a non-linear σ-model for NT N = 2 tensor multiplets
involves NT real scalars CI , NT complex scalars AI and ĀI as well as the
NT field strengths v I

m of the tensor gauge fields B I
mn :

L =FCICJ

[

(∂mAJ)(∂mĀ
I) +

1

4
[(∂mCI)(∂mC

J) − vmIv J
m ]

]

+

i

2

[

FCI ĀJ (∂mĀJ) − FCIAJ (∂mAJ )
]

v I
m .

(3.44)

We now accomplish the duality transformation on the level of the component
fields along the same lines as in [6]. For this purpose, one introduces the
term

−1

2
YI∂mv

mI (3.45)

in the Lagrangian. Here, the YI are real, Lagrangian multipliers. The
Lagrangian then reads

L =FCICJ

[

(∂mAJ)(∂mĀ
I) +

1

4
[(∂mCI)(∂mC

J) − vmIv J
m ]

]

+

i

2

[

FCI ĀJ (∂mĀJ) − FCIAJ (∂mAJ )
]

v I
m − 1

2
YI∂mv

mI .

(3.46)
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The equations of motion for the YI guarantee, that the additional constraint
∂mv

mI = 0 is satisfied.
With the help of the field equations for the vmI , one can express the

vectors vmI in terms of the AI , ĀI and YI :

vmI = FCICJ

{

i
[

FCJ ĀK (∂mĀK) − FCJAK (∂mAK)
]

+ ∂mYK

}

. (3.47)

Here, FCICJ
denotes the inverse of FCICJ . Inserting (3.47) in (3.46) yields

to the Lagrangian

L =FCICJ

[

(∂mAJ)(∂mĀ
I) +

1

4
(∂mCI)(∂mC

J)
]

+

1

4
FCICJ

{

∂mYI + i
[

FCI ĀK (∂mĀK) − FCIAK (∂mAK)
]}

×
{

∂mYJ + i
[

FCJ ĀL(∂mĀ
L) − FCJ AL(∂mA

L)
]}

(3.48)

when using the fact, that one can rewrite (3.45)

−1

2
∂m

[

YIv
mI

]

= −1

2
(∂mYI)v

mI − 1

2
YI∂mv

mI

and neglect the appearing total derivative in the Lagrangian (3.46) as it will
not contribute to the action. Defining a new set of NT complex fields BI ,
one makes contact with the dualization to hypermultiplets performed in the
previous section:

BI =
1

2

(

iYI + FCI

)

. (3.49)

Thus, the CI and YI are determined by the AI , ĀI , BI and B̄I , and accord-
ingly the sum (B + B̄)I is defined by

(B + B̄)I = FCI (3.50)

which yields the Legendre transformation of F with respect to the C I . Vary-
ing the equation (3.49)

δBI =
1

2

(

iδYI + FCICJ δCJ + FCIAJ δAJ + FCI ĀJ δĀJ
)

, (3.51)

the variation of the real coordinates C I , YI can be expressed in terms of the
complex coordinates and one finds
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δCI =FCICJ
[

(δBJ + δB̄J ) − FCJAK δAK − FCJ ĀK δĀK
]

δYI =i(δB̄I − δBI).
(3.52)

With (3.52) one can now determine the metric in terms of the complex
coordinates by varying (3.48):

gAI ĀJ =FCICJ + FAICKFCKCL

FCLĀJ ,

gAI B̄J = − FAICKFCKCJ

,

gBI ĀJ = − FCICK

FCK ĀJ ,

gBI B̄J =FCICJ

.

(3.53)

This is a kählerian3 metric, because it can be derived from a Kähler potential
which admits the following form:

χ(AI , BI , ĀI , B̄I) = −F (CI , AI , ĀI) + (B + B̄)IC
I (3.54)

We illustrate this fact briefly by determining gAI ĀJ :

∂χ

∂ĀJ
= − ∂F

∂ĀJ
− ∂F

∂CK

∂CK

∂ĀJ
+ (B + B̄)K

∂CK

∂ĀJ
︸ ︷︷ ︸

=0

.

Using the chain rule and the constraint (3.31) we obtain

gAI ĀJ = −FAI ĀJ − FCK ĀJ

∂CK

∂AI
= FCICJ + FAICKFCKCL

FCLĀJ .

The remaining components of the metric can be evaluated in an equivalent
way. As the lagrangian (3.44), is N = 2 supersymmetric, the target space
described by (3.53) is hyperkählerian [6]. This is a non-trivial proof.

We now constrict the Lagrangian not only to be N = 2 supersymmetric,
but also invariant under N = 2 superconformal transformations. In [6] was
argued that, using scaling properties, the constraint (3.31) must be extended
by

CIFCI +AIFAI + ĀIFĀI = F,

AIFAI − ĀIFĀI = 0,
(3.55)

in order to guarantee a N = 2 superconformal invariant action. In addition,
the function FCIAJ (C,A, Ā) can be chosen to be symmetric in the indices I
and J . The constraints for N = 2 superconformal invariance therefore are

3Some remarks concerning Kähler and Hyperkähler spaces are given in appendix C.
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FCICJ + FAI ĀJ = 0,

CIFCI +AIFAI + ĀIFĀI = F,

AIFAI − ĀIFĀI = 0,

FCIAJ − FCJAI = 0.

(3.56)

We now turn to an equivalent description of the N = 2 tensor multiplets and
its self-interacting Lagrangian by using the projective superfield formalism4

presented in [28, 29, 30, 6].
A function F which satisfies the first constraint of (3.56) can be derived

(cf. [29]) from a contour integral

F = Im

∮

γ

dζ

2πiζ
H

(

ηI(ζ), ζ
)

, (3.57)

where γ is an appropriate chosen, closed contour and ηI(ζ) is defined in the
following way

ηI(ζ) =
AI

ζ
+ CI − ζĀI . (3.58)

The ηI are the N = 2 tensor multiplets expressed in terms of the projective
superfield formalism.

We now show, that a function determined by (3.57), indeed satisfies the
constraints (3.31),(3.32):

FCICJ =Im

∮

γ

dζ

2πiζ

∂2H

∂ηK∂ηL

∂ηK

∂CI

∂ηL

∂CJ
= Im

∮

γ

dζ

2πiζ

∂2H

∂ηI∂ηJ
,

FAI ĀJ =Im

∮

γ

dζ

2πiζ

∂2H

∂ηK∂ηL

∂ηK

∂AI

∂ηL

∂ĀJ
= −Im

∮

γ

dζ

2πiζ

∂2H

∂ηI∂ηJ
.

The sum of these terms vanish, so the constraint (3.31) is satisfied.
The symmetry of FCIAJ in the indices I, J can be proven analogously

FCIAJ = Im

∮

γ

dζ

2πiζ

∂2H

∂ηK∂ηL

∂ηK

∂CI

∂ηL

∂AJ
= Im

∮

γ

dζ

2πiζ2

∂2H

∂ηI∂ηJ
,

which is obviously symmetric in I, J .
We now implement the remaining constraints for superconformal invari-

ance in the function H(ηI(ζ), ζ). The homogenity constraint of F is trans-
lated to

4A short introduction to the projective superfield formalism is given in appendix D.
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CIFCI +AIFAI + ĀIFĀI = Im

∮

γ

dζ

2πiζ

∂H

∂ηJ

{ ∂ηJ

∂CI
CI +

∂ηJ

∂AI
AI +

∂ηJ

∂ĀI
ĀI

}

,

which results in a homogenity property of H:

ηI ∂H

∂ηI
= H. (3.59)

The last constraint of (3.56) ensures the SO(2) invariance of F and requires
H to have no explicit ζ-dependence:

0 = AIFAI − ĀIFĀI = Im

∮

γ

dζ

2πiζ

∂H

∂ηI

{AI

ζ
+ ζĀI

}

= −Im

∮

γ

dζ

2πiζ

∂H

∂ηI
ζ
∂ηI

∂ζ

= −Im

∮

γ

dζ

2πi

{ d

dζ
H − ∂H

∂ζ

}

.

