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1
INTRODUCTION

In this thesis we will examine maximal supergravities of different di-
mensions for their anti de-Sitter vacua. Supergravities are quantum
field theories, which include gravity, i.e. a spin 2 field gµν [Tan98]. They
build on supersymmetry - an extension of Poincaré symmetry, which
is the usual spacetime symmetry in Physics.1 Supersymmetry is so far
merely a conjecture and has not yet been observed. It is however of
great interest in theoretical and mathematical Physics, since the ex-
amination of supersymmetric theories sheds light on various areas of
mathematics and quantum field theory.

Gauge theories with high degrees of supersymmetry can be solved by
using new methods which build on intricate mathematics, which would
not be possible in non-supersymmetric quantum field theories (cf. for
example [Tes16]). Hence it is hoped to achieve a deeper understand-
ing of perturbation theory as well as of non-perturbative features of
quantum field theories in general.

Furthermore supergravities share the benefit of string theory, that
they give a way to tackle questions of quantum gravity in a meaningful
way. We will be concerned with maximally supersymmetric supergrav-
ities, which can be understood as massless limits of certain string the-
ories in various dimensions. Our main point of interest will be anti-de
Sitter backgrounds in these supergravities, which are maximally sym-
metric spaces with a negative cosmological constant Λ. These AdS
backgrounds are of interest due to the AdS/CFT conjecture. The Ad-
S/CFT conjecture was proposed by Maldacena in [Mal99] and was de-
veloped using string and M-theory. AdS/CFT is a duality between anti
de-Sitter backgrounds in a D dimensional supergravity and a super-
conformal field theory (SCFT) in D − 1 dimensions (for a review see
[Aha+00]). The duality allows to relate observables in the different
theories. Dualities like these are hoped to yield a deeper insight into
quantum field theory, as they may relate yet unsolved problems in one
theory to more tractable problems in the dual theory.

In our case of interest, we will find supersymmetric AdS backgrounds
and their moduli in the maximal supergravities in four to seven dimen-
sions. AdS backgrounds arise as vacuum states of gauged supergravities,
but not all possible AdS solutions of a given maximal supergravity are
compatible with all supercharges. The ones of interest in this thesis are
only the maximally supersymmetric AdS backgrounds.

1 More precisely the Poincaré group usually refers to the symmetries of Minkowski
spacetime.
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2 introduction

In the cases considered in this thesis all such AdS solutions will be
classified. Maximally symmetric spacetimes are classified by just one
parameter, the cosmological constant Λ. Different solutions with the
same Λ < 0 correspond to the same geometry. These solutions can
sometimes be deformed by giving vacuum expectation values to some
scalar fields. Giving such a vacuum expectation value to a scalar field
does not break the symmetry of the underlying spacetime. Variations
of the scalar fields which preserve the maximally supersymmetric AdS
solution and thus in particular leave Λ constant and fixed are called
moduli of the solution.

The AdS/CFT correspondence relates the moduli of a maximally su-
persymmetric AdS solution to the conformal manifold of the dual SCFT.
The conformal manifold is a manifold spanned by exactly marginal de-
formations of the theory, i.e. those which preserve conformal invariance
to all orders.

For the calculation an embedding tensor formalism is used. It de-
scribes all gauged supergravities of a given dimension in a covariant
way i.e. in a unified description, which is the same for any chosen gauge
group [DWST03][Sam08][DWNS08]. Using this formalism reduces the
problems at hand to group theoretic calculations. Having a supersym-
metric AdS background constrains the embedding tensor and with it
the possible gauge groups. The resulting gauge group is also relevant
for the AdS/CFT correspondence, since it corresponds to symmetries
in the SCFT. In the maximally supersymmetric case the gauge group
corresponds to the R-symmetry of the SCFT, which is the symmetry
among the supercharges.

We will start the thesis with a preliminary part, which begins with
a general introduction to supersymmetry and supergravity in chapter
2, which leads to the description of gauged supergravities in chapter 3.

The second part goes case-wise through the theories under consider-
ation. We start with the seven dimensional case in chapter 4 and then
lower the dimensions going through D = 6 in chapter 5, D = 5 in
chapter 6 and finally D = 4 in chapter 7. Each case consists of a theory
section, which provides the given theory, the calculations in which the
AdS vacua, their moduli and the allowed gauge groups are examined,
and a conclusion in which the obtained results are compared to results
in the dual SCFT.

