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Chapter 1

Introduction

The standard model of particle physics is a successful theory for the physics
of the elementary particles. Nevertheless it has some severe drawbacks. A
promising theory for eliminating these drawbacks is superstring theory. In
the standard model, the elementary particles are described by point-like ob-
jects. In string theory, one chooses instead one dimensional objects - the
strings. Consistency of the theory demands supersymmetry and more that
4 space-time dimensions. Actually, there are more than one string theory,
namely the type I, the type ITA/B, the Eg x Eg and the SO(32) [4]. The sev-
eral string theories differ, for example, by the number of supersymmetries.
The type ITA/B theories have two generators of supersymmetry, whereas
the remaining theories have one generator of supersymmetry.

Phenomenology is nowadays predominantly done with one supersymme-
try, corresponding to N = 1, as it would be the simplest extension of the
standard model of particle physics. When considering one of the type IIA /B
theories, one has, in addition to perform the dimensional reduction, to get
rid of the extra supersymmetry. The extra space dimensions are compact-
ified on a Calabi-Yau manifold using the Kaluza-Klein mechanism. These
manifolds are subject to two kinds of deformations. Deformations in the
shape are described by the complex structure moduli, deformatins of the
size by the Kahler moduli. These moduli have no affect on the topology of
the Calabi-Yau manifold [4].

In order to reduce the supersymmetry, one uses the orientifold projection
[1, 2, 3]. An orientifold projection is obtained by dividing a product of an
orientation reversal and of a discrete symmetry group out of a Calabi-Yau
manifold [2]. Actually, the type I theory is obtained from the type IIB the-
ory by performing the orientifold projection [4]. Another evidence for the
necessity of orientifolds stems from the fact that type II compactifications
with Dp-branes, which are introduced to attain a supersymmetric and non-
abelian gauge theory, are often inconsistent or at least unstable [5]. Both
drawbacks, inconsistency and instability, can be eliminated with the help of



orientifold projections.

The purpose of this work is to determine the Kéahler potential of the
hypermultiplets, appearing in type IIB orientifold projections. This Kahler
potential describes the Kéahler moduli of the Calabi-Yau manifold, which is
used to compactify the extra space dimensions. In contrast to the earlier
work performed on this topic [2], we use an alternative approach introduced
in [6], and performed for the O3/O7 orientifold projection in [3]. We per-
form the calculations following [7, 8, 9, 3] by rederiving the general coupling
function for the N = 1 tensor multiplets in type IIB string theory, using
the contour integral approach of [6] involving projective tensor multiplets.
Afterwards we perform the orientifold projection along the lines of [3] on
the projective tensor multiplets, and rederive the Kéhler potential for the
03/07 orientifold projection. Then, we explicitly determine the Kéhler po-
tential for the O5/09 orientifold projection, as this was not done in [3], and
compare both Kéhler potentials with those, derived in [2]. For this purpose,
we also determine the redefinition equations for the involved hypermultiplet
scalars. We find, after the redefining the hypermultiplet scalars, agreement
with the Kéhler potentials derived in [2] up to an overall factor of 2. The
origin of this overall factor is presumably the different definitions of the
Kahler metric used in the literature.

This work is organized as follows:

e In chapter two, we introduce the formalism of N = 1 supersymme-
try and try to familiarize the reader with the basic topics, such as
superfield formalism, the different multiplets and their actions.

e Chapter three is dedicated to the N = 2 formulation of supersymme-
try. Again, we explain the NV = 2 superfield formalism (though it is not
used extensively), and present the multiplets with the corresponding
actions. We also derive the constraints on the general coupling func-
tion F' which appears in self-interacting tensor multiplet formulations.
Afterwards, we determine the bosonic action of such a self-interacting
model and perform the Legendre transformation on the scalar level.

e In Chapter four, we shortly review the type IIB theory and its action
compactified on a Calabi-Yau threefold. We also present the emerging
massless, bosonic spectrum.

e Finally, in chapter five, we determine the general coupling function
F for type IIB tensor multiplets using the contour integral approach.
Afterwards we derive the hyperkéhler potential of the target space
geometry by performing the Legendre transformation. Subsequently,
we perform the orientifold projection using @3/O7 respectively O5/09
planes and determine the corresponding Kéahler potentials.



In appendix A we present our notation and some identities, which are
very useful when performing calculations with superfields.

Appendix B is dedicated to the variation rules of superfields, which
play a role when performing duality transformations.

Furthermore, we present in appendix C some basic facts of nonlinear
o-models and Kahler geometry as well as an outline of hyperkéahler
geometry.

And finally, in appendix D we introduce the notion of projective su-
perfields, which we use in chapter 4 to perform the calculations.



Chapter 2

Rigid N =1 supersymmetry

2.1 N =1 supersymmetry algebra

This chapter is predominantly a summary of [10]. The notation and summa-
tion convention are the same as in [10] and some important facts are listed
in appendix A.

The most simple supersymmetry algebra contains one set of fermionic
generators of supersymmetry Qo, Q4. The algebra reads [10]:

{Qam Qd} = ZO;anP_m,
{QOHQ,B} = {QO&?QQ} = 07

- (2.1)
[Pma Qa] - [Pm7 Qd] = 07
[Py Pr] = 0,
with o, = 1,2 and m =0, ...,3. P,, denotes the energy-momentum four-

vector. Fermionic objects carry spinor indices «, ¢, bosonic objects either
no index or Lorentz indices m.

2.2 N =1 superfield formalism

After introducing anticommuting parameters £¢, €4 which anticommute with
all fermionic objects and commute with all bosonic ones, allocated

(67,67} = {6} ={€*.Qp} = {€*. Qa} = [£*, Pn] = 0, (2.2)

one can express the algebra (2.1) in terms of commutators:

[€Q,£Q) = 260™EPy,
€Q,€Q) = [£Q.€Q) = 0, (2.3)
[P, €Q) = [P, £Q] = 0.
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This may be viewed as a Lie algebra with anticommuting parameters and
one can define a group element, according to

G(z™,0,0) = ell=+" Pnt0Q+0Q] (2.4)

The multiplication of two group elements induces a motion in the parameter
space and one can express the @), QQ by differential operators. In the following
we will use an equivalent set of differential operators, namely

D, — é% o™ G0,
0 (2.5)
D= -2 _igrgma,

ST

One can now introduce the superspace with the coordinates (x,6,6) and
define functions on this space. These functions are called superfields and
depend on (z,6,0). As the parameters 6, § anticommute, it is obvious that
powers of § (or ) higher than two vanish. Therefore it is convenient to
expand superfields in power series in 6 and :

f(x™,0,0) =g(z) + 0“bu(z) + 050 () + 0%04m(z) + 040%n(2)+
0%0™. 0%, () + 0%0,0,0% () + 040900, (z)+ (2.6)
0%0,040%d(x).

The coefficient functions depending on the space-time coordinates x are
called component fields.
2.3 The constrained superfields

2.3.1 The chiral superfield

The chiral superfield is one of the irreducible representations of the su-
persymmetry algebra. Its defining relation is the action of the covariant
derivative Dy introduced in (2.5) on a superfield ®:

Dy® = 0. (2.7)
Introducing the new variable
Y™ = 2™ + 0™, (2.8)

one observes that the action of D4 on y™ simply is!

! Differentiation with respect to anticommuting variables is introduced in appendix A.2.



Day™ = 0. (2.9)

In addition, the covariant derivation of 6 vanishes, too:

Dgb, = 0. (2.10)

This means that any function, which depends only on ™ and 6, satisfies the
constraint (2.7). The expansion of the chiral superfield in the coordinates
y™ reads:

D(y,0) = A(y) + V20(y) + 00F (y). (2.11)

One can now express (2.11) in terms of ™, and 0:

_ _ 1
O(x,0,0) =A(z) + 0000, A(x) + ZOOOGDA(:L‘)

. (2.12)
i

V2

Analogously, we can define the antichiral superfield, using the constraint

+ V20 (x) — —=000,10(2)a™0 + OO F (x)

Do = 0. (2.13)

Its expansion in the variables 6, § can be obtained by a complex conjugation
of (2.11) respectively (2.12):

B* (2, 0,0) =A*(z) — 0™ IO A* (z) + i&&ééDA*(m)

o i - B (2.14)
+V20(x) + —=0000"0,,1)(x) + 00F*(x)
V2
2.3.2 The vector superfield
The defining constraint of the vector superfield is
V=V (2.15)

The superfield expansion reads

10



V(x,0,0) =C(z) + i0x(z) — i0x(z) + %99 <M(a:) + zN(x)) +

%g@ <M(w) — iN(:c)) — 00™ Gy (x)+

060 <)\(a;) +Lgm mx(w)) — 006 (A(w) + %am mx(x)>+

[\

(2.16)

Comparing the expressions (2.12) and (2.14) with (2.16) one realizes that
the fields C, M, N and x can be eliminated by choosing a special gauge:

V—V+&+0. (2.17)

This gauge is often called Wess-Zumino gauge? in the literature. The vector
superfield then reduces to a very simple form

_ __ __ 1 __
V' = —00™ Gun(z) + 009X () — 000N (x) + 50000 D (). (2.18)

One can also define chiral and antichiral field strengths which are invariant
under (2.17):

W = EDDDQV,

_ 1 _
Wi =~ ;DDD,V.

(2.19)

The invariance of W, or W under the gauge transformation (2.17) can be
shown by using the the (anti)chirality constraints of ® and ®. The expansion
in 0,6 is given by3

W = —ida + [@ﬁD - %(ama”)aﬁan] 05+ 000™ 0 A", (2.20)
Here, F,,, denotes the field strength

Fon = Optn — Opvp,. (2.21)

The antichiral field strength W, can be obtained by complex conjugation.

2or WZ-gauge.
3when using the variable y™.

11



2.3.3 The linear superfield

The linear superfield L [11, 12, 13, 14], also known as the real tensor multi-
plet or 2-form multiplet, is subject to the constraint

D?’L = D*L =0. (2.22)

Here, L is a real superfield. By virtue of this constraint, the linear superfield
can be defined in another equivalent way using a chiral spinor multiplet[11,
13, 14]:

DgV, = 0. (2.23)
Using (A.25), one can show that the following definition of the linear super-
field obeys the constraint (2.22):

L=—(DU,, + Dg¥%). (2.24)

1
2
The expansion in 6, § reads

) o . .
L = C+0n+07+00"0v,, — %eeeamamn— %eeeamamﬁ— 166660C. (2.25)

As the vector v, is subject to the constraint 0,,0™ = 0, it can be written
as

1
o™ = 2 Hygy (2.26)

with

Hino = a[m-Bno} (227)

Here, H™"° is the field strength of the antisymmetric tensor B,,, which is
natural a part of the chiral spinor superfield ¥, introduced in (2.23) and
(2.24).