The term d
dζH vanishes, as it is a total derivative and the contour is chosen

to be closed, so the expression is zero if H is solely a function of ηI(ζ) and
exhibits no explicit ζ-dependence.

We now turn to the determination of the hyperkähler potential (3.54)
by performing a Legendre transformation with respect to the C I . Using
(3.54), (3.57) and the fact that the derivative ∂

∂CI can be performed before
the integration over the contour γ, one obtains the following expression:

χ(AI , ĀI , BI + B̄I) = Im

∮

γ

dζ

2πiζ

{

−H
(

ηI(ζ)
)

+ CI ∂H

∂ηI

}

. (3.60)

The remaining step is to express the C I in terms of the AI , ĀI and (B+ B̄)I
in virtue of

FCI = Im

∮

γ

dζ

2πiζ

∂H

∂ηI
= (B + B̄)I .

As a consequence of the homogenity property of FCI

FCI (λCI , λAI , λĀI) = FCI (CI , AI , ĀI),

the expression for the CI is ’homogenious’ in the sense of

CI(λAI , λĀI , BI + B̄I) = λCI(AI , ĀI , BI + B̄I), (3.61)

when taking λ to be real. This homogenity property is carried over to the
hyperkähler potential χ(AI , ĀI , BI + B̄I).
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Chapter 4

Summary of type IIB
supergravity compactified on
Calabi-Yau threefolds

In this chapter, we briefly review the compactification of type IIB super-
gravity on a Calabi-Yau threefold, and present the massless, bosonic D = 4
spectrum, following [2, 4].

The massless spectrum of type IIB supergravity inD = 10 consists of the
dilaton ϕ̂, the metric ĝ and a 2-form B̂2 in the NS-NS sector and the axion
l̂, a 2-form Ĉ2 and a 4-form Ĉ4 in the R-R sector1. The action decomposes
into three parts

S
(10)
IIB = SNS + SR + SCS . (4.1)

In the D = 10 Einstein frame, these components read using the form nota-
tion

SNS = −
∫ (1

2
R̂ ? 1 +

1

4
dϕ̂ ∧ ?dϕ̂ +

1

4
e−ϕ̂Ĥ3 ∧ ?Ĥ3

)

SR = − 1

4

∫ (

e2ϕ̂dl̂ ∧ ?dl̂ + eϕ̂F̂3 ∧ ?F̂3 +
1

2
F̂5 ∧ ?F̂5

)

SCS = − 1

4

∫

Ĉ4 ∧ Ĥ3 ∧ F̂3,

(4.2)

where ? denotes the Hodge-? operator and the field strengths are defined as

1As in [2] the hats ’ˆ ’ denote the ten-dimensional fields. In addition, we stress, that
the reader should not mix up the forms presented here with the component fields of the
previous chapter.
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Ĥ3 =dB̂2

F̂3 =dĈ2 − l̂dB̂2

F̂5 =dĈ4 −
1

2
dB̂2 ∧ Ĉ2 +

1

2
B̂2 ∧ dĈ2.

(4.3)

A compactification of type IIB supergravity on a Calabi-Yau threefold M
leads to a D = 4 theory with N = 2 supersymmetry. One takes the line-
element to be of the following form

ds2 = gmndx
mdxn + gij̄dy

idȳj̄. (4.4)

gmn,m, n = 0, . . . , 3 is a Minkowski metric and gij̄ , i, j̄ = 0, . . . , 3 is the
metric on the Calabi-Yau manifold M . The massless, bosonic spectrum is
summarized in table 4.1.

gravity multiplet 1 (gmn, V
0
m)

vector multiplets h(1,2) (V K
m , zK)

hypermultiplets h(1,1) (va, ba, ca, ρa)

double-tensor multiplets 1 (B2, C2, ϕ, l)

Table 4.1: Massless spectrum of type IIB superstring theory compactified
on a Calabi-Yau threefold

Following [2], the action of type IIB compactified on a Calabi-Yau manifold
reads:
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S
(4)
IIB =

∫

− 1

2
R ? 1 +

1

4
ReMK̂L̂F

K̂ ∧ F L̂ +
1

4
ImMK̂L̂F

K̂ ∧ ?F L̂

−GKLdz
K ∧ ?dz̄L −Gabdv

a ∧ ?dvb − 1

4
dlnκ ∧ ?dlnκ

− 1

4
dϕ ∧ ?dϕ − 1

4
e2ϕdl ∧ ?dl − e−ϕGabdb

a ∧ ?dbb

− eϕGab

(

dca − ldba
)

∧ ?
(

dcb − ldbb
)

− 9Gad

4κ2

(

dρa −
1

2
κabc(c

bdbc − bbdcc)
)

∧

?
(

dρd −
1

2
κdef (cedbf − bedcf )

)

− κ2

144
e−ϕdB2 ∧ ?dB2 −

κ2

144
eϕ

(

dC2 − ldB2

)

∧ ?
(

dC2 − ldB2

)

+
1

2

(

dba ∧ C2 + cadB2

)

∧
(

dρa − κabcc
bdbc

)

+
1

4
κabcc

acbdB2 ∧ dbc.
(4.5)

F K̂ is defined as F K̂ = dV K̂ . The gauge kinetic matrix MK̂L̂ is given in [2]
and the metric of the complex structure deformations GKL can be derived
from the holomorphic prepotential F using

GKL =
∂

∂zK

∂

∂z̄L
Kcs, (4.6)

where Kcs is given by

Kcs = −ln

{

i
[

X̄K̂FK̂ −XK̂F̄K̂

]}

. (4.7)

The special coordinates are defined as X K̂ = (1, zK). The metric GKL is
a special Kähler metric that is entirely determined by the holomorphic pre-
potential F , which is function homogenous of degree 2.

Turning to the complexified Kähler deformations, the corresponding
metric of the space of Kähler deformations Gab is given by [2]

Gab = −3

2

(κab

κ
− 3

2

κaκb

κ2

)

(4.8)

where κabc are intersection numbers of the Calabi-Yau manifold and

κab =κabcv
c,

κa =κabcv
bvc,

κ =κabcv
avbvc.

(4.9)
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The va are the scalars of the hypermultiplets, mentioned in table 4.1 with
a = 2, . . . , h(1,1) +1. The volume of the Calabi-Yau manifold in this notation
is given by V ol(Y ) = 1

6κ. Confining ourselves to the classical case without
quantum corrections, the classical geometry is determined by [7, 8]

F =
1

4!
κabc

XaXbXc

X1
. (4.10)
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Chapter 5

Orientifold projection

The aim of this chapter is, to determine the Kähler potentials of the ori-
entifold compactifications of type IIB string theories derived in [2]. They
use O3/O7 and O5/O9 orientifolds to break the N = 2 supersymmetry to
N = 1. Using the approach introduced in chapter 3, we rederive the Kähler
potential of the O3/O7 projection along the lines of [3] and rewrite the re-
sult in the variables of [2]. Afterwards we determine the Kähler potential
of the O5/O9 orientifold in the variables of [2] since this was not performed
explicitly in [3].