The thesis ends with the conclusion in chapter 8 in which we will give
a short recapitulation of all obtained results and their correspondence
to results in the dual theories.



2
MAXIMAL SUPERGRAVITY

2.1 rigid supersymmetry

Supersymmetry is an extension of the Poincaré algebra, which is the al-
gebra of spacetime symmetries generated by infinitesimal rotations and
boosts from the Lorentz algebra so(1,D − 1) together with infinitesi-
mal translations Pµ in arbitrary directions.1 Greek lowercase indices
µ, ν, ... = 0, ...,D− 1 are used to denote spacetime indices in D dimen-
sions, if not stated otherwise. There is a no-go theorem by Coleman
and Mandula concerning symmetries of the S-matrix, which states that
there are no allowed symmetries besides the Poincaré symmetry and
a finite number of operators belonging to a compact Lie group, which
are Lorentz scalars [CM67]. One of the assumptions of the theorem by
Coleman and Mandula is that all symmetries are realized as represen-
tations of a Lie algebra. There is a way to relax this assumption to
circumvent the theorem.
For this reason the notion of a Lie algebra is extended to a Lie su-

peralgebra. While ordinary Lie algebras are defined via commutation
relations, Lie superalgebras also include anticommutation relations.2
The resulting structure admits a Z2-grading, i.e. elements can be di-
vided into even (or bosonic) elements of degree 0 and odd (or fermionic)
elements of degree 1. The Lie (super-)bracket is compatible with the
grading i.e. deg([x, y}) = deg(x) + deg(y) for x, y ∈ g. In a Z2 grading
the degree is taken modulo 2. Thus taking the bracket of two even ele-
ments gives an even one (0+ 0 = 0), as does taking the bracket of two
odd elements (1 + 1mod 2 = 0mod 2). Any bracket [·, ·} involving at
least one even element is taken to be the commutator, denoted [·, ·]. For
two odd elements an anticommutator {·, ·} is used. Note that the even
elements close into a Lie subalgebra - the even (or bosonic) subalgebra
- since any combination of even elements is again even. This is not the
case for the odd elements.

1 More precisely the Poincaré group can be written as a semidirect product
R1,D−1 o SO(1,D− 1).

2 More precisely a Lie algebra is defined via its Lie brackets, which are antisymmetric,
bilinear maps g⊗g→ g, which fulfill the Jacobi identity. To get to a Lie superalgebra,
one includes symmetric, bilinear maps g⊗ g→ g, which fulfill an altered version of
the Jacobi identity.
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4 maximal supergravity

Connecting back to our initial motivation, there is an extension of
the Poincaré algebra called supersymmetry algebra. In four dimensions
it is3

{QAα , Q̄α̇B} = 2σµ
αβ̇
Pµδ

A
B

{QAα ,QBβ } = 0 = {Q̄α̇A, Q̄β̇B}
[Pµ,QAα ] = 0 = [Pµ, Q̄α̇A]
[Pµ,Pν ] = 0. (1)

The QAα are the odd elements, called supercharges. They come in a
spinor representation of so(1, 3), labeled by α, ... = 1, 2, with conju-
gate spinors labeled by α̇, ... = 1, 2. A,B = 1, ...,N label the different
supercharges. The algebra (1) is isomorphic under a complex rotation
of supercharges into each other, i.e. under U(N ). This symmetry is
called R-symmetry. It can be shown that supersymmetry leads to (su-
per-)multiplets of particles which differ in helicity by 1/2.4 This symme-
try is thus a symmetry between bosonic and fermionic fields. Each such
multiplets contains 2N fields of N + 1 different helicities. For N = 2
for example there is the vector multiplet containing a vector field Aµ,
two fermions λ1,λ2 and a scalar field φ (for a review of the N = 2 case
see for example [Tac13]).
We can thus understand the notion of maximal supersymmetry: For

a gauge theory without gravity, the highest helicity among fields should
be h = ±1, corresponding to a vector field (or a p-form field in D > 4).
In D = 4 the maximal supersymmetry for a gauge theory is thus N = 4
since 1− 4 · (1/2) = −1. Adding another supercharge gives a field of
h = ±3/2.
The number N counts the number of spinorial supercharges Q. Any

spinor in D = 4 contains four real entries. Therefore the D = 4, N = 4
theory has 16 real supercharges. This is true for any gauge theory with
maximal supersymmetry. In different dimensions these 16 real super-
charges however fit into spinor representations of different dimensions.
Going to D = 3 for example, real 2-component spinors are used instead
of complex ones. The maximal supersymmetric gauge theory in D = 3
is thus labeled by N = 8. To avoid confusion with different values of
N for the same amount of supersymmetry it is customary to count
the number of real supercharges. In the gauge theory context without
gravity the maximal case is thus the one of 16 supercharges. For an
overview of these theories, see [Sei98].