We now turn to the representation of the linear superfield L in terms of
the chiral spinor multiplet ¥,. The expansion of ¥, in terms of 0, 8 can be

found analogous to the scalar chiral superfield ®. Details are given in [13].
One finds*

1 1 .
U, = Xa—@g<§5aﬁ(0+iE)+Z(ama")aﬁan> +00(na+ic™0mxY) (2.28)

The antisymmetric tensor B, is included directly as a component field
in the 0,60 expansion, in contrast to the linear multiplet where the tensor
appeared only through its field strength H™"°,

4The components are in terms of y™ = z™ + i0c™0.

12



2.4 Supersymmetric Lagrangians

2.4.1 Lagrangian for chiral superfields

The most general and renormalizable Lagrangian for a theory with N¢ chiral
multiplets is given by [10]:

= 1 1
L= @i@i‘ggéé + Kimij@i@j + ggijkq)i@j¢k + )\iq)i> oo + h.C.:| s (2.29)
1,5,k =1,..., No. When introducing an arbitrary coupling function f, one

is led to a nonlinear o-model (cf. appendix C).

2.4.2 Lagrangians for the vector superfields

To motivate the construction of the Lagrangian (see [10]) for a free, mass-
less vector multiplet, we recall that the field strengths W, Wy of the vector
multiplet contain only the gauge invariant components A\, D and F,, of
the vector multiplet V. They can therefore be used to construct a gauge
invariant Lagrangian. Furthermore, the Lagrangian must be Lorentz invari-
ant. Hence, we have to take a product of the form W*W,, in order to
achieve a renormalizable Lagrangian. The supersymmetric, gauge invariant
generalization of a Lagrangian for a free, massless vector field therefore is

L= i(W“Wa

+ W,,We
00

6_5). (2.30)

The next step to more general Lagrangian is to allow Ny vector multi-
plets coupled by a symmetric coupling function f4p with A, B =1,..., Ny.
However, in the following we consider a more general scenario. We couple
the Ny vector multiplets to N¢ chiral multiplets using a chiral multiplet
dependent coupling function fap(®;),i=1,..., N¢ [13, 14]:

1
L= / 20 fap(@)WAWE 4 hec.. (2.31)

The explicit form of the Lagrangian in components is determined in [14, 13].
The bosonic terms finally read:

1 1
L= —ZRefABFénFBm" + gImfABem’prA FB (2.32)

mn* op*

2.4.3 Lagrangians for the linear superfields

We restrict ourselves to the massless case [15, 16, 17, 12, 13, 14]. In a
renormalizable scenario, the gauge invariant Lagrangian is given by the 6262
component of L?, that is

13



Liin = —L (2.33)

1
0000
The tensor multiplet can also possess self-interactions, which we can include
when writing the Lagrangian as an arbitrary, real function F'(L):

Lyin = —F(L)| (2.34)

0060
In components, this Lagrangian admits the following form (details are given
in the appendix of [13]):

10°F 3
Lhin = — =2 |0 CO™C + i(no™ 7 + 76™n) + —Hmnon"O]
40¢ 2 (2.35)
13F . gnop _ L oF
< 5ca10 " Nemnon TR Te LA

The linear multiplet is dual to the chiral multiplet. To show this, one intro-
duces the first order action®

S = / diwd?0d%0 ( - %VQ + (D + <T>)V) (2.36)

where V is a general, real superfield. Using the rules for variation of super-
fields®, we notice that variation of S with respect to V yields the following
equation of motion

V=0+9. (2.37)

Inserting (2.37) back into (2.36) results in the action for a free chiral multi-
plet. B
Now we vary with respect to the (anti-)chiral mult_iplets ®, d. As a con-

sequence of the anticommuting character of the D, Dg, a chiral superfield
can be written as

d = D2A, (2.38)

with A being a general superfield. The first order action reads, after inte-
grating by parts,

S = / diad?0d%0 ( - %v2 + (D2V)A + (DQV)[X). (2.39)

The equations of motion for the general superfields A, A are

5Here we also introduced integration over anticommuting variables. An introduction
to this topic is given in appendix A.
5The rules are given in the appendix B.

14



D?*V = D*V =0, (2.40)

which is exactly the constraint for a real, linear superfield. Putting (2.40)
back into (2.36) reveals the action for a free linear multiplet.

15



Chapter 3
Rigid N = 2 supersymmetry

The most simple extension of the N = 1 supersymmetry is to introduce
another generator of supersymmetry. We choose an algebra without any
central charges. The algebra then is

{Ql. Qaj} = 20045 P,
(@4 Q) = (@ Q) =0,
[PTI’MQZO[] = [vac?al] = 07
[P, Pn] =0,

(3.1)

with 4,7 = 1,2. All other indices are treated as in the case of N = 1, that
isa,d=1,2and m=0,...,3.

3.1 N =2 superspace

In the N =1 case, one can introduce the superspace with the coordinates
(z™,0%,04) (see chapter 2.1). This formulation can be easily carried over to
the N = 2 theory by introducing the coordinates

(«™, 67, 05). (3.2)

The spinor variables form a doublet under SU(2) [18, 19], and as in the

N =1 case, they are totally anticommuting. One can also define a group
element [17]:

G(a™,0%,0%) = eil=#" Pmt07 Qat05Q7], (3.3)

R A o)
Under the action of a supersymmetry transformation G(0, £ ,gé), a point

in superspace (™, ¢, 6%) is transformed into

16



z™ = 2™ 4 if%e M EY — X0 %
0 = 03 + €2, (3.4)
O = 04 + &
The generators of supersymmetry are in terms of the differential operators
Qq: Qai given by [20]

Q= 0 o™ 0,

“ 00
) Y (3.5)

A superfield F' shall transform under a supersymmetry transformation as
follows:

0eF = (& Qo + &Q7)F. (3.6)
The covariant derivatives D?, Dg4; admit the following form [21, 20, 22]

D! = 0 + 0™ 0V,

‘99@'8 (3.7)
Ddi = —W — ZO?Uglaam,

and the anticommutation relations for vanishing central charge are given by:

{D},, Daj} = —2i0%0750m,
{D(ZwDé} =0,

{DdiaDﬁ'j} = {DémQ]ﬁ} = {Ddin]ﬁ} = {D(ZmQﬁ'j} = {DdiaQﬁ'j} =0.
(3.8)
Superfields can be expanded in powers of the variables 5", 9;‘1 Examples for
the superfield expansions are given in [21, 16]. However, this rather compli-
cated description is not necessary. One can describe the N = 2 multiplets
and interactions in terms of N = 1 superfields which describe their N = 1
submultiplets [16].

3.2 Scalar hypermultiplet

According to [23, 24, 16, 15|, the hypermultiplet is described by a SU(2)
doublet of N = 1 chiral multiplets 4, A = 1,2. The off-shell field content

17



Field Type Degrees of freedom
Ay complex scalars 4 bosonic
¥4 | doublet of chiral fermions 8 fermionic
Fy complex scalars 4 bosonic

Table 3.1: Component content of the N = 2 hypermultiplet

is shown in table 3.1. The off-shell multiplet content of the hypermultiplet
is given in [25, 26].
One possibility for a free action is

S = / dzd* 0D 4 DA (3.9)

The chosen description admits an algebra which closes only on-shell, so that
the supersymmetry transformations depend on the action. For the action
above, the first supersymmetry is manifestly implemented by the integral
over the anticommuting parameters, the second supersymmetry transforma-
tions are generated by [15], using the N = 1 covariant derivatives,

604 = +D?(£D ),

60, = £D*(EDy). (3:10)

The supersymmetry parameter £ is space-time independent and chiral, i.e.
D€ = 0 and has the following expansion:

§=2z+0C—00q. (3.11)

The parameter z generates the central charge transformations (which we set
to zero), ¢ generates the additional supersymmetry and ¢ rotates the two
supersymmetries into each other (SU(2) symmetry of the two supersymme-
tries) [15, 16].

3.3 Vector multiplet

The component content of the NV = 2 vector multiplet consists of 8 + 8 off-
shell degrees of freedom [26], namely a complex scalar, a doublet of chiral
fermions, a vector gauge field and a triplet of real SU(2) scalars. It is
summarized in table 3.2. The real triplet of scalars satisfies Y p = Yga.

The N = 2 vector multiplet can be described by a N = 1 vector multiplet
V and a N = 1 chiral multiplet ® in the adjoint representation of the internal
symmetry group [16, 27]. One supersymmetry is manifested in contrast to
the other one, which has to be implemented explicitly in the transformation
rules and mixes the superfields V' and &:

18



Field Type Degrees of freedom
X complex scalar 2 bosonic
Pa doublet of chiral fermions 8 fermionic
™ gauge vector 3 bosonic
Y(ap) | real SU(2) triplet of scalars 3 bosonic

Table 3.2: Component content of the N = 2 vector multiplet

0P = —iWD,E&
Vev = ~ (3.12)
e Vel =£P+£D.
Here, ® = e V®e", W = iD?(eV D) and ¢ is again a constant chiral
superfield as defined in (3.11). The covariant derivative D, is given by
the covariant derivative of N = 1 case (2.5). This algebra closes without
imposing any field equations, which means that the transformations are, in
contrast to the hypermultiplet case, independent of the action. The action
is given by [16]

_ 1
S = / d*zd*0dd + {Z / drzd*OW W, + h.c.}. (3.13)

Of course, one can generalize this action to more than one vector mul-
tiplet. In that case, the N = 2 vector multiplets are described by n N =1
vector multiplets V¥ and n N = 1 chiral multiplets ®* in the adjoint represen-
tation of some group, with ¢ = 1...n. The supersymmetry transformations
are generalized in the following way [27]:

6D = —iWD,E, o = P'T;

_ - . 3.14
e VeV = £+ €D, V =V'T, (314

where (Ti)jk =1 ikjﬁ) =e Vo Wi = iD?(e=V DY")" and ¢ is a con-
stant chiral superfield (3.11). As before, this algebra closes without imposing
any field equations. The action is given by [27]

- 1 ) .
S = / d*zd* 0K (®,d) + {Z / d*xd*O0F;WWJ + h.c.}. (3.15)

In order that (3.15) is invariant under N = 2 supersymmetry transforma-
tions, one has to require that the function K and the matrix F;; can be
expressed by one single holomorphic function F'(®) [27]:

19



1 _. L
K= §(<I>ZFZ-+<I>ZFZ-),

OF
Fi_@, (3.16)
O*F
F,=——.
T 9PioPI

3.4 Tensor multiplet

We now discuss the N = 2 tensor multiplets and its actions [15, 16, 26].
A N = 2 tensor multiplet consists of a SU(2) triplet of scalars, a doublet
of spinors and a Lorentz vector, which is the subject to a constraint. The
defining relation of the multiplet is, that the triplet of scalars transform
under supersymmetry into the spinors. In table 3.3, the component content
is shown.