The question, which underlying function H leads to the correct tensor
multiplet Lagrangians after performing the contour integral, was answered
in [7]. It turns out, that using the classical prepotential F of the hyper-
multiplet geometry (4.10), evaluated as a function of the projective tensor
multiplets ηI , one obtains a coupling function which leads to the correct
supergravity Lagrangian for the bosonic part of tensor multiplet sector after
introducing a compensator to establish the correct homogenity property of
H [7].

5.1 The general coupling function of IIB tensor
multiplets

To derive the superspace Lagrangian, one starts with the holomorphic pre-
potential F(X) (4.10) evaluated as a function of the projective tensor su-
perfields cf. (3.58):

ηI(ζ) =
AI

ζ
+ CI − ζĀI .

The prepotential reads

F(XI) =
1

4!
κabc

XaXbXc

X1
, (5.1)
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with XI = {X1, Xa}, a = 2, 3, . . . , NT . In the later sections we will spe-
cialize NT = h(1,1) + 1. The κabc are the triple intersection numbers of the
Calabi-Yau manifold. Recall that H(η) must be homogenous of degree one
in order to obtain a superconformal invariant action (cf. (3.59)). There-
fore, we are forced to introduce a compensator η0 to establish the correct
homogenity property [7]:

H(ηΛ) =
F(ηI)

η0
Λ = 0, . . . , NT . (5.2)

At this stage, we are able to determine the coupling function F in virtue
of equation (3.57). Then, performing the Legendre transformation with
respect to the real scalars CI , we obtain the hyperkähler potential (3.54),
which enables us to determine the metric of the target space.

We illustrate the described approach in the following along the lines of
[7] by imposing a special gauge choice A0 = 0 for the compensator η0. With
this choice the pole structure of the function H becomes very simple, and
the determination of the general coupling function F is a straightforward
calculation.

5.1.1 The general coupling function with the gauge choice
A

0 = 0

Imposing the gauge choice A0 = 0, the projective superfield for the compen-
sator η0 becomes

η0(ζ) = η0 = C0. (5.3)

Inserting (5.3) in (5.2), the contour integral (3.57) reads

F (AΛ, ĀΛ, CΛ) =
1

C0
Im

∮

γ

dζ

2πiζ
F(ηI) =

1

C0
Im

∮

γ

dζ

2πi

F(ζηI)

ζ3
. (5.4)

In the last step, the homogenity property of F is used. The contour γ is
chosen around the origin ζ = 0, and one finds that the product ζηI does not
vanish for ζ = 0:

ζηI = AI + ζCI − ζ2ĀI 6= 0 for A 6= 0. (5.5)

This is an important fact, as one can now evaluate the contour integral using
the residue at ζ = 0, assuming F(ζηI) has no poles in ζ inside the contour
around the origin. For a function f with a singularity at z0, the contour
integral with a contour γ chosen to enclose z0 reads

∮

γ
f(z)dz = 2πiResf(z)|z=z0

. (5.6)
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The singularity, that one faces here is of order three, so one can determine
the residue using

Res

[F(ζηI)

ζ3

]

ζ=0

= lim
ζ→0

1

2!

d2

dζ2

[F(ζηI)

ζ3
ζ3

]

= lim
ζ→0

1

2!

d2

dζ2

[

F(ζηI)
]

. (5.7)

Performing the differentiation, one obtains

1

2
lim
ζ→0

[

FJK(ζηI)
[
CJ − 2ζĀJ

][
CK − 2ζĀK

]
−FJ(ζηI)2ĀJ

]

, (5.8)

where FI = ∂F
∂XJ . Taking the limit ζ → 0, the residue reads

Res

[F(ζηI)

ζ3

]

ζ=0

=
1

2

[

FJK(AI)
[
CJCK

]
− 2FJ(AI)ĀJ

]

.

Therefore, the general coupling function F is just the imaginary part of the
residue and reads

F (AΛ, ĀΛ, CΛ) = − 1

2C0
Im

{

FJK(AI)CJCK − 2FJ (AI)ĀJ
}

.

Using the abbreviations

NJK(AI , ĀI) =2Im
[

FJK(AI)
]

= i
(

FJK(AI) − F̄JK(ĀI)
)

,

K(AI , ĀI) =2Im
[

ĀJFJ

]

= i(ĀIFI −AIF̄I),
(5.9)

the final expression for F is (cf. [7])

F (AΛ, ĀΛ, CΛ) = − 1

4C0

[

NJK(AI , ĀI)CJCK − 2K(AI , ĀI)
]

. (5.10)

5.1.2 The hyperkähler potential with gauge choice A
0 = 0

In the last subsection, we derived the general coupling function F of a self-
interacting tensor multiplet lagrangian (3.44) in the special gauge for the
compensator η0, namely choosing A0 = 0. Using this coupling function, one
can perform the Legendre transformation with respect to the real scalars CΛ

in order to obtain the Kähler potential for the hyperkähler metric (3.54):

χ(AΛ, BΛ, Ā
Λ, B̄Λ) = −F (CΛ, AΛ, ĀΛ) + (B + B̄)ΛC

Λ.
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The general coupling function F with the gauge choice A0 = 0 is given in
(5.10). We remind the reader, that the new set of variables (B + B̄)Λ are
obtained by taking the derivative of F with respect to CΛ

(B + B̄)Λ =
∂F

∂CΛ
= FCΛ , (5.11)

and solving this equation for CΛ.
The appearing summands of the Legendre transformation can be deter-

mined using the symmetry of NJK in its indices:

C0FC0 = −F

CIFCI = − 2

4C0
NIJC

ICJ .
(5.12)

When solving (5.11) for the scalars CΛ, one obtains for the (B + B̄)I (cf.
the second equation of (5.12)):

CI

C0
= 2N IJ (B + B̄)J , (5.13)

with N IJ = N−1
IJ . Inserting (5.13) in the expression for (B + B̄)0

(B + B̄)0 =
1

4(C0)2

[

NIJC
ICJ − 2K

]

(5.14)

leads to

(B + B̄)0 = NIJN
IKNJL(B + B̄)K(B + B̄)L − K(AI , ĀI)

2(C0)2
, (5.15)

which can be used to express (C0)2 in terms of the (B+ B̄)Λ and the AI , ĀI :

(C0)2 =
K(AI , ĀI)

2
[

(B + B̄)IN IJ(B + B̄)J − (B + B̄)0

] . (5.16)

Finally, the hyperkähler potential obtained by the Legendre transformation
reads:

χ(AI , ĀI , C0) = −2F (AΛ, ĀΛ, CΛ)− 2

4C0
NIJC

ICJ = −K(AI , ĀI)

C0
. (5.17)

When expressing C0 with the help of (5.16) in terms of the (B + B̄)Λ and
the AI , ĀI , the hyperkähler potential becomes
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χ(AI , ĀI , BΛ, B̄Λ) ∝
√

2
√

K(AI , ĀI)
√

(B + B̄)IN IJ(B + B̄)J − (B + B̄)0,

(5.18)
as mentioned in [7]. According to [7], the minus sign in (5.17) is irrelevant
and can be neglected.

5.1.3 The general coupling function without gauge choice

We now relax the gauge condition A0 = 0 and turn to the general case
following [8, 9]. The first step is to evaluate the general coupling function
F , performing the contour integral

F = Im

∮

γ

dζ

2πiζ

F(ηI(ζ))

η0(ζ)
, Λ = 0, . . . , NT .

Again, we use the homogenity property of F in order to reexpress the above
relation in terms of ζηΛ(ζ).