3 While this chapter focuses on the D = 4 case, most of its arguments can be made
for any other dimension. Appendix A gives an overview of the cases in different
dimensions.

4 Labeling states by helicity assumes massless fields. In the massive case the spin s is
used instead.



2.2 local supersymmetry 5

2.2 local supersymmetry

Since the supercharges close into Poincaré transformations, gauging su-
persymmetry also gauges the Poincaré transformations. Gauged Poinca-
ré symmetry however gives general coordinate transformations. Thus
a theory with gauged supersymmetry is as a theory of gravity, as it
includes a graviton field gµν as the gauge field of general coordinate
transformations (cf. [Tan98]). Furthermore a spin 3/2 field ψµ is intro-
duced as the gauge field of supersymmetry. ψµ is called the gravitino
and is the superpartner of the spin 2 graviton. It is customary to take
the vielbein field eaµ instead of the gµν as the representative of gravity.
They relate as

gµν = eaµe
b
νηab (2)

with ηab being the flat Lorentzian metric inD dimensions with a, b, ... =
1, ...D− 1.

As done before let us take the D = 4, N = 1 case as an example.
The simplest theory to consider is pure supergravity, which field content
consists solely of the graviton multiplet

(eaµ;ψµ). (3)

The Lagrangian of this theory consists of the Einstein-Hilbert term and
additional terms containing the gravitino

L = −1/4 det(eaµ)R+ ... . (4)

We can thus see, that classical gravity is reproduced with additional
fermion terms, that would usually not appear. For more details on this
case we refer to [Tan98], which also discusses various supergravities in
different dimensions and with different amounts of supercharges.

We will however only be concerned with maximal supergravities. Our
starting point for these is the unique supergravity in eleven dimensions.

2.3 the d=11 supergravity

The D = 11 supergravity is a special case of interest, since eleven is
the maximal dimension in which a supergravity exists. For D > 11 the
spinor representations are at least 64-dimensional5 and more than 32
real supercharges lead to higher spin fields with s > 2, which lead to
inconsistent theories (see for example the review [Roe05]). It is also a
unique theory without any possible deformations.
The field content of any maximal supergravity consists of a single

multiplet - the graviton multiplet. For D = 11 it is

(eaµ,Cµνρ;ψµ) (5)

5 This is only true assuming Lorentzian spacetime signature.



6 maximal supergravity

with the vielbein field eaµ, a 3-form field Cµνρ and a Majorana gravitino
ψµ. Defining the field strength G = dC the bosonic Lagrangian is

L =
√
−g
(
R− 1

2 G ·G−
1
6 ? (G∧G∧C)

)
. (6)

where the dot product is defined as contraction of all indices i.e. with
G = Gµνρσdx

µ ∧ dxν ∧ dxρ ∧ dxσ, G · G = GµνρσG
µνρσ. The Hodge

star operator ? denotes Hodge dualization and turns a p-form ω into a
D− p-form using the Levi-Civita tensor εα1,...,αD .

The supergravity in D = 11 can be seen as being the fundamental
theory from which the other cases can be obtained by dimensional
reduction. In fact all maximal supergravities but one can be obtained
by this procedure. Hence we will discuss dimensional reduction next
and afterwards come back for the remaining case.

2.4 compactifications on td

The starting point for dimensional reduction is the Kaluza-Klein com-
pactification on a circle S1. Starting from the theory in D dimensions
we want to obtain a theory in D − 1 dimensions, by exchanging the
base manifold RD−1,1 7→ RD−2,1 × S1. We then call S1 the internal
manifold and want to truncate the theory to a theory on RD−2,1.