Field Type Degrees of freedom
Cap | real SU(2) triplet of scalars 3 bosonic

A doublet spinor 8 fermionic

™ Lorentz vector 3 bosonic

F complex scalar 2 bosonic

Table 3.3: Component content of the N = 2 linear multiplet

The formulation of the N = 2 tensor multiplets in terms of N = 1
superfields is well known [15, 16]. They consist of a chiral superfield ® and
a spinor gauge field ¥V, with the field strength L = %(DO‘\IIQ + Dg¥%),
satisfying the constraint of the N = 1 linear multiplet D?L = D?L = 0
(2.25).

The N = 2 supersymmetry transformations read

(3.17)
0eWo = —BD,E.

As before, £ is a constant and chiral superfield (3.11), describing the N = 2
supersymmetry transformations. But, in contrast to the transformations of
the hypermultiplet, these transformations close off-shell. As a consequence,
the sum of invariant actions is again invariant under the transformations
given above.

The most simple, N = 2 invariant action is given by

S = /d%d‘*@[— %LQ + dD|. (3.18)

20



The proof of invariance under (3.17) is straightforward. Thereby we as-
sume D2¢ = 0, which breaks the internal SU(2) symmetry between the two
supersymmetries [15, 16]:

58 = / d*zd*0| ~ LSL + Bo® + 05B|.
The transformation for the linear multiplet L reads:

5L = 5 [(D°®)(Dag) + (DsB)(D"6)] (3.19)

Converting the #-integration into covariant derivatives using (A.22), one
finds

1 _
08 =~ / d4xd20D2{ [L(Da@) +<I>(DaL)] (Das)} + h.c..
6=0
This can be simplified using the product rule as follows
1 _
08 =~ / d4xd29D2{D°‘(L<I>)(Da§)} + h.c.,
0=0

which is equal to zero, when using (A.24) and D2¢ = 0.
A first step to generalize this simple action is to permit a general coupling
function F(L, P, ®):

S = /d4xd49F(L,<1>,<i>). (3.20)

The proof of invariance under the transformations (3.17) can be performed
in a similar way as before:

68 =65 + h.c.,
with
; OF OF
68 = / d4a:d40{ [ — 5 (D0 + 8—@(D°‘L)} (Daé)}. (3.21)

We now focus on the first part 55 of 65 , as the hermitian conjugated part can
be treated analogously, and perform the 6-integration using the covariant
derivatives:
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N _ 2 2
5S:—%/d4xd29Dﬁ{{— L pyryped) — 2E (p,a)(poa)

OLOL O0LOD
OF O*F
DgD%®) + DsgL)(D*L
— 51 (DsD®) + omor (D L)(DOL)
82
= Dg®)(DL)| (D,
+ S DL D0}
(3.22)
The second covariant derivative reveals!
. 1 _
0S = _Z /d41‘d29{ |: — FLLL(LﬁLQCI)a) — FLLq)((I)ﬁLﬁq)a)
+ Frr(LgDP®) — Frop(L°®50%)
— Froa(®P®50%) — Fre(DPds)d"
+ Fro(®g)(DPd”
Lo (Ps)( ) (3.23)

— FrLp(LP)(Dg®*) — Fro(®7)(Dsd")
+ F@LL(LﬁLﬂLa) + F@L@(q’ﬁLﬁLa)
+ Fé@L(Lﬁ‘I’ﬁLQ) + Fpop(®° L)

 Faa(D* 22| (Da6)}

0=0

Note, that the terms @ﬁq)ﬁ@a and LﬁLﬁLo‘ vanish due to the anticommu-
tation relations spinor-indexed quantities (2.2).

The terms in (3.23) containing two linear multiplets and one chiral multiplet
can be simplified as follows

—FLLL(LﬁLﬁq)a) + F@L@(q)ﬁLﬁLa) + F@@L(LE@BLQ) =
—Frp(LPLg®®) + 2F g0, (PP Ly L) =

1 3.24
—Frrp(LPLgd®) — 2F®L§5ﬁ“(q>ﬁmL7) = (324)
_ [FLLL n F@L] (LPLyo®).

Similarly, one can summarize the terms in (3.23) containing one linear mul-
tiplet and two chiral ones:

"We introduced the abbreviations Fp = 2&

or» fre =
and ®“ = D*®.

52
MM) etc. as well as LY = DL

22



—Frro(®°Ls®*) — Frop (L ®30%) + Fygq(®PPsL%) =
Fppa(®7®5LY) — 2F16(LPBLY) =
1 3.25
Fypp (P P5L%) + 2FLLq>5ﬁa§(Lﬁqﬂ¢7) — (3.25)

|FLie + o (@705L%).

The terms in (3.23) proportional to Frg vanish

—Fia|(D?Dy®)(D°®) — (Dy®)(D’D*®) + (DP0)(DyD°®)| =
~Fre [(D5D5<I>)(DO‘<I>) + 2(D5<I>)(D@DO‘<I>)] -
_Fre [(Dﬁpﬁ@)(m@) - (D%)(Dﬁpﬁ@)] =0,

and for the terms in (3.23) containing one chiral multiplet and one linear
multiplet one finally finds

Fi1|(DsL)(D?D*®) — (D°L)(DyD*®)| + Fya (D’ Dy®)(D°L) =
—2F1(DPL)(DgD“®) 4 Fp4(D°Ds®)(D*L) = (3.26)
[FLL + F@] (DPD3®)(DL).
One condition for invariance under the supersymmetry transformations
therefore is
Frp+ Fge =0, (3.27)

and in fact, this is the only condition as one can rewrite the remaining terms
(3.24) and (3.25) in the following way:

0
—FLiL = Feer = 57 [ —Frr - F&:@} =0

Frro + Faop = 8% [FLL + F@q,] =0.
The solutions for the differential equation (3.27) are known, as it is just
the three-dimensional Laplace equation.
The final step of generalization is to allow N7 tensor multiplets. They are
described by Ny chiral multiplets ®/ and linear multiplets LY, I = 1,..., Np.
The supersymmetry transformations generalize as follows
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5:®! = D*(EL7)

3.28
5@ = —d'D,¢, (3.28)

and the action simply reads

S = / dtzd*0F (L, o1, ®7). (3.29)

The constraint for the invariance of the action under the transformations
(3.28) can be derived in a similar way as in the case for one tensor multiplet.
The transformed action reads

68 =65+ h.c.,
with

55 = / d4xd49{ [ — F(D®) + Fgr (DL! )] (Daf)}, (3.30)

and after rewriting the #-integration in terms of covariant derivatives and
performing the first covariant derivative, one obtains (up to the hermitean
conjugated part)

N 1 _
08 =~ / d4xd29Dﬂ{ { — Fpip0(DgL?)(D*®")

- FLI@J(Dﬁ(I)J)(Daq’I)
— Fr1(DgD*®") + Fgrp,(DgL7)(DLY)

+ Fara(Ds#)) (0L (D,6)}

0=0

After a circuitous calculation one arrives at
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08 = _i /d4xd29{ [_FLILJLK(DﬁLK)(DﬁL‘])(Daq’I)

+ 2Fp1 g 10 (DPOX)(DgL” ) (DLT)

+ Fyrgrpr (D7 ®%)(Dgd”) (DL

— 2F 1 pr i (DPLE)(Ds®”) (DO ®T)
+ Fgrpipx(D LK)(DﬂLJ)(DaLI)

— Frigrgpr (D70%)(Dy07)(D*0)

+ (FLILJ + F&>1¢J) (D’ Ds®”)(DLY)

)

+ (FLJq,I Frrgs DﬁD@q)J Da(I)I)

< (Da6)}

One condition for invariance therefore is

0=0

Frips+ Fgrgs = 0. (3.31)

By imposing the symmetry?

FLJq)I - FLIq)J - 0, (332)

we show in the following, that the remaining terms vanish, too. Using the
formula

(V1v02) (Y31ha) = —(V1903) (Y21ha) — (P1904) (Y2¥3)

for arbitrary spinors, we find
(D7®")(D@”)(D*®')(Da) = — (D7) (Dsd")(D*®”)(Dak)
— (DP®F)(Dgg)(D*®7) (Do "),

With the help of the symmetry property (3.32), this relation reduces to

(D7) (D" )(D@')(Dak) = —2(D 25 )(Dy@")(D*®7)(Dak)

which is equal to zero.
In an analogous manner we can eliminate the term proportional to

2 According to [16, 15], the term proportional to the symmetry constraint should vanish.
However, one can choose Fjr4s to be symmetric in I, J as we will see in the following
section. In this case the symmetry constraint is automatically fulfilled.
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(DL¥)(DsL”)(DLY),

and the transformation of the action is reduced to

55 = / d4xd2<‘7{ [ = Fuipo e (DPLR)(DL7) (D ®)

+2F31gx 10 (DPOX) (DL ) (D> LY)
+ Fprprpr (DPOX) (D@ ) (DLT)

- 2P (D) Dy (01| (D)}

6=0
(3.33)

For the term in (3.33) proportional to Fri1spx, the following relation holds

Frrpope(DPLF)(DgL”)(DY®")(Do) =
Fpigops | = (D°L)(D@" (D L) (Dag)
— (D°LF) (D) (D L) (Da®")] =
— 2Py (DP L) (D@ ) (D LT)(Daf).

Analogously, one can rewrite the term in (3.33) proportional to Fgrgsgx.
The transformation of the action finally reads

~ 1 ~
55 =7 / d4xd29{ 2(Fuipopw + Faigrys ) (D°®F) (DL ) (DO L)
-2 (F@Iqﬂ@x + FLILKc}J) (DBLK)(Dﬂq)J)(Da(I)I)

+ (FLILJ + F@I@J)(DﬁDﬁq)J)(DaLI)

9

+ (FLJ(I)I — FLI<I>J) (DﬁDﬁq)J)(Daq)I)] (Daﬁ)} 9=0

which is evidently equal to zero when imposing the constraints (3.31) and
(3.32), because the remaining constraints are obviously fulfilled:

0

FLILJLK +F§>Iq>KLJ = W[FLILK +F§>Iq>Ki| =0
0

F@I@J@K +FLILK(1>J == W[FLILK +F§,1¢K] — 0

To find the Lagrangian in components, one has to perform the full inte-
gration over ¢ and 6. Using (A.22), the action reads
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9

_ 1 4 2 72 I &I &1 ‘
5_16/dx{DDF(L,q>,<I>)}

and applying the covariant derivatives leads to

0=0=0

S = % / d4x{D2 [FLI 10 (Da LYY (DYLY) + Fp150(Ds®7)(DYLY)
+ Fgryps (DdLJ)(Ddi)I) + Fgrg0 (Ddi)‘])(l_)di)[)

+ Fau (Do D8] }

0=06=0

In the following sections, we will restrict ourselves to the bosonic part of
the N = 2 tensor multiplet Lagrangian. Higher order derivatives of the
function F', i.e. terms containing for example Fyiyrpx or Frrpspxm, will
lead to terms containing fermions, which will be omitted in the following.
The bosonic part of S is then given by

| _ N
=1 / d%{zFLI 1(DaDs L7 )(D® DELY)

—2F3:1,.0(D%Dy,
+2F515s (Do Ds®”)(D*DY®T)
+ Fgrgs (DQDQ@J)(DdDd(i)I)

+ Fpr (D" DaDaD® |

(3.34)

Using the anticommutation relations of the D, and Dy one determines

DaDdiﬂ( = [— 2i0™. 9n®! — Dg DO@IH o (3.35)
0=0=0 =—1lg=0=0
=0
that is in components, using (2.12),
Do Dy ®’ ‘0 o™ —2i0™, O, AL (3.36)

With (2.25) one can determine the similar expression for the linear multiplet

DaDy Lt ( i [v{n—z’amcf}. (3.37)

6=0=0

The remaining terms involving the chiral multiplets (2.12) give rise to
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DD, &' ( —4p!