Without imposing any gauge choice, the pole structure in the complex
plane becomes more complicated. In the case with the gauge choice, one has
to evaluate the residue at the point ζ = 0. Now, one has to find the zeros
of the equation

ζη0(ζ) = A0 + ζC0 − ζ2Ā0 = 0

in order to perform the contour integral. The zeros are

ζ± =
C0 ∓

√

(C0)2 + 4A0Ā0

2Ā0
.

Evaluating the residue at the point ζ = ζ+, one finds, using ηI
+ = ηI(ζ+)

ηI
± = CI − C0

2

(AI

A0
+
ĀI

Ā0

)

± |~r0|
2

(

− AI

A0
+
ĀI

Ā0

)

, (5.19)

for the residue

Res
[F(ηI(ζ))

ζη0(ζ)

]

ζ=ζ+
=

F(ηI
+)

√

(C0)2 + 4A0A
0
. (5.20)

Here, the residue can be evaluated using

Res
[f(z)

g(z)

]∣
∣
∣
z=z0

=
f(z0)

g′(z0)
,

where the ′ denote differentiation with respect to the variable z. This rule
can be used as the functions F(ηI(ζ)) and ζη0(ζ) are analytic in ζ = ζ+ and
η+ is a solution of the equation ζη0(ζ) = 0 whereas (ζη0(ζ))′ evaluated at
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ζ+ does not vanish.
The N = 1 scalars AΛ, ĀΛ and CΛ, Λ = 0, 1, 2, . . . , NT of the N = 2

theory can be grouped into vectors

~rΛ = [−i(AΛ − ĀΛ), AΛ + ĀΛ, CΛ], (5.21)

which are invariant under the SU(2) transformation of the second super-
symmetry (cf. (3.11)), with the scalar product [8]

~rΛ · ~rΣ = 4A(ΛA
Σ)

+ CΛCΣ. (5.22)

The reformulated coupling function now reads (cf (5.20)):

F =
1

|~r0| Im
{

F(ηI
+)

}

. (5.23)

5.1.4 The hyperkähler potential without gauge choice

We are now in the position to determine the hyperkähler potential for the
hyperkähler metric by performing the Legendre transformation of (5.23)
with respect to the real scalars CΛ, following [8, 9]. One first determines
the new variables (B+ B̄)Λ in virtue of (5.11). Using (5.23) one determines
analogously to the case with the gauge choice

FC0 = − C0

|~r0|3 Im

{

F(ηI
+)

}

+
1

|~r0| Im
{

FI(η
I
+)
∂ηI

+

∂C0

}

(5.24)

FCI =
1

|~r0| Im
{

FI(η
I
+)

}

(5.25)

where FI denotes ∂F
∂ηI . The appearing partial derivative ∂ηI

∂C0 reads

∂ηI
+

∂C0
= −1

2

[AI

A0
+
ĀI

Ā0

]

+
C0

2|~r0|
[

− AI

A0
+
ĀI

Ā0

]

.

The expression for the Kähler potential then reads

χ = −(C0)2

|~r0|3 Im
[

F(ηΛ
+)

]

+
1

|~r0| Im
{

F1q
1 + Faq

a

}

− 1

|~r0| Im
{

F(ηI
+)

}

,

with the abbreviation

qI =
C0

2

[AI

A0
+
ĀI

Ā0

]

+
(C0)2

2|~r0|
[

− AI

A0
+
ĀI

Ā0

]

+ CI . (5.26)
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Equation (5.26) can be simplified using ηI
+:

qI = ηI
+ − 4A0Ā0

2|~r0|
[

− AI

A0
+
ĀI

Ā0

]

.

This leads to the following expression for χ

χ =
[

− (C0)2

|~r0|3 − 1

|~r0|
]

Im
[

F(ηI
+)

]

+
1

|~r0| Im
[

F1η
1
+ + Faη

a
+

︸ ︷︷ ︸

=2F

]

− 1

|~r0| Im
[

F1
4A0Ā0

2|~r0|
[

− A1

A0
+
Ā1

Ā0

]

+ Fa
4A0Ā0

2|~r0|
[

− Aa

A0
+
Āa

Ā0

]]

.

In the second line we made use of the homogenity properties of F . A short
calculation reveals

[

− (C0)2

|~r0|3 − 1

|~r0|
]

Im
[

F(ηI
+)

]

+
2

|~r0| Im
[

F(ηI
+)

]

=

4A0Ā0

|~r0|3 Im
[

F(ηI
+)

]

=

4A0Ā0

2|~r0|3 Im
[

η1F1 + ηaFa

]

.

The potential then reads

χ =
4A0Ā0

2|~r0|3 Im
[

η1F1 + ηaFa

]

− 4A0Ā0

2|~r0|2 Im

{

F1

[Ā1

Ā0
− A1

A0

]

+Fa

[Āa

Ā0
− Aa

A0

]}

,

which can be further simplified using ηI
−

χ =
4A0Ā0

2|~r0|3 Im
[

η1
−F1 + ηa

−Fa

]

.

Now, one introduces the new variable

za =
ηa
+

η1
+

= ba + iva, (5.27)

and uses the homogenity property of FI to scale out η1
+. After that opera-

tion, χ reads

χ =
4A0Ā0

2|~r0|3 Im

{

η1
−η

1
+

[

F1(z) + z̄aFa(z)
]}

.
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O3/O7 O5/O9

gravity multiplet 1 gmn 1 gmn

vector multiplets h
(1,2)
+ V k h

(1,2)
− V κ

chiral multiplets h
(1,2)
− Xκ h

(1,2)
+ Xk

chiral multiplets
1 (ϕ, l) − −

h
(1,1)
− (bα, cα) h

(1,1)
+ (vµ, cµ)

linear multiplets
− − 1 (ϕ,C2)

h
(1,1)
+ (vµ, ρµ) h

(1,1)
− (bα, ρα)

Table 5.1: Spectrum of bosonic fields of Calabi-Yau orientifold compactifi-
cations with O3/O7 and O5/O5 planes

Using the identity (cf. [9])

ηI
+η

J
− + ηI

−η
J
+ =

1

2v0v̄0
(~r0 × ~rI) · (~r0 × ~rJ), (5.28)

the hyperkähler potential finally reads

χ =
|~r0 × ~r1|2

2|~r0|3 Im
{

F1(z) − z̄aFa(z)
}

=
|~r0 × ~r1|2

2|~r0|3 V (t) (5.29)

with V (t) = 1
3!κabcv

avbvc. This is the same result, as derived in [8].
The ba and va introduced in (5.27) are in the following identified with

the complexified Kähler moduli [8] (cf. table 4.1).

5.2 Superspace description of Calabi-Yau orien-

tifolds of IIB superstrings

We no apply the result of [8], namely the Kähler potential of the hyperkähler
metric (5.29), to the the orientifold projections following [3]. The number
of tensor multiplets NT is now specialized to h(1,1) + 1. The orientifold pro-
jection of the compactified type IIB superstring theory is performed by the
combined operation of an involution symmetry on the Calabi-Yau threefold
with an orientation reversal on the worldsheet [3, 1]. The considered orien-
tifold projections truncates the supersymmetry from N = 2 to N = 1.