Writing the spacetime coordinate in D dimensions as xM = (xµ, y)
this amounts to taking an equivalence relation y ∼ 2πR y where R is
the radius of the circle S1 = S1

R. We can consider a massless scalar φ
in D dimensions with Fourier decomposition in the y direction

φ(xµ, y) =
∫
dk eikyφk(x

µ). (7)

Taking the equivalence relation y ∼ 2πR y and cyclic boundary condi-
tions for the scalar φ(xµ, 0) = φ(xµ, 2πR) turns the Fourier decompo-
sition into a discrete spectrum

φ(xµ, y) =
∑

einy/Rφn(x
µ) (8)

with discrete modes φn(xµ) which have the momenta k = n/R in the
y-direction. The Klein-Gordon equation splits modewise as

∂µ∂
µφn − k2φn = 0. (9)

The momentum k in the compactified y-direction thus turns into a
mass m2 = k2 = (n/R)2. Hence all modes except the zero mode φ0
are massive. One gets an infinite tower of massive scalar fields in the
lower dimensional theory in D − 1. The usual procedure from here is
to truncate the field content to the zero mode φ0. By choosing R to be
very small, the masses n/R go towards infinity. This procedure can be
repeated to get a D − d dimensional theory from compactification on
the d-dimensional torus T d = (S1)d.
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The torus compactification can be seen as a special case of more
general compactifications since the torus is the only compact space in
d > 1 which is flat. More general cases will be presented in chapter 3.

So far we have seen the reduction only for a scalar field. If we instead
take a graviton gMN on a circle S1, we get a decomposition into fields
of different spin

gMN 7→ {gµν , gµ,D−1, gD−1,D−1}. (10)

gµν transforms as a spin-2-field, gµ,D−1 as a spin-1-field and gD−1,D−1 as
a scalar.6 The diffeomorphism invariance of the theory with gravity inD
dimensions turns into a diffeomorphism invariance, a local U (1) gauge
symmetry and a global scale symmetry in the lower dimensional theory.
This was also the initial motivation by Kaluza and Klein: Gravity in
five dimensions compactified on a circle gives gravity and a U(1) gauge
theory (e.g. electromagnetism) in four dimensions.7
The decomposition (10) can easily be generalized for the T d case

by iteration of the procedure. The resulting theory has a U (1)d gauge
symmetry and a global GL(n, R) symmetry, which can be decomposed
into an SL(n, R) and an R+ scaling symmetry.

As a final note, the other fields are dimensionally reduced in a similar
way. For p-form fields the same procedure as in (10) is used. For fermion
fields the spinor representation is decomposed and the spinors on the
internal manifold are set to a constant value.

2.5 the d=10 maximal supergravities

In ten dimensions there are two different maximal supergravities. The
Majorana-Weyl spinors used inD = 10 are 16-dimensional. Thus the 32
real supercharges form two spinors, which can be chosen to be of equal
or opposite chirality. Taking spinors of opposite chirality gives the non-
chiral theory with N = (1, 1), which is called IIA supergravity since
it corresponds to the massless limit of the IIA string theory. Spinors
of equal chirality lead to a chiral theory, labeled N = (2, 0), which is
called IIB supergravity and corresponds to the massless limit of IIB
string theory.

The IIA case can be obtained from the maximal D = 11 supergravity
by compactification on a circle. This is not true for the IIB case. Never-
theless when going from ten to nine dimensions by S1-compactification,
both theories coincide in their zero modes. We thus get the same max-
imal supergravity in D = 9. Therefore for any supergravity in D ≤ 9
there are two routes of compactifications that one can take. One route
starts at D = 11 supergravity and then goes with iterations of compact-
ifications on S1 over the IIA supergravity to the supergravity in D ≤ 9
The other route starts at the IIB supergravity in 10 dimensions and

6 This is the truncation to zero modes.
7 The additional scalar field gD−1,D−1 however seemed to be unphysical at that time.
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similarly uses S1 compactifications to go to lower dimensions. For torus
compactifications both routes coincide, but for more general internal
manifolds different theories can be obtained.

2.6 global symmetries

Maximal supergravities have certain global symmetry groups. In section
2.4 we have already seen, how the torus compactification gives rise to a
GL(n, R) symmetry in the lower dimensional theory. There is an even
larger symmetry under which the resulting theory is invariant. The
different fields obtained from the higher dimensional field content as
done in (10) yield a larger symmetry group G, which is often called
hidden symmetry of the theory.