0=6=0
Do Di®! (H:O — 4F! (3.38)
D&Dabdb%f(e o =1604”.

Inserting the expressions (3.36)-(3.38) in (3.34), the action reads, after using
the fact that F 14 is symmetric in 1, J

S = / d%{FC,CJ { - ivmfva + %(amcf)va + %(amcf)(amoJ)] +
Fei g [i(amAJ)vmf + (amAJ)(amcf)] +
Fi140(0™ AN (0 AT + Fi1 4o F'F! + FyyOAT }
(3.39)

Integrating the term containing CJA! by parts, one obtains up to boundary
terms

—(0™F11) (0 Al = —F1100(0™C7)(0,, A7)~
Fi1 10 (0™ A (0, AT) — Fr 40 (0™ A7) (0, AD).

Keeping in mind that 9™v,, = 0, one finds

am [FCme] = Farps (0™CTY0,,” + Far o0 Ao, 7 + Farps (04 )0, 7.

Therefore, the final action reads

S = / d%{FCICJ [(amAJ)(amAf) | %[(amcf)(amoJ) — vmfvm‘]]} +

% [FCI 40 (0MATY = For g0 (0™ A7) |v,,)f + Fqr 40 F’ FI}.
(3.40)

The last step is to eliminate the auxiliary fields F'! by using their equations
of motion, which yield ! = 0, and one rederives the action of [6].

When fixing the linear multiplets L’ by choosing constant chiral spinor
multiplets U! | one finds a Lagrangian corresponding to a nonlinear o-model
(cf. (C.2)) with the Kihler potential F(Af, AT).
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L= —Fjrps [(amAJ)(amAI) - FAIAJFJFI]. (3.41)

For fixed A’, one is led to the Lagrangian
c=1p [amcfacJ—mf J
—40101( )(O0mC) = 0™ 0,7 |

We can reexpress the vectors v™! in terms of the field strength H"°P! with
the help of

;1

nopl
(S §€mnopH p7

and the resulting Lagrangian reads due to the antisymmetry of H"°P

L= EFCICJ O CT)(0,C7) + anopr T,

nop

which is the generalization of the bosonic part of (2.35) to an arbitrary
number Np of linear multiplets.

We now study the duality properties of the N = 2 tensor multiplet. It
turns out that the N = 2 tensor multiplet is dual to the hypermultiplet in
the same way as the N = 1 linear multiplet is dual to the N = 1 chiral
multiplet (see section 2.4.3).

We start from a first order action corresponding to (3.20) [15], with
X1, X1 being (anti)-chiral superfields:

S = /d4a;d49[F(vf,q>f,<1>f) Vi +x1)|. (3.42)
Due to the (anti)-chirality of xr,x7, we can rewrite them in terms of a
general superfield X;:
) - 2%
x1 = D% X1 = DXy

Performing the variation with respect to the fields X7, X7 using the variation
rule (B.2), one immediately finds that in order to get a stationary action,
the following property holds for the real superfields V!

D2V =o.

An analogous property is found when varying with respect to the ¥; and
one realizes that the V! are indeed linear multiplets. Reinserting in (3.42)
latter yields to (3.29). The variation of (3.42) with respect to V! reads,
according to the variation rules of the appendix B,

o5 = [[ataao{ [l - -+ w]ov ),
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Since the variation of the action should vanish for any variation of the su-
perfield V', one is led to

(x1 +X1) = Ff:. (3.43)

Equation (3.43) defines the V7 in terms of (x; + x7) and ®!, ®!. Thus, one
finds the Legendre transformation of F with respect to the V1.

3.5 Hyperkahler geometry and tensor multiplet
Lagrangians

In the previous section we rederived the results of [15, 16, 6]. We deter-
mined the bosonic part of a general N = 2 supersymmetric Lagrangian for
N7 tensor multiplets. We also showed, that in order to obtain an action
that is invariant under the N = 2 supersymmetry transformations, the gen-
eral coupling function F(C!, Al AT) is subject to the constraints (3.31) and
(3.32). We then performed the duality transformation of the tensor mul-
tiplets to hypermultiplets and obtained the Legendre transformation of F
with respect to L (3.43).

In this section we perform the duality transformation, following [6], in
terms of the component fields in order to examine the geometry of the target
space, spanned by the hypermultiplet scalars.

The bosonic part of a non-linear o-model for N7 N = 2 tensor multiplets
involves Nt real scalars C!, Ny complex scalars A and Al as well as the
Nr field strengths v,,’ of the tensor gauge fields B,

L =Fpre [(amAJ)(amAf) + i[(amcf)(amoJ) - vmfva]] n
% [FCI (M AT) = Fr g0 (0™ AN |0,

m

(3.44)

We now accomplish the duality transformation on the level of the component
fields along the same lines as in [6]. For this purpose, one introduces the
term

1
—§Yfamvmf (3.45)

in the Lagrangian. Here, the Y; are real, Lagrangian multipliers. The
Lagrangian then reads

1
4
_ 1

[FCI W (0 A7) = For 0 (0" A7) |0, = SYi0mo™.

L=Farg [(amAJ)(amAf) + o[ C)(0mC7) — vava]] +

. (3.46)
2
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The equations of motion for the Y; guarantee, that the additional constraint
O™ = 0 is satisfied.

With the help of the field equations for the v/, one can express the
vectors v™! in terms of the A, AT and Y7:

o — FCICJ{Z' [FCJ k(0 AK) = Fsyx (amAK)] + 8mYK}. (3.47)

Here, FE'C” denotes the inverse of Forey. Inserting (3.47) in (3.46) yields
to the Lagrangian

£ =Fergs [0 A7) (00 A") + i(amcf)(ach)] +

1 _
ZFCIC’J {8mY[ 4 |:FCIAK (amAK) — FCIAK (8mAK)] } X (348)

{8mYJ +1 [FCJAL (8mAL) — Foiaz (amAL)} }
when using the fact, that one can rewrite (3.45)

1 ml| _ _1 ml 1 ml
28m |:Y[7) ] = 2(8mY1)v 2Y18mv

and neglect the appearing total derivative in the Lagrangian (3.46) as it will
not contribute to the action. Defining a new set of Ny complex fields By,
one makes contact with the dualization to hypermultiplets performed in the
previous section:

1
Br =3 (m + FCI). (3.49)

Thus, the CT and Y7 are determined by the A’ Al ., Br and By, and accord-
ingly the sum (B + B); is defined by

(B+ B)r = Far (3.50)

which yields the Legendre transformation of F with respect to the C1. Vary-
ing the equation (3.49)

1 -
0B = 3 (’L'(SY[ + FCICJ5CJ + FCIAJ(SAJ + FCIAJ5AJ), (3.51)

the variation of the real coordinates C', Y7 can be expressed in terms of the
complex coordinates and one finds
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scl —pc'c’ [(53] 4 6By) — Fo qx0AK — Fry 164K

_ (3.52)
§Y; =i(6B; — 6By).

With (3.52) one can now determine the metric in terms of the complex
coordinates by varying (3.48):

cKcb
garar =Foros + Faiox F For i

gargs = — FAICKFCKCJ,

- (3.53)
gprar = — 7 Fox g,
9BIBJ =pe’

This is a kithlerian® metric, because it can be derived from a K#hler potential
which admits the following form:

x(Al, BT Al B!y = —F(C!, AT, AT + (B + B);C! (3.54)
We illustrate this fact briefly by determining g 4r 5s:
ox OF  OF 0CK _ock
o= = B+ B)gk—.
947~ a4l a0k g7 T BT By
=0

Using the chain rule and the constraint (3.31) we obtain

o0k
Jal 7 = —FAIAJ — FCKAJW = FCICJ —I-FAchFCKCLFCLA_J.

The remaining components of the metric can be evaluated in an equivalent
way. As the lagrangian (3.44), is N = 2 supersymmetric, the target space
described by (3.53) is hyperkéhlerian [6]. This is a non-trivial proof.

We now constrict the Lagrangian not only to be N = 2 supersymmetric,
but also invariant under N = 2 superconformal transformations. In [6] was
argued that, using scaling properties, the constraint (3.31) must be extended
by

C'Foi + A'Fyr + ATFy = F,

_ 3.55
ARy — A'Fy =0, (3.55)

in order to guarantee a N = 2 superconformal invariant action. In addition,
the function Fr s (C, A, A) can be chosen to be symmetric in the indices 1
and J. The constraints for N = 2 superconformal invariance therefore are

3Some remarks concerning Kahler and Hyperkahler spaces are given in appendix C.
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Forco + Furz0 =0,
C'Foi + A'Fyr + ATFy = F,
AR, — ATFy =0,
FclAJ - FcJAI - 0

(3.56)

We now turn to an equivalent description of the N = 2 tensor multiplets and
its self-interacting Lagrangian by using the projective superfield formalism*
presented in [28, 29, 30, 6].

A function F' which satisfies the first constraint of (3.56) can be derived
(cf. [29]) from a contour integral

F:Imﬁﬁﬂ(ﬁ(é)v(), (3.57)

where ~ is an appropriate chosen, closed contour and n’ (¢) is defined in the
following way

AI

I

n () =—
¢

The n! are the N = 2 tensor multiplets expressed in terms of the projective

superfield formalism.

We now show, that a function determined by (3.57), indeed satisfies the
constraints (3.31),(3.32):

+ ol — Al (3.58)

. . 7{ d¢  9*°H onX on* g }’{ d¢  0*H
crer =0 L 2mi¢ anKant acT acy — T [ 2mi¢ dnlon”
d¢  9*°H on¥ on* ¢  0°H
Faras :Imf ConKonL DAL AT j{ Conlond
~ 2mi¢ Ot On* AT OA ~ 2mi¢ In'on

The sum of these terms vanish, so the constraint (3.31) is satisfied.
The symmetry of Frys in the indices I, J can be proven analogously

¢  0*H onX on* a¢  0°H
Forps =Im KoL ool oAl 8 YR
~ 2mi¢ On" on* 9CT OA ~ 2mi¢= On'on

which is obviously symmetric in I, J.