The orientifold projections, which are performed in the following, lead
to Calabi-Yau orientifolds with either O3/O7 or O5/O9 planes. In the
first case, the involution operation transforms the holomorphic three-form
as Ω −→ −Ω and in the O5/O9 case it is transformed according to Ω −→ Ω
[1, 2]. The resulting spectrum of the two orientifolds is summarized in table
5.1.
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The aim is to compare the resulting Kähler potentials with the one de-
rived in [2]. For this purpose, one has to bring the effective action into the
standard form. That is done by finding a complex structure for the Kähler
space, spanned by the chiral fields. The holomorphic coordinates for the
chiral fields are, according to [2, 3], given by

τ ≡ l + ie−ϕ and Gα ≡ cα − τbα (5.30)

for the case of a O3/O7 orientifold projection.
When considering the O5/O9 orientifold projection, the holomorphic

coordinates are given by

τµ ≡ e−ϕvµ + icµ. (5.31)

Note the range of our indices. We defined, as indicated by table 5.1, α =

2, . . . , h
(1,1)
− + 1, µ = 2, . . . , h

(1,1)
+ + 1, k = 1, . . . , h

(1,2)
+ and κ = 1, . . . , h

(1,2)
− .

According to [3, 9, 8], the scalar fields of table 4.1 can be expressed by the
scalar fields of the superconformal theory when taking the superconformal
quotient. This is done in [9] and the result is

l + ie−ϕ =
1

2
√

2|~r0|2
[~r0 · ~r1 + i|~r0 × ~r1|] (5.32)

ba + iva =
ηa
+

η1
+

(5.33)

lba − ca =
~r0 · ~ra

2
√

2|~r0|2
, (5.34)

with a = 2, . . . , h(1,1) + 1. The vectors ~rΛ are the same vectors as defined in
(5.21).

5.2.1 Truncation of the projective superfields

For applying the developed scheme, one has to find the right constraints
for the projective superfields, in order to obtain the desired spectrum (cf.
table 5.1). The considered orientifold projections can be easily performed in
the projective superfield formalism by defining a parity operator Π on the
complex coordinate ζ [3]. One then requires the projective superfields to be
either even or odd under this parity operation:

Πη(ζ) = η(−ζ) = η(ζ) parity-even (5.35)

Πη(ζ) = η(−ζ) = −η(ζ) parity-odd. (5.36)

In the first case the N = 1 chiral multiplet is A is projected out while in the
second case the N = 1 tensor multiplet is projected out:
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Πη(ζ) = η(−ζ) = −A
ζ

+ C + ζĀ =
A

ζ
+ C − ζĀ = η(ζ) ⇐⇒ A = 0

Πη(ζ) = η(−ζ) = −A
ζ

+ C + ζĀ = −A
ζ
− C + ζĀ = −η(ζ) ⇐⇒ C = 0.

The projective superfields ηΛ may be subject to either one of these
conditions, so that one ends up afterwards with a hyperkähler potential
χ(v, v̄, w + w̄) with an arbitrary number NC of chiral multiplets and NT

tensor multiplets. The number NC and NT are chosen according to table
5.1.

5.2.2 Orientifolding to O3/O7

With the insight of the previous section, we examine now the truncation to
O3/O7 [3]. Comparing the tables 4.1 and 5.1, one realizes that the fields
B2, C2, v

α, ρα, b
µ and cµ must be projected out. As far as concerning the

double-tensor sector, this can be achieved by imposing η0 and η1 to be odd

under the parity operator Π. The remaining h
(1,1)
− ηα must also be odd,

whereas the h
(1,1)
+ ηµ must be even under parity.

This leads to the following truncation of the N = 1 tensor multiplet
scalars

C0 = 0, C1 = 0, Cα = 0, Aµ = 0. (5.37)

The corresponding projective superfields read

η1
+ =

|~r0|
2

(

− A1

A0
+
Ā1

Ā0

)

ηα =
|~r0|
2

(

− Aα

A0
+
Āα

Ā0

)

ηµ = Cµ.

(5.38)

Inserting these truncated, projective superfields into the equations (5.32)-
(5.34), one can determine the complex structures for the orientifolded theory.

• For the axion-dilaton system (5.32) one finds

τ ≡ l + ie−ϕ =
1

2
√

2

A1

A0
. (5.39)

• With the help of (5.33) and (5.38) one can now determine

bα =
ĀαA0 −AαĀ0

Ā1A0 −A1Ā0
and vα = 0. (5.40)
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• Using (5.30), (5.34) and vα = 0, the expressions for the Gα read

Gα = −ie−ϕ − ~r0 · ~rα

2
√

2|~r0|2
= − 1

2
√

2

Aα

A0
. (5.41)

• And finally, with the help of Aµ = 0, one can determine

ivµ =

√
A0Ā0Cµ

Ā1A0 −A1Ā0
and bµ = 0. (5.42)

Since the scalar product ~r0 · ~rµ = 0, it follows from (5.34) that cµ = 0.
With these expressions one can determine the Kähler potential and com-

pare it with the derived Kähler potentials of [2].

5.2.3 Orientifolding to O5/O9

Considering the orientifold projection using O5/O9 planes, one realizes after
comparing the tables 4.1 and 5.1, that the fields l, bµ, vα, cα and ρµ have to
vanish. It is obvious, that in order to project out the axion l, the real part of
(5.32) must vanish. That leads (in combination with the other constraints)
to the following behaviour of the projective superfields under parity: η0, ηµ

must be odd under the parity operator Π, whereas η1, ηα must be even.

C0 = 0, A1 = 0, Aα = 0, Cµ = 0. (5.43)

Now the projective superfields read

ηµ
+ =

|~r0|
2

(

− Aµ

A0
+
Āµ

Ā0

)

η1/α = C1/α.

(5.44)

After performing equivalent steps as before, one obtains the complex struc-
tures as follows:

• Calculating τ one finds that

τ ≡ l + ie−ϕ = ±i 1

4
√

2

C1

√
A0Ā0

(5.45)

and, indeed, l is projected out.

• With equation (5.33) one calculates

bα =
Cα

C1
and vα = 0. (5.46)

In this case the vα are projected out, as well as the cα because the
cα ∝ ~r0 · ~rα vanish.
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• Turning to the µ-indexed quantities one first finds that

ivµ =
ĀµA0 −AµĀ0

C1
√
A0Ā0

and bµ = 0. (5.47)

• Now one is in the position to determine

cµ = − ~r0 · ~rµ

2
√

2|~r0|2
=
A0Āµ + Ā0Aµ

4
√

2A0Ā0
. (5.48)

• Using these expressions and (5.31) one finally finds

τµ = − i

2
√

2

Aµ

A0
. (5.49)

5.3 Kähler potentials of the orientifolds

According to [3], the Kähler potential can be derived from the hyperkähler
potential with the help of

K(AI , ĀI , BI + B̄I) = − log[χ(AI , ĀI , BI + B̄I)]. (5.50)

In our case, we derived in section 5.1.4 the hyperkähler potential for the
tree-level. It is given by (compare (5.29))

χ = 4|~r0|e−2ϕV (v), (5.51)

with V (v) = 1
3!κabcv

avbvc, where κabc are the triple intersection numbers
of the Calabi-Yau manifold. With the help of (5.50) one can determine
the Kähler potentials of the two orientifold projections, considered in the
previous chapters.

We now remind the reader, that the dilaton is expressed in terms of the
AΛ, ĀΛ, (B + B̄)Λ as (5.32)

e−ϕ =
1

2
√

2|~r0|2
|~r0 × ~r1|. (5.52)

Furthermore, we have |~r0| = 2
√
A0Ā0. Inserting these expressions in the

expression for the Kähler potential above, we find

K(AI , ĀI , BI + B̄I) = − log[8]
︸ ︷︷ ︸

irrelevant constant

− 1

2

(

logA0 + log Ā0
)

︸ ︷︷ ︸

Kähler transformation

−

− 2 log[e−ϕ] − log V (v).