For the resulting theory in 11− d dimensions this symmetry group is
G = Ed(d). These groups are normal real forms of groups belonging to
the E-series. The E-series consists of the exceptional groups E8,E7 and
E6 together with E5 ' D5,E4 ' A4 and further groups obtained from
cutting the corresponding Dynkin diagrams. The normal real forms

D 9 8 7 6 5 4
G GL(2) SL(2)× SL(3) SL(5) SO(5,5) E6(6) E7(7)

Table 1: Overview over the different global symmetry groups of maximal su-
pergravities. Taken from [Sam08].

Ed(d) can be seen as maximal non-compact versions of the groups Ed.
A real form h of a complex Lie algebra g is a Lie algebra such that it
complexifies to g: hC ' g. There are in general several inequivalent real
forms for a given complex Lie algebra. Two special examples are the
compact real form and the normal real form, the latter of which can be
understood to be the least compact version of the algebra (cf. [FS03]).

2.7 scalar cosets

The scalars in maximal supergravities form a sigma model with the
coset space G/H as its target space, where G is the global symmetry
group, we just discussed, and H is its maximal compact subgroup. This
scalar coset is usually described by a matrix V ∈ G which transforms
under rigid G and local H transformations as

V 7→ gVh(x) (11)

with g ∈ G and h(x) ∈ H. Gauge fixing the action of H in this descrip-
tion is equivalent to picking a representative of the coset G/H.

The fermion fields also transform under local H transformations.
Thus V is also used in fermion interactions. One important applica-
tion for us, will be to map tensors of G to tensors of H and vice versa,
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which is possible, since V carries a representation of both of them. We
will see this in more detail in section 3.3.

To obtain kinetic terms for these scalar matrices V different routes
can be taken. One route starts from the current [Sam08]

Jµ = V−1∂µV ∈ g = LieG, (12)

which can be split into

Jµ = Qµ + Pµ (13)

with Qµ ∈ h = LieH and Pµ ∈ h⊥ where h⊥ is the orthogonal comple-
ment such that g = h⊕ h⊥.

The scalar Lagrangian is then [Sam08]

e−1Lscalar = −
1
2Tr

(
PµP

µ
)
. (14)

A different option is to define a positive definite symmetric scalar ma-
trixM by

M = V∆VT (15)

where ∆ is an H-invariant positive definite matrix, e.g. ∆ = 1. The
Lagrangian is then [Sam08]

e−1Lscalar =
1
8Tr

(
∂µM∂µM−1

)
. (16)





3
GAUGED SUPERGRAVITY

3.1 the embedding tensor

When gauging a maximal supergravity, the choice of gauge group G0
is restricted to be a subgroup of the global symmetry group G. The
reason for this is the unique field content, which can not be altered.
The vector fields form a representation of G. For a gauging, a subset of
them is chosen to be in the adjoint representation of g0 = LieG0. Thus
G0 is a subset of G and its dimensions is restricted by the number of
vector fields as dimRad(g0) = dimG0.

There is a general formalism to describe all possible gauge theories
in maximal supergravity using an embedding tensor Θ (cf. [Sam08] and
[DWNS08]). The embedding tensor can be understood as projecting g

onto g0. This then defines a map from (the universal cover of) G0 into
(the universal cover of) G. While in a given gauge theory Θ would be
set to a constant value, yielding a specific G0, it is instead assigned
a proper transformation behavior under G to ensure that the theory
formulated via Θ stays invariant under G. "Freezing" Θ then breaks
the symmetry to give the desired gauge theory. The terminology for
this procedure is that Θ is a spurionic object.

The vector fields are denoted by AMµ , where M refers to a represen-
tation of g to which AMµ belongs. Labeling this representation RAµ(g),
Θ = Θ α

M is an object in RAµ(g) ⊗ Rad(g).1 Taking the generators
tα = (tα) N

M in the adjoint representation of g, one defines the genera-
tors of G0 as

XM = Θ α
M tα. (17)

These can be coupled to AMµ . The gauge covariant derivative for exam-
ple is

Dµ = ∂µ − g AMµ XM , (18)

where the flat spacetime derivative ∂µ is used and g ∈ R is a gauge
coupling parameter. g can be thought of as parametrizing the deforma-
tion of the theory into a gauge theory. The limit g 7→ 0 restores the
ungauged theory. We can conversely interpret Θ as a map sending AMµ
to a field Ãαµ = Θ α

M tα in the adjoint representation of g0 ⊂ g.
A generic feature arising in gauged supergravities is the existence of

a potential term in the Lagrangian, which can be brought to the form

V = g2 VMN
αβΘ α

M Θ β
N , (19)

1 The indices run to the dimension of the respective representation, i.e. M =
1, ..., dimRAµ

and α = 1, ..., dimRad.