We now implement the remaining constraints for superconformal invari-
ance in the function H(n!(¢),¢). The homogenity constraint of F is trans-
lated to

4A short introduction to the projective superfield formalism is given in appendix D.
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d¢ 8H{877" ol 4 on’ A on’ Az}

I I vi
Foi+ APy + APy, = I
C o+ AFar + AP m?{ aric o \acT” oAt T AT

which results in a homogenity property of H:

== = H. (3.59)

The last constraint of (3.56) ensures the SO(2) invariance of F' and requires
H to have no explicit (-dependence:

= d¢ OH (Al -
] I — I T = —_—] — I
0=AFu—-AFgu Im}{%iCanI{C +CA}

o o o
N ~ 2miC onl> o¢

— —Imé%{d%ff— %—Ig}.

The term d%H vanishes, as it is a total derivative and the contour is chosen

to be closed, so the expression is zero if H is solely a function of n’(¢) and
exhibits no explicit (-dependence.

We now turn to the determination of the hyperkéhler potential (3.54)
by performing a Legendre transformation with respect to the C!. Using
(3.54), (3.57) and the fact that the derivative % can be performed before
the integration over the contour 7y, one obtains the following expression:

dg
2mi¢

(AL Al By + By) = Imf { - H(nI(C)) + cfa—H}. (3.60)
v

on!

The remaining step is to express the C! in terms of the A, A" and (B+ B);
in virtue of

2mi¢ 8—771

As a consequence of the homogenity property of Fer

Fcl :Im% dC OH :(B—i-B)[.
v

Far(ZNCT NAT XA = For(OF, AT AT,

the expression for the C! is homogenious’ in the sense of
CI(ZAT NAT By + Br) = X1 (AL, AT B + By), (3.61)
when taking A to be real. This homogenity property is carried over to the

hyperkihler potential x(A!, AT, By + By).
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Chapter 4

Summary of type 1IB
supergravity compactified on
Calabi-Yau threefolds

In this chapter, we briefly review the compactification of type IIB super-
gravity on a Calabi-Yau threefold, and present the massless, bosonic D = 4
spectrum, following [2, 4].

The massless spectrum of type IIB supergravity in D = 10 consists of the
dilaton ¢, the metric § and a 2-form B, in the NS-NS sector and the axion
i, a 2-form Cs and a 4-form Cy in the R-R sector!. The action decomposes
into three parts

S}}OB) = Sys + Sr + Scs. (4.1)

In the D = 10 Einstein frame, these components read using the form nota-
tion

1. 1 1 _ .- A
Sys = — / (§R* 1+ Zd@ A *xdp + Z€_¢H3 /\*H3)
1 SN - 5 oA . 1. .
SR:_Z/<e2¢dm*dz+e@F3A*F3+§F5 A*Fs) (4.2)
1 . . .
SCS:_Z/C4AH3AF37

where x denotes the Hodge-x operator and the field strengths are defined as

!As in [2] the hats '*’ denote the ten-dimensional fields. In addition, we stress, that
the reader should not mix up the forms presented here with the component fields of the
previous chapter.
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Hj3 =dB,
Fy =dCy — 1dB, (4.3)
. . 1 . . 1. .
Fy =dCy — EdBQ ANCy+ §B2 A dCs.
A compactification of type IIB supergravity on a Calabi-Yau threefold M

leads to a D = 4 theory with N = 2 supersymmetry. One takes the line-
element to be of the following form

ds?® = gpndz™dz" + gijdyidgjj. (4.4)

Imn,m,n = 0,...,3 is a Minkowski metric and gij,i,j = 0,...,3 is the
metric on the Calabi-Yau manifold M. The massless, bosonic spectrum is
summarized in table 4.1.

gravity multiplet 1 (gmns V)

vector multiplets R(1:2) (VE 21

hypermultiplets RED | (0,07, ¢, p,)
double-tensor multiplets 1 (B2, Ca,¢,1)

Table 4.1: Massless spectrum of type IIB superstring theory compactified
on a Calabi-Yau threefold

Following [2], the action of type IIB compactified on a Calabi-Yau manifold
reads:
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1 1 .1 . X
S _ / — SR* 1+ ReMy; FE AP 4 StmMy PR p
1
— Grrdz™ A xdzl — Ggpdv® A xdv® — Zdhm A *dlnk
1 1
- e A *dp — Ze%%u A *dl — PG gpdb® A +db?
— Gy (dca _ ldba> A *(dcb _ ldbb)
9Gad 1
- (dpa — 5Fape(cdbC bbch)) A
1
1 enf _peqt
X (dpd SHe (b — b de ))
/12 H2
TP P _ _
S TdBy N xdBy — e (ng ldB2) /\*(dC’g lng)
1 a a b 71
+3 (db ACy+c dB2) A (dpa — Kgpec®db )
1
+ Zw,ccacdeg A dbe.
(4.5)

FK is defined as FK = VK. The gauge kinetic matrix M ;; is given in [2]
and the metric of the complex structure deformations G g, can be derived
from the holomorphic prepotential F using

o 0
= 25 77 Kes 4.
UKL= 5.K 53T (4.6)
where K. is given by
Koo = —ln{i[X'KfK - X5 7] } (4.7)

The special coordinates are defined as X = (1,2%). The metric G, is
a special Kahler metric that is entirely determined by the holomorphic pre-
potential F, which is function homogenous of degree 2.

Turning to the complexified Kéahler deformations, the corresponding
metric of the space of Kéahler deformations G is given by [2]

3 /Kap 3 KaKp
Gop=—2 (i _2 ) 48
ab 2 P 2 ﬁ2 ( )
where k4. are intersection numbers of the Calabi-Yau manifold and
Kab :"iabcvc7
Ka =FabeV 0°, (4.9)

K =k gy 0 0.
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The v® are the scalars of the hypermultiplets, mentioned in table 4.1 with

a=2,...,hY 41, The volume of the Calabi-Yau manifold in this notation

is given by Vol(Y) = %/—a. Conlfining ourselves to the classical case without

quantum corrections, the classical geometry is determined by [7, §]
1 Xaexbxe

F = — Rabe X1

= (4.10)
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Chapter 5

Orientifold projection

The aim of this chapter is, to determine the Ké&hler potentials of the ori-
entifold compactifications of type IIB string theories derived in [2]. They
use 03/07 and O5/09 orientifolds to break the N = 2 supersymmetry to
N = 1. Using the approach introduced in chapter 3, we rederive the Kéhler
potential of the O3/O7 projection along the lines of [3] and rewrite the re-
sult in the variables of [2]. Afterwards we determine the K&hler potential
of the O5/09 orientifold in the variables of [2] since this was not performed
explicitly in [3].

The question, which underlying function H leads to the correct tensor
multiplet Lagrangians after performing the contour integral, was answered
in [7]. It turns out, that using the classical prepotential F of the hyper-
multiplet geometry (4.10), evaluated as a function of the projective tensor
multiplets 7!, one obtains a coupling function which leads to the correct
supergravity Lagrangian for the bosonic part of tensor multiplet sector after
introducing a compensator to establish the correct homogenity property of
H [7].

5.1 The general coupling function of IIB tensor
multiplets
To derive the superspace Lagrangian, one starts with the holomorphic pre-

potential F(X) (4.10) evaluated as a function of the projective tensor su-
perfields cf. (3.58):

I Al I il
n (C):?+C — (A%
The prepotential reads
1 Xexbxe
f(XI) = Iﬁabc Xl_ ) (51)
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with X7 = {X', X% a = 2,3,..., Ny. In the later sections we will spe-
cialize N7 = ALY 4+ 1. The Kabe are the triple intersection numbers of the
Calabi-Yau manifold. Recall that H(n) must be homogenous of degree one
in order to obtain a superconformal invariant action (cf. (3.59)). There-
fore, we are forced to introduce a compensator n° to establish the correct
homogenity property [7]:

A=0,...,Np. (5.2)

At this stage, we are able to determine the coupling function F' in virtue
of equation (3.57). Then, performing the Legendre transformation with
respect to the real scalars C, we obtain the hyperkihler potential (3.54),
which enables us to determine the metric of the target space.

We illustrate the described approach in the following along the lines of
[7] by imposing a special gauge choice A% = 0 for the compensator n°. With
this choice the pole structure of the function H becomes very simple, and
the determination of the general coupling function F is a straightforward
calculation.

5.1.1 The general coupling function with the gauge choice
A =0

Imposing the gauge choice A? = 0, the projective superfield for the compen-
sator n° becomes

n°(¢) =" = C°. (5.3)
Inserting (5.3) in (5.2), the contour integral (3.57) reads

- 1 d 1 d¢ F(¢nt
F(AMN AN oM = EImjf 27T§C]-"(771) = @Imf Z—ﬁi (5;7 ). (5.4)
Y ol

In the last step, the homogenity property of F is used. The contour 7 is
chosen around the origin ¢ = 0, and one finds that the product (n'! does not
vanish for ¢ = 0:

(nf = A+ ¢t — 2AT £ 0 for A #0. (5.5)

This is an important fact, as one can now evaluate the contour integral using
the residue at ¢ = 0, assuming F(¢n!) has no poles in ¢ inside the contour
around the origin. For a function f with a singularity at zy, the contour
integral with a contour ~ chosen to enclose zy reads

7{ F(2)dz = 2miRes f()]oms,. (5.6)
’
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The singularity, that one faces here is of order three, so one can determine
the residue using

Res []:(CUI)} lim L & [}—(CUI)@] lim L &
¢=0

_ _ I
3 =Tl e _cﬁoad—g?[}—(m)] (5.7)

Performing the differentiation, one obtains

5 lm [fJK@nf) [C7 —20A7|[CK —2¢AK] — fJ<<nf>2AJ], (5.8)
where F7 = C,?X—fJ. Taking the limit ( — 0, the residue reads

I 1 _

Res [ﬂg )] = 5 |[Fa(an[c! X —2F,ah 2.
¢=0

Therefore, the general coupling function F' is just the imaginary part of the

residue and reads

_ 1 _
F(AM AA O) = —2—C()Im{]-'JK(AI)C‘]CK - 2fJ(Af)AJ}.