Dropping all irrelevant terms, we can reduce the Kähler potential to
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K(AΛ, ĀΛ, (B + B̄)Λ) = −2 log[e−ϕ] − log V (v). (5.53)

5.3.1 Kähler potential with O3/O7 orientifolds

We now determine the Kähler potential for the type IIB theory orientifolded
theory using O3/O7 planes. Using the expression for τ (5.39), one can
substitute the dilaton:

K = −2 log
[

− i(τ − τ)
]

− log V (v). (5.54)

Now we must perform the Legendre transformation with respect to the vµ

in order to obtain a Kähler potential expressed solely in terms of chiral
multiplet scalars. We introduce the new variables (B+B̄)µ by differentiating
the general coupling function (5.23) with respect to the vµ. We obtain

(B + B̄)µ = Fvµ = − i

2

1

|~r0|
[

Fµ − F̄µ

]

(5.55)

(Compare with (5.25)). Taking the derivative of (5.1) and evaluating the
imaginary part, we find

(B + B̄)µ =
3

|~r0|
κµbc

4!

−Re[ηb
+]Re[ηc

+] + Im[ηb
+]Im[ηc

+]

Im[η1
+]

. (5.56)

The terms we dropped here are irrelevant due to vanishing of the real part
of η1

+. The appearing real and imaginary parts are

Re[ηµ
+] = Cµ

Im[ηα
+] = −i |~r

0|
2

[

− Aα

A0
+
Āα

Ā0

]

.

Now, we express the Cµ, Aα and Āα in terms of the variables (5.39) - (5.42)
and we find

Cµ = 2
√

2
√

A0Ā0vµ
[

τ̄ − τ
]

−i |~r
0|
2

[

− Aα

A0
+
Āα

Ā0

]

= 2i
√

2
√

A0Ā0
[

Ḡα −Gα
]

.
(5.57)

With a little algebra, we find using (5.57) in (5.56)

(B+ B̄)µ =
3
√

2

4!

{

κµαβ
[G− Ḡ]α[G− Ḡ]β

−i(τ − τ̄)
+κµνρt

νtρ
[

− i(τ − τ̄)
]}

. (5.58)
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Comparing this with the expression for Tα + Tα using equation (3.48) and
(3.49) of [2] with α = 1 we can identify (up to a factor of 6√

2
) our the Kähler

coordinates Gα with the Ga of [2]. The redefinition relation for the linear
multiplets reads

vν ≡
√

2
Lα

√

−i(τ − τ)
√

KαβγLαLβLγ
.

Using this relation to express the Kähler potential (5.54) in terms of the
linear multiplets Lα, the Kähler potential becomes

K̂ = −3

2
log[2] − 1

2
log

[

− i(τ − τ̄)
]

+
1

2
log

[ 1

3!
καβγL

αLβLγ
]

. (5.59)

Up to an additive constant, the result agrees with (3.52) of [2] when mul-
tiplied by a factor of 2. The appearing factor may be explained by the
different definitions of the Kähler metric. In [31] for example, the metric is
defined as

gij̄ = 2∂i∂j̄K(z, z̄) (5.60)

5.3.2 Kähler potential with O5/O9 orientifolds

After the orientifold projection, the hyperkähler potential reads

χ =
(C1)2

|A0| V (v). (5.61)

This result is obtained by inserting (5.45) into the relation for χ (5.51).
We now have to dualize the tensor superfield C1 to hypermultiplets,

namely ∂F
∂C1 = (B + B̄)1 and we find using (5.25) and the symmetry prop-

erties of κabc after taking the imaginary part

C1 =
2|A0|(B + B̄)1

1
4!κabc(vavbvc − 3babbvc)

. (5.62)

Now we are able to dualize remaining tensor superfields Cα using again
(5.25). The imaginary part of FCα reads

Im{FCα} =
6

4!
καβµ

Cβ |~r0|
2 (−Aµ

A0 + Āµ

Ā0 )

C1
(5.63)

Using the expressions for the bα and vµ, namely (5.46) and (5.47), we find:

FCα =
i√
2
e−ϕκαβµb

βvµ ≡ (B + B̄)α. (5.64)

As we want dualize the linear multiplet, we introduce the matrix
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Θαβ =
i√
2
e−ϕκαβµv

µ, (5.65)

and we can solve (5.64) for the bα when introducing the inverse matrix Θαβ

of Θαβ

bα = Θαβ(B + B̄)β. (5.66)

Having done this step, we are now enabled to express (B + B̄)1 completely
in terms of chiral multiplets and the dilaton by replacing the appearing bα

in (5.62) using (5.66) as well as (5.45), and solving (5.62) for (B + B̄)1. We
find

(B + B̄)1 =
2
√

2

4!
e−ϕκµνρv

µvνvρ − 1

2i
(B + B̄)αΘαβ(B + B̄)β . (5.67)

Taking the logarithm of (5.61), and substituting C 1 using the variables
(5.62), (5.66) and (5.67), the Kähler potential reads (up to constants and a
Kähler transformation)

K = −2ln

[

(B+B̄)1+
1

2i
(B+B̄)αΘαβ(B+B̄)β

]

+ln

[
1

3!
κµνρv

µvνvρ

]

. (5.68)

After redefining the vµ in terms of new variables τ̃µ

vµ =
1

2
eϕ[τ̃ + ¯̃τ ]µ (5.69)

we find a Kähler potential of the following form

K = − 1

2
ln

[

(B + B̄)1 +
1

2i
(B + B̄)αΘαβ(B + B̄)β

]

− 1

2
ln

[
1

3!
κµνρ(τ̃ + ¯̃τ)µ(τ̃ + ¯̃τ)ν(τ̃ + ¯̃τ)ρ

] (5.70)

which differs by an overall factor of 2 from equation (4.17) of [2]. Again,
we encounter here an overall factor of 2. As in the previous chapter, the
appearing factor may be explained by the different definition of the Kähler
metrics used in [2].
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Chapter 6

Conclusion

In this work we rederived the constraints for a general coupling function F
stated in [29], which appears in self-interactions of N = 2 supersymmetric
tensor multiplet models. After the dualization of the tensor multiplets to
hypermultiplets, we showed, that the space spanned by the scalars is at least
a Kähler space. We also showed, following [31, 6] that the coupling function
F can be derived by a complex contour integral of a more general function.
This method was used in the following to derive the Kähler potentials of IIB
supersymmetric string theory compactified on a Calabi-Yau threefold with
NT N = 2 tensor multiplets.

With the help of the coupling function F , we determined the hyperkähler
potential for the type IIB theory by performing a Legendre transformation
along the lines of [8, 9]. Afterwards, we determined the Kähler potential
for two different orientifold projections involving O3/O7 as in [3] and de-
termined the explicit form of the Kähler potential involving O5/O9 planes,
since this was not done in [3]. We then compared the derived Kähler poten-
tials with those given [2] and found agreement after redefining our scalars
up to an overall factor of 2. This factor may be explained by the different
conventions used for the Kähler metric in the literature, which differ exactly
by an overall factor 2.

An interesting future step would be to apply this method to orientifolds
of type IIA supersymmetric string theories.
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Appendix A

Facts in supersymmetry

A.1 Conventions and spinor algebra

This work heavily uses the notation of [10].
Spinors are two-component Weyl spinors which can be composed into

one Dirac spinor

Ψ =

(
χα

ψ̄α̇

)

. (A.1)

Spinors have dotted and undotted greek indices from the beginning of the
alphabet.