11



12 gauged supergravity

where VMN
αβ is a scalar dependent matrix (cf. [Sam08]). This potential

is usually not positive definite. It thus supports anti de-Sitter vacuum
states with a negative cosmological constant, which are the main point
of interest of this thesis.

So far we did not ensure, that the image of Θ actually forms a Lie
algebra. For this a closure constraint is imposed on Θ, which can be
shown to follow from the invariance of the embedding tensor under G0.
Starting from the variation of Θ under G0

δPΘ α
M ≡ Θ β

P t N
βM Θ α

N + Θ β
P f α

βγ Θ γ
M = 0 (20)

one can contract it with tα to get the closure constraint

[XM ,XN ] = −X P
MN Xp = −X P

[MN ] XP = f P
MN . (21)

This gives a relation between X P
MN and the structure constants f P

MN .
Unlike f P

MN ,X P
MN has a symmetric partX P

(MN) = Z P
MN . The gen-

erators are only antisymmetric in the projected subspace of Θ. There-
fore one demands

Θ α
P Z P

MN = 0. (22)

As a further remark, the X P
MN also only satisfy the Jacobi identity in

the subspace projected by Θ and the violation is again proportional to
Z. Besides the quadratic closure constraint there is a linear constraint
on Θ coming from supersymmetry. It is called the representation con-
straint and can be examined in a case by case basis. [DWNS08] gives
an overview of the possible representations and their restrictions from
the representation constraint.

3.2 tensor hierarchies

The failure of X P
MN to satisfy the Jacobi identity also reflects in prob-

lems with the field strength defined as usual

[Dµ,Dν ] = −gFMµνXM , (23)

which is not covariant. To define a covariant field strength, the transfor-
mation behavior of AMµ is altered, including a 1-form gauge parameter
ΞNPµ

δAMµ = DµΛM − g Z M
NP ΞNPµ . (24)

ΞNPµ is used to gauge away the vector fields in the sector of X P
MN

which do not satisfy the Jacobi identity. The resulting transforma-
tion behavior of FMµν is not yet covariant. One defines a modified field
strength

HMµν = FMµν + g Z M
NP BNP

µν (25)
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using 2-form fields BMN
µν = B

(MN)
µν ,2 which are assigned a transforma-

tion behavior that leads to

δHMµν = −gΛPX M
PN HNµν . (26)

To obtain the desired transformation behavior of HMµν , BMN
µν is gauge

transformed as

δBMN
µν = 2D[µΞMN

ν] − 2 Λ(MHN)
µν + 2A(M

[µ δA
N)
ν] + ... (27)

where the dots refer to yet unspecified parts, i.e. those that vanish
under contraction with Z P

MN and therefore do not contribute to the
transformation of HMµν .

So to get a covariant transformation of the field strength of AMµ we
had to introduce a 2-form field BMN

µν which also is gauge transformed.
For these 2-form fields one can define a field strength FMN

µνρ . To ensure
the covariant transformation behavior of these, further 3-form fields
have to be introduced. Continuing this procedure gives a tensor hierar-
chy (cf. [DWNS08]) of gauge fields, which can be worked out in a case
by case study for every spacetime dimension D.
One might wonder, if adding new fields is in conflict with supersym-

metry, since supersymmetry fixes the number of degrees of freedom.
The procedure outlined here in fact adds fields, but does not add de-
grees of freedom. The additional fields are just part of a redundant
description of the theory. For any given gauge theory with constant
Θ, the number of degrees of freedom is just the value needed for it to
be maximally supersymmetric. The embedding tensor distributes the
degrees of freedom on the different p-form fields needed for the gauging.
The remaining fields decouple from the theory.

3.3 the t-tensor

An important object derived from the embedding tensor is the T-tensor,
which is a tensor of the maximal compact subgroup H ⊂ G. The T -
tensor occurs in couplings of fermions and also plays an important role
in our calculation. It is defined as the embedding tensor dressed with
the scalar matrix V i.e.