Using the abbreviations

NJK(AI, ./‘_1]) =2Im [fJK(AI)] = i(f]K(AI) — f:]K(AI)>,
) ) _ ) (5.9)
K(A!, ATY =2Im [AJJ-"J] = (Al F; — ALFY),

the final expression for F' is (cf. [7])

1

A FA Ay
F(AM AR CP) = 100

[NJK(AI, ANCIOK — oK (Al Af)]. (5.10)

5.1.2 The hyperkihler potential with gauge choice A° = 0

In the last subsection, we derived the general coupling function F' of a self-
interacting tensor multiplet lagrangian (3.44) in the special gauge for the
compensator 1°, namely choosing A = 0. Using this coupling function, one
can perform the Legendre transformation with respect to the real scalars C'A
in order to obtain the Kéhler potential for the hyperkahler metric (3.54):

x(AM, By, AN By) = —F(C™, AN, AY) + (B + B)ACA.
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The general coupling function F with the gauge choice A% = 0 is given in
(5.10). We remind the reader, that the new set of variables (B 4+ B)j are
obtained by taking the derivative of F with respect to C*

_ OF
and solving this equation for C'.
The appearing summands of the Legendre transformation can be deter-

mined using the symmetry of N g in its indices:

C°Fro=—F
2
I _ I ~J
ClFor = =N, C1CY.

(5.12)

When solving (5.11) for the scalars C, one obtains for the (B + B) (cf.
the second equation of (5.12)):

ol -
& = 2N/ (B + B), (5.13)
with N/ = N;}'. Inserting (5.13) in the expression for (B + B)g

(B + B)y = ﬁ [NUCICJ . 2K] (5.14)

leads to

K (AT, AT

» IK pnrJL » >

(5.15)

which can be used to express (C°)? in terms of the (B+ B)x and the A’, A’
K(AT AT
2|(B+ B);N'/(B+ B);— (B + B)o

(C?% = (5.16)

Finally, the hyperkéahler potential obtained by the Legendre transformation
reads:

_ _ 2
x(AL AL 0% = —2F(AA,AA,CA)—4—CONUCICJ = —

K(Al Al

a5 (317)

When expressing CY with the help of (5.16) in terms of the (B + B), and
the AT, A’, the hyperkéhler potential becomes
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(AL A By, By) o V2\/K (A AT\ /(B + B);N/(B + B); — (B + B)p,

(5.18)
as mentioned in [7]. According to [7], the minus sign in (5.17) is irrelevant
and can be neglected.

5.1.3 The general coupling function without gauge choice

We now relax the gauge condition A° = 0 and turn to the general case
following [8, 9]. The first step is to evaluate the general coupling function
F, performing the contour integral

_ ¢ F(n'(¢)) _
F—Im%;QTmCT(C), A—O,...,NT.

Again, we use the homogenity property of F in order to reexpress the above
relation in terms of (n™(¢).

Without imposing any gauge choice, the pole structure in the complex
plane becomes more complicated. In the case with the gauge choice, one has
to evaluate the residue at the point ( = 0. Now, one has to find the zeros
of the equation

Q) = A"+ (0 = A" =0

in order to perform the contour integral. The zeros are

OO /(C0)2 + 4A0 A0

Evaluating the residue at the point { = (1, one finds, using ni =nl(¢y)
cO Al AN 0, Al A
I _~_Yoa A a4 A4
== (H+p) s (-t D) (5.19)
for the residue
I F I
Res[f(no (C))} - () (5.20)
Q) =t fiooy2 144070

Here, the residue can be evaluated using

Res [_f(z)] = f,(ZO) ,
9(z) =20 ¢'(20)
where the ’ denote differentiation with respect to the variable z. This rule

can be used as the functions F(n(¢)) and ¢n°(¢) are analytic in ¢ = ¢4 and
ny is a solution of the equation (1°(¢) = 0 whereas (¢n°(¢))" evaluated at
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(4 does not vanish.
The N = 1 scalars A*, A% and C*, A = 0,1,2,..., Ny of the N = 2
theory can be grouped into vectors
A = [—i(AN — AN, AN + AN O, (5.21)
which are invariant under the SU(2) transformation of the second super-
symmetry (cf. (3.11)), with the scalar product [8]
P = 440 4 Ao, (5.22)

The reformulated coupling function now reads (cf (5.20)):
1 1

5.1.4 The hyperkahler potential without gauge choice

We are now in the position to determine the hyperkéhler potential for the
hyperkéhler metric by performing the Legendre transformation of (5.23)
with respect to the real scalars C'*, following [8, 9]. One first determines
the new variables (B + B), in virtue of (5.11). Using (5.23) one determines
analogously to the case with the gauge choice

Y 7 1 7ok

1 I
where F; denotes g—qﬁ. The appearing partial derivative g—gi) reads

The expression for the Kéahler potential then reads

_ (00)2 A 1 1 a
X = —Wlm[f(n_i_)] + Wlm flq +faq

with the abbreviation

CO AI AI (00)2 AI AI
r_~ |4 a 4t S 1
AP iA T R v v R D
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Equation (5.26) can be simplified using n? :
4 A0 A0 [ Al N Al ]
2|79 A0 A0

This leads to the following expression for y

qI:77+_

-5 mfo

a0 T 0] T e

4A9A0F AL AL 4AYA0F  Ae A
| ] Tt

I}

In the second line we made use of the homogenity properties of F. A short

calculation reveals

(- G — | [F] + m[Fh)] =
%Im For)] =
4 A0 A0

IR Im [7]1.7:1 + 7]“.7:@}.

The potential then reads

A0 A0

L 4A0A01m{}"1[£ Al

¥ 3P R

which can be further simplified using n’

4A°A° "

Now, one introduces the new variable

a
2% = n—? = b* + v?,
n+

A0

)

(5.27)

and uses the homogenity property of F; to scale out n}r. After that opera-

tion, y reads
4A0A° a
Y = Wlm{nl_n}r [fl(z) +z fa(z)] }
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| o3/01 | 05/09

gravity multiplet 1
vector multiplets h$’2) vk R Ve
chiral multiplets h(_1

chiral multiplets

linear multiplets
P A0 | ) [ 8 ] @)

Table 5.1: Spectrum of bosonic fields of Calabi-Yau orientifold compactifi-
cations with O3/O7 and O5/0O5 planes

Using the identity (cf. [9])

(7 x 7 - (7 x #), (5.28)

I1,.J I.J
77+77— + 77—77-‘,- = 2,001—}0

the hyperkahler potential finally reads

P x A2 i P x A2
zwphqﬂ@ zﬂ@}_QWPVM (5.29)

with V() = 3kapcv™0v®. This is the same result, as derived in [8].
The b* and v* introduced in (5.27) are in the following identified with
the complexified Kéhler moduli [8] (cf. table 4.1).

5.2 Superspace description of Calabi-Yau orien-
tifolds of IIB superstrings

We no apply the result of [8], namely the Kéhler potential of the hyperkéahler
metric (5.29), to the the orientifold projections following [3]. The number
of tensor multiplets Ny is now specialized to h(1) + 1. The orientifold pro-
jection of the compactified type IIB superstring theory is performed by the
combined operation of an involution symmetry on the Calabi-Yau threefold
with an orientation reversal on the worldsheet [3, 1]. The considered orien-
tifold projections truncates the supersymmetry from N =2 to N = 1.

The orientifold projections, which are performed in the following, lead
to Calabi-Yau orientifolds with either O3/O7 or O5/09 planes. In the
first case, the involution operation transforms the holomorphic three-form
as 1 — —Q and in the O5/09 case it is transformed according to 2 — Q
[1, 2]. The resulting spectrum of the two orientifolds is summarized in table
5.1.
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The aim is to compare the resulting Kahler potentials with the one de-
rived in [2]. For this purpose, one has to bring the effective action into the
standard form. That is done by finding a complex structure for the Kéahler
space, spanned by the chiral fields. The holomorphic coordinates for the
chiral fields are, according to [2, 3], given by

T=1l+ie ¥ and G =c* —71b° (5.30)

for the case of a O3/O7 orientifold projection.
When considering the O5/09 orientifold projection, the holomorphic
coordinates are given by

™ =e vk 4 icl. (5.31)

Note the range of our indices. We defined, as indicated by table 5.1, a =
2, b1 p=2  p8Y k=1 p0Y and k=1,... h"?.
According to [3, 9, 8], the scalar fields of table 4.1 can be expressed by the
scalar fields of the superconformal theory when taking the superconformal
quotient. This is done in [9] and the result is

1
I+ie = —— [/ -7 |/ x 7 5.32
b gt — T
+iv® = — (5.33)
UEs
0 . -
7T
h*— "= ———, 5.34
2/2|70|2 (5.34)
with a = 2,..., A& 41, The vectors 7 are the same vectors as defined in

(5.21).

5.2.1 Truncation of the projective superfields

For applying the developed scheme, one has to find the right constraints
for the projective superfields, in order to obtain the desired spectrum (cf.
table 5.1). The considered orientifold projections can be easily performed in
the projective superfield formalism by defining a parity operator II on the
complex coordinate ¢ [3]. One then requires the projective superfields to be
either even or odd under this parity operation:

IIn(¢)
In(¢)

In the first case the N = 1 chiral multiplet is A is projected out while in the
second case the N = 1 tensor multiplet is projected out:

n(—=¢) = n(C) parity-even (5.35)
n(=¢) = —n(¢) parity-odd. (5.36)

47



A - A _
Iy(Q) =n(-0) =~ +C+ A= 5+ 0= CA=n(Q) = A=0

A - A -
MI(¢) = n(~¢) =~ + O+ (A= —7 = O+ (A= —(¢) &= C =0

The projective superfields n® may be subject to either one of these
conditions, so that one ends up afterwards with a hyperkéahler potential
X(v,U,w + w) with an arbitrary number N¢ of chiral multiplets and Np
tensor multiplets. The number No and Np are chosen according to table
5.1.

5.2.2 Orientifolding to 03/07

With the insight of the previous section, we examine now the truncation to
03/07 [3]. Comparing the tables 4.1 and 5.1, one realizes that the fields
By, Co,v%, po, b* and ¢* must be projected out. As far as concerning the
double-tensor sector, this can be achieved by imposing 1° and 7' to be odd
under the parity operator II. The remaining h(_l’l) n® must also be odd,
whereas the hsrl’l) n* must be even under parity.

This leads to the following truncation of the N = 1 tensor multiplet

scalars

c’=0, cCl'=o, c*=0, A* = 0. (5.37)

The corresponding projective superfields read

Al Al

_0
oMo A LA
=5 (%" 1)
o 1P A A (5.38)
7’]:— ———’—T
2 A0 T A0
nt = CH.

Inserting these truncated, projective superfields into the equations (5.32)-
(5.34), one can determine the complex structures for the orientifolded theory.

e For the axion-dilaton system (5.32) one finds

1 Al
T = l + Z.e_go = Q—ﬂﬁ (539)

e With the help of (5.33) and (5.38) one can now determine

_ AaAO _ AaAO

b = AL A0 — A1 AO

and v* = 0. (5.40)
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e Using (5.30), (5.34) and v = 0, the expressions for the G* read

(ks 1 A~

@ — _je¥ _ - 41
G ie WL NV (5.41)

e And finally, with the help of A* = 0, one can determine

VAV AOCH
~ ATA0 _ ALAO
Since the scalar product 7 - 7 = 0, it follows from (5.34) that ¢* = 0.