• Minkowski metric
ηmn = diag(−1, 1, 1, 1) (A.2)

• ε-symbol

ε12 = ε21 = 1, ε1̇2̇ = ε2̇1̇ = 1 (A.3)

εαβεγα = δβ
γ , εα̇β̇εγ̇α̇ = δβ̇

γ̇ (A.4)

ε0123 = −1 (A.5)

• σ-matrices
σm = (−12, σ

i), σ̄m = (−12,−σi) (A.6)

• With the help of the ε-symbol the spinor indices can be pulled up and
down

ψα = εαβψβ , ψα = εαβψ
β (A.7)

σ̄mαα̇ = εα̇β̇εαβσm
ββ̇

(A.8)

Equivalent formulae hold for the dotted quantities.
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• Products of spinors

ψχ = ψαχα = −ψαχ
α = χαψα = χψ (A.9)

(χψ)† = (χαψα)† = ψ̄α̇χ̄
α̇ = ψ̄χ̄ = χ̄ψ̄ (A.10)

θαθβ = −1

2
εαβθθ, θαθβ =

1

2
εαβθθ (A.11)

θ̄α̇θ̄β̇ =
1

2
εα̇β̇ θ̄θ̄, θ̄α̇θ̄β̇ = −1

2
εα̇β̇ θ̄θ̄ (A.12)

ψαχβ = ψβχα + εαβψχ (A.13)

ψ̄α̇χ̄β̇ = ψ̄β̇χ̄α̇ − εα̇β̇ψ̄χ̄ (A.14)

(ψ1ψ2)(ψ3ψ4) = −(ψ1ψ3)(ψ2ψ4) − (ψ1ψ4)(ψ2ψ3) (A.15)

• Rules for the σ matrices

σm
αα̇σ̄

nα̇β = −ηmnδβ
α + 2(σmn) β

α (A.16)

(σmn) β
α =

1

4
(σm

αα̇σ̄
nα̇β̇ − σn

αα̇σ̄
mα̇β̇) (A.17)

tr(σmσ̄n) = −2ηmn (A.18)

A.2 Integration and differentiation with respect to

anticommuting variables

Differentiation with respect to an anticommuting variable is defined in the
natural way

∂

∂θα
θβ = δβ

α, (A.19)

and similar for the dotted indices.
The integration is defined with the help of

∫

dθαθ
β = δ β

α

∫

dθ̄α̇θ̄β̇ = δα̇
β̇
.

(A.20)

The volume elements in superspace are defined as follows

d2θ = −1

4
dθαdθβεαβ

d2θ̄ = −1

4
dθ̄α̇dθ̄β̇ε

α̇β̇

d4θ = d2θd2θ̄.

(A.21)
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Due to the anticommuting properties of the variables, and hence of the
derivatives and integrals, we can express the integration over θ, θ̄ in terms
of the covariant derivatives

∫

d2θd2θ̄v(x, θ, θ̄) =

(

− 1

4

∫

d2θD̄2v(x, θ, θ̄)

)∣
∣
∣
θ̄=0

=

(
1

16
D2D̄2v(x, θ, θ̄)

)∣
∣
∣
θ=θ̄=0

∫

d2θd2θ̄v(x, θ, θ̄) =

(

− 1

4

∫

d2θ̄D2v(x, θ, θ̄)

)∣
∣
∣
θ=0

=

(
1

16
D̄2D2v(x, θ, θ̄)

)∣
∣
∣
θ=θ̄=0

(A.22)

when leaving out total derivative-like terms.

A.3 Covariant derivative rules

We present now some identities, which often occur when performing calcu-
lations with superfields

DαDβ =
1

2
εαβD

2, D̄α̇D̄β̇ = −1

2
εα̇β̇D̄

2 (A.23)

DαDβDγ = 0, D̄α̇D̄β̇D̄γ̇ = 0 (A.24)

[D2, D̄α̇] = −4iσm
αα̇∂mD

α, [D̄2, Dα] = 4iσm
αα̇∂mD

α̇ (A.25)
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Appendix B

Variation rules for
superfields

A well written introduction to variation rules of superfields can be found in
[12]. We only present the most important results.

We start with a functional S[V ] of a superfield. The principle of the
extremal action demands, that for any variation δV

δS[V ] = S[V + δV ] − S[V ] =

∫

d4xd4θ
δS[V ]

δV (x, θ, θ̄)
= 0 (B.1)

is fulfilled. This constraint yields the equation of motion. The occurring
derivatives depend on the involved superfield. The following relations hold:

• general superfields

δΣ(x′, θ′, θ̄′)

δΣ(x, θ, θ̄)
= −1

4
δ4(x− x′)δ2(θ − θ′)δ2(θ̄ − θ̄′) (B.2)

• chiral superfields

δΦ(x′, θ′, θ̄′)

δΦ(x, θ, θ̄)
= −1

4
D̄2δ4(x− x′)δ2(θ − θ′)δ2(θ̄ − θ̄′)

δΦ̄(x′, θ′, θ̄′)

δΦ̄(x, θ, θ̄)
= −1

4
D2δ4(x− x′)δ2(θ − θ′)δ2(θ̄ − θ̄′)

(B.3)

• vector superfields

δV (x′, θ′, θ̄′)

δV (x, θ, θ̄)
= δ4(x− x′)δ2(θ − θ′)δ2(θ̄ − θ̄′) (B.4)

• chiral spinor superfields

δΦβ(x′, θ′, θ̄′)

δΦα(x, θ, θ̄)
= −1

4
δ β
α D̄2δ4(x− x′)δ2(θ − θ′)δ2(θ̄ − θ̄′) (B.5)
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Appendix C

Kähler and Hyperkähler
geometry

In this appendix we provide an introduction (based on [32, 12, 33]) to com-
plex, hermitian manifolds, and show how Kähler manifolds arise in an N = 1
supersymmetric context. Afterwards, we give a short overview over Hy-
perkähler manifolds, as these arise in the context of N = 2 supersymmetric
Lagrangians of hypermultiplets.

C.1 Kähler geometry and N = 1 supersymmetry

A 2n dimensional manifold M with a complex structure

J : T M → T M, J2 = − �
,

where TM denotes the tangent space of M, is called a hermitian manifold,
if the metric g on M is hermitian with respect to J , that is

g(Jx, Jy) = g(x, y).

Defining a tensor field Ω with the action

Ω(x, y) = g(Jx, y),

one immediately notices that Ω is antisymmetric:

Ω(x, y) = g(Jx, y) = g(J 2x, Jy) = −g(Jy, x) = −Ω(y, x).

This form is called the Kähler form of the hermitian metric g. The compo-
nents of Ω are, due to the hermiticity of g, given by

Ωij̄ = gij̄J
j̄

k̄
.
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A Kähler manifold is a complex, hermitian manifold M with a closed Kähler
form:

dΩ = 0.

This can be interpreted as a differential equation for gij̄ with the general
solution:

gij̄ = ∂i∂j̄K(z, z̄).

Here, K is a real function K = K̄, and is called the Kähler potential of g.
It is defined up to Kähler transformations

K ′(z, z̄) = K(z, z̄) + f(z) + f̄(z̄).