T β
N = Θ α

M VMNVβα (28)

where underlined indices are used to denote the indices of the subgroup
H and α again denotes the adjoint, while M denotes the representa-
tion of AMµ . VMN and Vβα refer to the scalar matrix in the respective
representations i.e. to an appropriate product of V in the fundamental
representation (cf. [Sam08]). Since T is defined via the scalar matrices,
it is field dependent T = T (φ). Also note that T inherits the linear

2 BMN
µν is actually just in a subset of the symmetric tensor product. For details see

[DWNS08] p.7 following.
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representation constraint from Θ. In practice one starts with Θ in the
representation(s) that are allowed by the linear constraint and then
decomposes these under h to get components of T .

Supersymmetric AdS vacua impose constraints on T . These can be
translated back to constraints on Θ and therefore restrictions on the
choice of G0 ⊂ G. Furthermore as T is field dependent, solutions to its
constraints can be varied along the scalar fields φ.

3.4 gauged supergravity and compactifications

A different way to construct gauged supergravities is by dimensional
reduction. In section 2.4 we outlined the procedure of torus compactifi-
cations. This procedure can be altered, for example by using a different
internal manifold than the torus. Another way to alter the procedure
is by including a twist, where the cyclic boundary conditions imposed
on the fields are modified to include a transformation of a symmetry
G of the theory (cf. [Roe05]). Furthermore in the higher dimensional
theory, a p-form field can be given a background flux (cf. [Sam08]), or
the internal manifold can be supplied with torsion (a geometric flux, cf.
[Sam08]).
In any case, the resulting lower dimensional theory usually is a gauged

supergravity. It is expected that all these theories are included in the
embedding tensor formalism [Sam08]. One case of interest are coset
reductions, where T d is replaced by a coset G/K, with G being a sym-
metry group of the theory and K ⊂ G being any subgroup of G. The
resulting gauge symmetry is the isometry group of the metric taken on
G/K. The most symmetric metric is called round metric and has G as
its isometry group.
As an example consider the d-sphere Sd. Sd is a coset Sd = SO(d+

1)/SO(d) and the standard metric on Sd is indeed round, with isometry
given by SO(d + 1). One can deform this metric to obtain smaller
isometry groups, corresponding to squashed spheres.



4
ADS VACUA IN D=7 SUPERGRAVITY

4.1 gauged maximal d=7 supergravities

The ungauged maximal D = 7 supergravity was constructed by Sezgin
and Salam in [SS82]. [SW05] gives a description of its gaugings via
the embedding tensor and is thus used as the main reference for this
section.

The field content of the ungauged D = 7 theory is given by the
graviton multiplet

(erµ,AMN
µ ,BµνM ,VabM ;ψaµ,χabc). (29)

The bosonic fields are the vielbein erµ, with flat spacetime indices r, s, ...
= 0, ..., 6, vector fields AMN

µ and 2-form fields BµνM with M ,N , ... =
1, ..., 5 and the scalar matrix VabM with a, b, ... = 1, ..., 4. M ,N , ... label
the fundamental representation of G = SL(5), which is the global sym-
metry group of the D = 7 theory. Its maximal compact subgroup is
H = SO(5) ⊂ SL(5). By so(5) ' usp(4) we use indices a, b, ... =

1, ..., 4 to denote the representations of H as symplectic Majorana
spinors.1 The fermions come in such representations, namely the grav-
itino ψaµ and the graviphotino χabc.
The generators of G in the adjoint representation are (tα) N

M with
α = 1, ..., 24. The vector fields transform in the 10 of SL(5), which
is the second exterior power of the fundamental representation i.e.
AMN
µ = A

[MN ]
µ . The embedding tensor Θ Q

MN ,P thus is in the 10⊗ 24.
Using the generators of G and the embedding tensor, the generators
XMN of the gauge group G0 ⊂ G are defined to be

XMN = Θ Q
MN ,P t Q

P . (30)

The gauge covariant derivative is

Dµ = ∂µ − g AMN
µ XMN = ∂µ − g AMN

µ Θ Q
MN ,P t Q

P . (31)

The tensor product 10⊗ 24 of Θ can be decomposed into

10⊗ 24 = 10 + 15 + 40 + 175. (32)

Supersymmetry constrains the possible representations of Θ to the 15
and 40 [SW05]. The respective components are denoted by YMN =

Y(MN) and ZMN ,P = Z [MN ],P with Z [MN ,P ] = 0. Explicitly

Θ Q
MN ,P = δQ[MYN ]P − 2εMNPRSZ

RS,Q. (33)

1 The definition of symplectic Majorana spinors is given in Appendix A.

15
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As described in section 3.2 one can define covariant field strengths
H(2)MN
µν for the 1-form field AMN

µ and H(3)
µνρM for the 2-form field BµνM .