With these expressions one can determine the Kahler potential and com-
pare it with the derived Kéhler potentials of [2].

vt and v = 0. (5.42)

5.2.3 Orientifolding to O5/09

Considering the orientifold projection using O5/09 planes, one realizes after
comparing the tables 4.1 and 5.1, that the fields [, b*, v®, ¢®* and p* have to
vanish. It is obvious, that in order to project out the axion [, the real part of
(5.32) must vanish. That leads (in combination with the other constraints)
to the following behaviour of the projective superfields under parity: n°, n*
must be odd under the parity operator II, whereas n',7® must be even.

c'=0, A'=0o, A% =0, CHt =0. (5.43)

Now the projective superfields read

p_ @( _A &)
T T 0 T 7o (5.44)
nl/a _ Cl/a'

After performing equivalent steps as before, one obtains the complex struc-
tures as follows:

e Calculating 7 one finds that

1 ot
T=l+4ie ¥ =+i—— — 5.45
4v/2 v/ A0 A0 (549)
and, indeed, [ is projected out.
e With equation (5.33) one calculates
b* = — and v* = 0. (5.46)

1
In this case the v* are projected out, as well as the ¢* because the
c® o< 7 - 7 vanish.
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e Turning to the p-indexed quantities one first finds that

ArAD — AR AD
oH — "
wh = L 00 and b = 0. (5.47)

e Now one is in the position to determine

R, L Gy LY

H=— = — 5.48
2+/2|70|2 44/2A0 A0 (5.48)
e Using these expressions and (5.31) one finally finds
_
S T— (5.49)

22 A%
5.3 Kahler potentials of the orientifolds

According to [3], the Kéhler potential can be derived from the hyperkéahler
potential with the help of

/C(AI, AI, Br + B[) = — log[X(AI,AI, Br + B[)] (5.50)

In our case, we derived in section 5.1.4 the hyperkéhler potential for the
tree-level. It is given by (compare (5.29))

x = 4)™e 2V (v), (5.51)
with V(v) = %/ﬁabcv%bvc, where k4. are the triple intersection numbers
of the Calabi-Yau manifold. With the help of (5.50) one can determine
the Kéahler potentials of the two orientifold projections, considered in the
previous chapters.

We now rerpind the reader, that the dilaton is expressed in terms of the
AN AN (B + B)y as (5.32)

¢ |70 x 7. (5.52)

1
22|72

Furthermore, we have |/0] = 2V A9A%. Inserting these expressions in the
expression for the Kahler potential above, we find

_ _ 1 _
K(AL AL B+ Br)=  —log]s] —§<logA0+logA0>—

irrelevant constant

Kahler transformation

— 2log[e”?] — log V' (v).

Dropping all irrelevant terms, we can reduce the Kahler potential to
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K(AN, AN (B + B)y) = —2logle™ %] —log V(v). (5.53)

5.3.1 Kahler potential with O3/0O7 orientifolds

We now determine the Kéahler potential for the type IIB theory orientifolded
theory using O3/O7 planes. Using the expression for 7 (5.39), one can
substitute the dilaton:

K = —2log [ (T — ?)} “log V(). (5.54)

Now we must perform the Legendre transformation with respect to the v*
in order to obtain a Ké&hler potential expressed solely in terms of chiral
multiplet scalars. We introduce the new variables (B+ B),, by differentiating
the general coupling function (5.23) with respect to the v#. We obtain

1 1

2|7
(Compare with (5.25)). Taking the derivative of (5.1) and evaluating the
imaginary part, we find

(B+ B), = Fpu = [J—“M - f‘u} (5.55)

_ 3 Kube —Re[nb |Re[n%] + Im[nb [Im[n<]
B+ B), = —* + + a + .
(B+B)u |70 4! Im[n}r] (5:56)

The terms we dropped here are irrelevant due to vanishing of the real part
of 77_1F. The appearing real and imaginary parts are

Re[ny] = C*
0 Ar Al
tmfpt] = =i |~ 7 + 5 )

Now, we express the C#, A% and A® in terms of the variables (5.39) - (5.42)
and we find

NN D .
170 (5.57)

LA A e am o - ).

With a little algebra, we find using (5.57) in (5.56)

_ 3‘/5{/1 ﬂ[G_@]a[G—G]ﬁ

(B+B). = = o et [ —i(r— f)} } (5.58)
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Comparing this with the expression for T, + T, using equation (3.48) and
(3.49) of [2] with v = 1 we can identify (up to a factor of %) our the Kéhler

coordinates G with the G* of [2]. The redefinition relation for the linear
multiplets reads

LOC
V—i(T =)/ Kap, LOLPLY

Using this relation to express the Kéhler potential (5.54) in terms of the
linear multiplets L*, the Kahler potential becomes

v =2

) 11
K= —log2] - —1og[ il — 7")] + Elog[g/@amLo‘LﬁLV . (5.59)

Up to an additive constant, the result agrees with (3.52) of [2] when mul-
tiplied by a factor of 2. The appearing factor may be explained by the
different definitions of the K&hler metric. In [31] for example, the metric is
defined as

9i5 = 2@83K(Z,2) (5.60)

5.3.2 Kahler potential with O5/09 orientifolds

After the orientifold projection, the hyperkéahler potential reads

1y2
X = (540)| V(v). (5.61)

This result is obtained by inserting (5.45) into the relation for x (5.51).

We now have to §ualize the tensor superfield C'! to hypermultiplets,
namely % = (B + B); and we find using (5.25) and the symmetry prop-

erties of kqp. after taking the imaginary part

2|A°(B + B):

ol =
%/@abc(v“vbvc — 3b2bboe)

(5.62)

Now we are able to dualize remaining tensor superfields C'* using again
(5.25). The imaginary part of Foe reads

0 _
P (=4 + &)
1
Using the expressions for the b and v*, namely (5.46) and (5.47), we find:

(5.63)

6
Im{fca} = IHO‘BU

Fro = %e—w,@aﬁubﬁw = (B + B),. (5.64)

As we want dualize the linear multiplet, we introduce the matrix
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T
Onp = ﬁe “Raguv”, (5.65)
and we can solve (5.64) for the b when introducing the inverse matrix ©2%
of O,

b = 0“%(B + B)s. (5.66)

Having done this step, we are now enabled to express (B + B); completely
in terms of chiral multiplets and the dilaton by replacing the appearing b«
in (5.62) using (5.66) as well as (5.45), and solving (5.62) for (B + B);. We
find

_ 22
(B+B); = —\/_e_‘p/@wpv“v”vp -

41 LB+ B0 B+ By (567)

2i

Taking the logarithm of (5.61), and substituting C'! using the variables
(5.62), (5.66) and (5.67), the Kéhler potential reads (up to constants and a
Kahler transformation)

_ 1 _ = 1 v
K =—2In (B+B)1+Z(B+B)a@ 5(B+B)4+ln [gmwpv“v v’)]. (5.68)

After redefining the v* in terms of new variables 7+

1 _
vt = 5@“0[7: + 7* (5.69)

we find a Kahler potential of the following form

K=l {(B +B)i+ (B+ B),0" (B + B)ﬁ}
(5.70)
- %ln [%mwp(% + )T+ 7)Y (T + %)P}

which differs by an overall factor of 2 from equation (4.17) of [2]. Again,
we encounter here an overall factor of 2. As in the previous chapter, the
appearing factor may be explained by the different definition of the Kéhler
metrics used in [2].
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Chapter 6

Conclusion

In this work we rederived the constraints for a general coupling function F
stated in [29], which appears in self-interactions of N = 2 supersymmetric
tensor multiplet models. After the dualization of the tensor multiplets to
hypermultiplets, we showed, that the space spanned by the scalars is at least
a Kahler space. We also showed, following [31, 6] that the coupling function
F can be derived by a complex contour integral of a more general function.
This method was used in the following to derive the Kéhler potentials of IIB
supersymmetric string theory compactified on a Calabi-Yau threefold with
N7 N = 2 tensor multiplets.

With the help of the coupling function F', we determined the hyperkéhler
potential for the type IIB theory by performing a Legendre transformation
along the lines of [8, 9]. Afterwards, we determined the Kéahler potential
for two different orientifold projections involving 0@3/O7 as in [3] and de-
termined the explicit form of the K&hler potential involving O5/09 planes,
since this was not done in [3]. We then compared the derived Kéhler poten-
tials with those given [2] and found agreement after redefining our scalars
up to an overall factor of 2. This factor may be explained by the different
conventions used for the Kéhler metric in the literature, which differ exactly
by an overall factor 2.

An interesting future step would be to apply this method to orientifolds
of type ITA supersymmetric string theories.
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Appendix A

Facts in supersymmetry

A.1 Conventions and spinor algebra

This work heavily uses the notation of [10].
Spinors are two-component Weyl spinors which can be composed into

one Dirac spinor
U= <1’Z§> (A1)

Spinors have dotted and undotted greek indices from the beginning of the
alphabet.

e Minkowski metric

Nmn :diag<_1717171) (A2)
e c-symbol
e? =€y =1, el = €51 = 1 (A.3)
P = 55, ed‘ﬁ.eﬁd = 55 (A.4)
e o-matrices ' '
o™ = (—1y,0"), o™ =(-1y,—0") (A.6)
e With the help of the e-symbol the spinor indices can be pulled up and
down
a _ af — 8 A7
(0 € 1/%7 Ya Eaﬁw ( : )
—mad __ d,@ afl _m
o = Vo, (A.8)

Equivalent formulae hold for the dotted quantities.
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e Products of spinors

VX =V Xa = —aXx® = X"V = XY (A.9)

()" = (X*¥a) = Pax® = ¥x = x¥ (A.10)

070" = —%eaﬁee, 0als = %eaﬁee (A.11)

007 = S000, Oally = — 5o f0 (A.12)

Qanﬁ = ZbﬁXa + EQB¢X (A.13)

baXs = VgXa — €530X (A.14)

(V1902) (Y3104) = —(h1903)(V21hs) — (Y190a) (Y213) (A.15)
e Rules for the o matrices

o™ G = _pmngh 4 9(g™mn) P (A.16)

(") = F(oma™ — o™ (A17)

tr(c™a™) = —2"™ (A.18)

A.2 Integration and differentiation with respect to
anticommuting variables

Differentiation with respect to an anticommuting variable is defined in the
natural way
0
and similar for the dotted indices.
The integration is defined with the help of

/ do,0° =6,°
o _ (A.20)

/ d@o‘% =" 5

The volume elements in superspace are defined as follows
26 = — X d6oa”
_ 1 — .