It can be shown [12, 16, 10], that a N = 1 supersymmetric σ-model

S[Φ, Φ̄] =

∫

d4xd4θK(Φ, Φ̄) (C.1)

is described by a Kähler space with the Kähler potential K(Φ, Φ̄). Express-
ing the action in terms of component fields, one finds for the Lagrangian
L after performing the integration over superspace (we confine ourselves to
the bosonic part of L)

L = −Kij̄

(

∂mĀ
j̄∂mAi − F̄ j̄F i

)

. (C.2)

C.2 Hyperkähler geometry

Let HM be a real manifold of dimension 4m with a metric g

ds2 = guv(q)dq
udqv

with u, v = 1, . . . , 4m and three complex structures

J i : T (HM) → T (HM), i = 1, 2, 3

with respect to which the metric is hermitian

g(J ix, J iy) = g(x, y), i = 1, 2, 3.

The complex structures are subject to the quaternionic algebra

J iJ j = −δij �
+ εijkJk.

One can introduce the three 2-forms
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Ωi = Ωi
uvdq

u ∧ dqv

Ωi
uv = guw(J i)wv .

This triplet of 2-forms is SU(2) Lie-algebra valued and named Hyperkähler

form.
In the complex case, the Kähler form must be closed for M being not

just a hermitian manifold but a Kähler manifold. Therefore, one expects
that a similar condition arises in the context of Hyperkähler manifolds. It
can be shown that Kähler manifolds belong to the rigid case of N = 1
supersymmetry and, in a similar way, the Hyperkähler manifolds correspond
to rigid N = 2 supersymmetry [32]. In the local N = 1 description, one
encounters Hodge-Kähler manifolds and the Kähler 2-form can be identified
with the curvature of a line bundle, which vanishes in the rigid case [32].
Analogous steps can be performed in the N = 2 case [32].

Let SU be a principal SU(2)-bundle and Γi a connection on such a
bundle. One has to demand, that the Hyperkähler 2-form is covariantly
closed with respect to the connection Γi

∇Ωi ≡ dΩi + εijkΓj ∧ Ωk = 0.

One now defines a Hyperkähler manifold as a 4m-dimensional manifold with
the above structure, such that the SU -curvature vanishes [32]:

Ci ≡ dΓi +
1

2
εijkΓjΓk = 0.
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Appendix D

Projective superfield
formalism

This appendix is basically an overview of the material presented in the
appendix of [6]. The N = 2 algebra is

{Qi
α, Q̄α̇j} = 2σm

αα̇Pmδ
i
j

{Qi
α, Q

j
β} = {Q̄α̇i, Q̄

j

β̇
} = 0,

i, j = 1, 2.

(D.1)

We can define an abelian subspace of the N = 2 superspace, which is param-
eterized by a complex coordinate ζ and spanned by the covariant derivatives

Dα(ζ) = D1α + ζD2α

D̄α̇(ζ) = D̄2
α̇ − ζD̄1

α̇.
(D.2)

In order to simplify the notation we write in this chapter D1α = Dα, D2α =
Qα.

We construct the conjugate of any object of this subspace by the compos-
ite of the antipodal map on the Riemann sphere with hermitean conjugation

ζ∗ −→ −1

ζ
(D.3)

and multiplying with an appropriate factor.
Projective superfields in this space are subject to the constraint

DαΥ = 0 = D̄α̇Υ, (D.4)

and we can construct a restricted measure in order to integrate Lagrangians
over this subspace from any differential operator which is linearly indepen-
dent of D and D̄. A generic choice is the usual N = 1 measure
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S =

∮

γ

dζ

2πiζ
d4xD2D̄2G(Υ, Ῡ, ζ), (D.5)

where the integration contour γ generally depends on G. The above con-
straints (D.4) ensure that the action is N = 2 supersymmetric.

Projective superfields can be classified as [6]:

• O(k) multiplets

• rational multiplets

• analytical multiplets

We concentrate on the O(k) multiplets which are polynomials in ζ. The
minimal power of ζ is 0, the maximal power is k. For even k = 2p one can
impose a reality condition with respect of the above introduced conjugation
mapping (D.3). With η(2p) we denote a real finite order O(k) multiplet. The
reality condition yields

η(2p)(ζ) =
1

ζp

2p
∑

n=1

η(2p)
n ζn

η(2p) = η̄(2p).

(D.6)

Obviously, the reality constraint relates different coefficients of the ζ expan-
sion of η

η2p−n = (−)p−nη̄n. (D.7)

We now examine the constraints (D.4). They relate different ζ-coefficient
superfields

DαΥn+1 = −QαΥn

D̄α̇Υn = Q̄α̇Υn+1.
(D.8)

As the important example for this work we present the O(2) multiplet. The
expansion reads

η(2) =
Ā

ζ
+ C − ζA. (D.9)

The field A obeys D̄α̇ = Qα = 0 while C is real and obeys D̄2C = Q2C = 0.
Hence, A is projected to a chiral superfield and C to a linear one. That
means, that the projective superfield η(2) describes an N = 2 tensor multi-
plet.
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angenehme Büroatmosphäre.
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Zusammenfassung

Betrachtet man Typ II Stringtheorien, so muss man, zusätzlich zur di-
mensionalen Reduktion durch die Kaluza-Klein-Kompaktifizierung mit Hil-
fe von Calabi-Yau Mannigfaltigkeiten, sogenannte Orientifold Projektionen
durchführen. Diese Orientifold Projektionen ermöglichen einerseits konsi-
stente beziehungsweise stabile Typ II Theorien mit Dp-Branes, andererseits
reduzieren sie die Anzahl der Superladungen von 32 auf 16. Dies entspricht
dem Übergang von einer N = 2 Theorie zu einer N = 1 Theorie. Der Grund
warum man Theorien mit Dp-Branes betrachtet ist, dass Strings, die auf
den Dp-Branen enden, eine Yang-Mills Quantenfeldtheorie, wie das Stan-
dardmodell eine ist, hervorrufen.

Calabi-Yau Mannigfaltigkeiten unterliegen speziellen Deformationen, so-
genannten Moduli, welche den Calabi-Yau-Bedingungen genügen müssen.
Diese Deformationen bezüglich der Form und der Größe der Mannigfaltig-
keit heißen komplexe Struktur Moduli beziehungsweise Kähler Moduli.

In dieser Arbeit bestimmen wir die Kähler Potentiale der Hypermul-
tiplets von Typ IIB Orientifold Projektionen. Im Gegensatz zu früheren
Arbeiten zu diesem Thema nutzen wir einen Formalismus aus der Litera-
tur, welcher auf sogenannten projektiven Superfeldern basiert. Dazu bestim-
men wir zuallererst, wie in der Literatur bereits geschehen, die allgemeine
Kopplungsfunktion der N = 2 Tensor Multiplets mit Hilfe eines komplexen
Kurvenintegrals über das klassische Präpotential der Hypermultiplets. Im
Anschluss können wir die Bedingungen der zwei betrachteten Orientifold
Projektionen an die Skalare der Tensor Multiplets stellen. Daraufhin führen
wir die Dualisierung der Tensor Multiplets zu Hypermultiplets durch, und
erhalten dann die Kähler Potentiale der beiden Projektionen. Dabei ist her-
vorzuheben, dass das Kähler Potential, das man im Falle von O5/O9 Ori-
entifolds mit diesem Formalismus erhält, nicht in der Literatur angegeben
war. Abschließend vergleichen wir die betrachteten Kähler Potentiale mit
denen, die man mit dem konventionellen Formalismus erhält und führen in
diesem Zusammenhang eine Umdefinierung unserer Variablen durch. Wir
erhalten Kähler Potentiale, welche sich um einen Faktor 2 von den bereits
bestimmten unterscheiden. Die Ursache dieses Faktors ist wahrscheinlich in
den verschiedenen Definitionen für das Kähler Potential zu suchen, da diese
sich ebenfalls um einen Faktor 2 unterscheiden.