2n . — . o ap A.21
00 = —dBadf e (A.21)

d*0 = d*0d>0.
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Due to the anticommuting properties of the variables, and hence of the
derivatives and integrals, we can express the integration over 6,6 in terms
of the covariant derivatives

/d20d20_v(:v,9,0_) E i/d%p%@;,@) (ézo _
L p2p2ya0.6) .
d?0d?0v(z,0,0) = 1—61 d?0D%v(x 999 N = 2
/ (7’)<4/ (”)>‘9:0

when leaving out total derivative-like terms.

A.3 Covariant derivative rules

We present now some identities, which often occur when performing calcu-
lations with superfields

1 _ 1

DoDg = 5%1)2, DaDy = —§edﬁ-D2 (A.23)
D.DgD., =0, DsDyDy =0 (A.24)

[D? Dg] = —4io™,0,, D%, [D?, D] = 4i0™™,0,, D* (A.25)
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Appendix B

Variation rules for
superfields

A well written introduction to variation rules of superfields can be found in
[12]. We only present the most important results.

We start with a functional S[V] of a superfield. The principle of the
extremal action demands, that for any variation §V/

0S[V]
SV (x,0,0)
is fulfilled. This constraint yields the equation of motion. The occurring
derivatives depend on the involved superfield. The following relations hold:

5ﬂw=sw+ﬂq—ﬂw=/ﬁ%#e 0 (B

e general superfields

X (', 0,6 14 N <2 -
AN S ST A — )% (0 — 06 (0 — 0 B.2

e chiral superfields

/ ! nl
0(a",0",0") _ _35254(33 — Y620 — 0/)5%(6 — @)

b (z, 6,0
M - _1D254($ —2')6%(0 — 0')6%(0 — ) >
0 (x,0,0) 4
e vector superfields
V(a',6',6") _ 5z — 2")6%(0 — 0")6%(0 - 0') (B.4)

oV (z,0,0)

e chiral spinor superfields
508 (2,0, 6" 1. 4= -

— = 5 D% (x — 2)6%(0 — 0')6%(6 — 0 B.5

502 (2,0.0) 100 (x — )5 )6%( ) (B.5)

o8



Appendix C

Kahler and Hyperkahler
geometry

In this appendix we provide an introduction (based on [32, 12, 33]) to com-
plex, hermitian manifolds, and show how K&ahler manifolds arise inan N =1
supersymmetric context. Afterwards, we give a short overview over Hy-
perkahler manifolds, as these arise in the context of N = 2 supersymmetric
Lagrangians of hypermultiplets.

C.1 Kahler geometry and N = 1 supersymmetry
A 2n dimensional manifold M with a complex structure

J:TM—TM, J? =1,

where 7. M denotes the tangent space of M, is called a hermitian manifold,
if the metric g on M is hermitian with respect to J, that is

g(Jz, Jy) = g(z,y).
Defining a tensor field 2 with the action

Q(xhy) = g(JIL’,y)7

one immediately notices that €0 is antisymmetric:

Qz,y) = g(Ja,y) = g(J?z, Jy) = —g(Jy,z) = —Qy, z).

This form is called the Kéhler form of the hermitian metric g. The compo-
nents of € are, due to the hermiticity of g, given by
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A Kahler manifold is a complex, hermitian manifold M with a closed Kahler
form:

dQ} = 0.

This can be interpreted as a differential equation for g,; with the general
solution:

95 = aiajK(Z, zZ).

Here, K is a real function K = K, and is called the Kéhler potential of g.
It is defined up to Kéhler transformations

K'(2,2) = K(2,2) + f(2) + f(2).
It can be shown [12, 16, 10], that a N = 1 supersymmetric o-model
S[®,d] = /d4xd49K(<I>,<I>) (C.1)

is described by a Kihler space with the Kihler potential K (®, ®). Express-
ing the action in terms of component fields, one finds for the Lagrangian
L after performing the integration over superspace (we confine ourselves to
the bosonic part of L)

L=-Kg; (amAiamAi - FJF) (C.2)

C.2 Hyperkahler geometry
Let HM be a real manifold of dimension 4m with a metric g

ds?® = guv(q)dgq dq"

with u,v =1,...,4m and three complex structures

J': T(HM) — T(HM), i=1,2,3

with respect to which the metric is hermitian

g(J'z, J'y) = g(z,y), i=1,23.

The complex structures are subject to the quaternionic algebra

JJI = 51 + £k gk,

One can introduce the three 2-forms
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Q' = Q! dg" A dg”
in = guw(*]i)vw'

This triplet of 2-forms is SU(2) Lie-algebra valued and named Hyperkdhler
form.

In the complex case, the Kéhler form must be closed for M being not
just a hermitian manifold but a Kéahler manifold. Therefore, one expects
that a similar condition arises in the context of Hyperkédhler manifolds. It
can be shown that Ké&hler manifolds belong to the rigid case of N = 1
supersymmetry and, in a similar way, the Hyperkéahler manifolds correspond
to rigid N = 2 supersymmetry [32]. In the local N = 1 description, one
encounters Hodge-Kéhler manifolds and the Kéhler 2-form can be identified
with the curvature of a line bundle, which vanishes in the rigid case [32].
Analogous steps can be performed in the N = 2 case [32].

Let SU be a principal SU(2)-bundle and I'* a connection on such a
bundle. One has to demand, that the Hyperkéahler 2-form is covariantly
closed with respect to the connection I'?

VO = dOF + €919 A QF = 0.

One now defines a Hyperkéahler manifold as a 4m-dimensional manifold with
the above structure, such that the SU-curvature vanishes [32]:

) S
C'=dl' + §elﬂkrﬂrk =0.
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Appendix D

Projective superfield
formalism

This appendix is basically an overview of the material presented in the
appendix of [6]. The N = 2 algebra is

{Q4: Qaj} = 2004, P}
{Qa, Q3 = {Qai, @3} =0, (D.1)
1,7 =1,2.

We can define an abelian subspace of the N = 2 superspace, which is param-
eterized by a complex coordinate ¢ and spanned by the covariant derivatives

Da(g) = Dla + CDQ(X

Dy(¢) = D — ¢D;- )

In order to simplify the notation we write in this chapter Dy, = D, Doy =
Qa-
We construct the conjugate of any object of this subspace by the compos-
ite of the antipodal map on the Riemann sphere with hermitean conjugation
1

and multiplying with an appropriate factor.
Projective superfields in this space are subject to the constraint
D, YT =0="D47, (D.4)

and we can construct a restricted measure in order to integrate Lagrangians
over this subspace from any differential operator which is linearly indepen-
dent of D and D. A generic choice is the usual N = 1 measure
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dS 4 272 v
S=¢ —dzD*D°G(Y, T D.5
§ smiet DD T0), (05)
where the integration contour « generally depends on G. The above con-
straints (D.4) ensure that the action is N = 2 supersymmetric.

Projective superfields can be classified as [6]:

e O(k) multiplets
e rational multiplets

e analytical multiplets

We concentrate on the O(k) multiplets which are polynomials in . The
minimal power of ( is 0, the maximal power is k. For even k = 2p one can
impose a reality condition with respect of the above introduced conjugation
mapping (D.3). With () we denote a real finite order O(k) multiplet. The
reality condition yields

1 &
(2p) _ (2p)
() Cpnz::lnn ¢ D)

77(217) — ,7(210‘
Obviously, the reality constraint relates different coefficients of the ¢ expan-
sion of n

N2p—n = (=)' "1l (D.7)

We now examine the constraints (D.4). They relate different (-coefficient
superfields

DaYn-l—l = _QaTn

. - (D.8)
DY, = Qs Yni1.

As the important example for this work we present the O(2) multiplet. The
expansion reads

A
M”=Z+c—¢4 (D.9)
The field A obeys Dy = Q, = 0 while C is real and obeys D?C = Q*C = 0.
Hence, A is projected to a chiral superfield and C' to a linear one. That
means, that the projective superfield 7](2) describes an N = 2 tensor multi-

plet.
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Zusammenfassung

Betrachtet man Typ II Stringtheorien, so muss man, zusétzlich zur di-
mensionalen Reduktion durch die Kaluza-Klein-Kompaktifizierung mit Hil-
fe von Calabi-Yau Mannigfaltigkeiten, sogenannte Orientifold Projektionen
durchfithren. Diese Orientifold Projektionen ermdglichen einerseits konsi-
stente beziehungsweise stabile Typ II Theorien mit Dp-Branes, andererseits
reduzieren sie die Anzahl der Superladungen von 32 auf 16. Dies entspricht
dem Ubergang von einer N = 2 Theorie zu einer N = 1 Theorie. Der Grund
warum man Theorien mit Dp-Branes betrachtet ist, dass Strings, die auf
den Dp-Branen enden, eine Yang-Mills Quantenfeldtheorie, wie das Stan-
dardmodell eine ist, hervorrufen.

Calabi-Yau Mannigfaltigkeiten unterliegen speziellen Deformationen, so-
genannten Moduli, welche den Calabi-Yau-Bedingungen geniigen miissen.
Diese Deformationen beziiglich der Form und der Grofle der Mannigfaltig-
keit heiflen komplexe Struktur Moduli beziehungsweise Kdhler Moduli.

In dieser Arbeit bestimmen wir die Ké&hler Potentiale der Hypermul-
tiplets von Typ IIB Orientifold Projektionen. Im Gegensatz zu friitheren
Arbeiten zu diesem Thema nutzen wir einen Formalismus aus der Litera-
tur, welcher auf sogenannten projektiven Superfeldern basiert. Dazu bestim-
men wir zuallererst, wie in der Literatur bereits geschehen, die allgemeine
Kopplungsfunktion der N = 2 Tensor Multiplets mit Hilfe eines komplexen
Kurvenintegrals iiber das klassische Prépotential der Hypermultiplets. Im
Anschluss konnen wir die Bedingungen der zwei betrachteten Orientifold
Projektionen an die Skalare der Tensor Multiplets stellen. Daraufhin fithren
wir die Dualisierung der Tensor Multiplets zu Hypermultiplets durch, und
erhalten dann die Kéhler Potentiale der beiden Projektionen. Dabei ist her-
vorzuheben, dass das Kihler Potential, das man im Falle von O5/09 Ori-
entifolds mit diesem Formalismus erhélt, nicht in der Literatur angegeben
war. Abschlielend vergleichen wir die betrachteten Kéahler Potentiale mit
denen, die man mit dem konventionellen Formalismus erhélt und fithren in
diesem Zusammenhang eine Umdefinierung unserer Variablen durch. Wir
erhalten Kéhler Potentiale, welche sich um einen Faktor 2 von den bereits
bestimmten unterscheiden. Die Ursache dieses Faktors ist wahrscheinlich in
den verschiedenen Definitionen fiir das Kéhler Potential zu suchen, da diese
sich ebenfalls um einen Faktor 2 unterscheiden.