For H(2)MN
µν a term proportional to BµνM is added to the usual field

strength F (2)MN
µν . Similarly for H(3)

µνρM one needs to add a 3-form field
SMµνρ. This 3-form field does not add degrees of freedom. In the un-
gauged theory, it can be dualized via Hodge duality to BµνM . In gauge
theories there can be obstructions to these dualizations, coming from
the necessity of the fields carrying certain representations (cf. [SW05]).
Therefore SMµνρ is needed in the general description of gauge theories.
Θ then distributes the degrees of freedom among the different p-form
fields.
The scalar sector of the theory is described by a matrix VabM . The

pair ab denotes the 5 of USp(4), which is a vector representation. Vec-
tor representations of USp(4) can be expressed using antisymmetric,
symplectic traceless spinor index pairs.2 VabM thus satisfies VabM = V [ab]M

and ΩabVabM = 0, where Ωab denotes the symplectic matrix preserved
by USp(4). Ωab is also used to raise and lower indices, e.g. VMab =

ΩacΩbdVcdM . The used representations are pseudoreal, i.e.
(
VabM

)∗
=

VMab .3
For the kinetic terms in the bosonic Lagrangian the matrixMMN is

defined from VabM as

MMN = VabMVcdN ΩacΩbd. (34)

This matrix is unimodular and positive definite (cf. [DWST03]). The
bosonic Lagrangian is then

e−1L =− 1
2R−MMPMNQH(2)MN

µν H(2)µνPQ

− 1
6M

MNH(3)
µνρMH

(3)µνρ
N

+
1
8 (∂µMMN )(∂

µMMN )− g2 V + e−1LV T (35)

where V is the potential, which is defined at a later point in (39) and
LV T is a collection of topological terms. These topological terms couple
the different vector and tensor fields and in particular include a kinetic
term for the 3-form field SMµνρ. They are needed to ensure supersymme-
try invariance of the gauged theory [SW05].
VabM is also used to define the T -tensor, which is the USp(4) analogue

of the embedding tensor. It is given by

T [cd]
(ef )[ab] =

√
2VMeg VNfhΩghVPabΘ Q

MN ,P VcdQ . (36)

2 With vector representations we mean any actual tensor representation of SO(5)
as opposed to spinor representations which can only be defined by lifting to the
universal cover USp(4). (The vectors have an even number of spinor indices.)

3 Pseudoreality can only be demanded for the vector representations.
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The T -tensor is used in couplings of fermions and is the main object
needed for the calculation in section 4.2. It inherits the linear repre-
sentation constraint on Θ. The decomposition of Θ into 15 and 40
branches under usp(4) as

15 + 40 7→ (1 + 14) + (5 + 35) (37)

with the representations

1 : B ∈ R

14 : Bab
cd = B[ab]

[cd], ΩabB
ab
cd = 0 = ΩcdBab

cd

5 : Cab = C [ab], ΩabC
ab = 0

35 : Cabcd = C [ab]
(cd), ΩabC

ab
cd = 0. (38)

All these representations are pseudoreal. These T -tensor components
contribute to the potential

V = − 1
128

(
15B2 + 2CabCab− 2Bab

cdB
cd
ab− 2CabcdC cd

ab

)
. (39)

This potential can take negative values. Thus there can be anti-de Sit-
ter backgrounds. For a supersymmetric AdS background, further con-
straints have to be fulfilled, which will be examined in the next section.

4.2 finding the ads vacua

The supersymmetric AdS7 backgrounds can be found, by setting all
fields that break Lorentz invariance and all variations under supersym-
metry transformations to zero (or more precisely their expectation val-
ues). The fermion variations are the ones that impose constraints. These
are given by the gravitino variation4

δψaµ = Dµε
a − g ΓµAab1 Ωbcε

c + ... (40)

and the graviphotino variation

δχabc = g Ad,abc
2 Ωdeε

e + ... (41)

with the fermion shift matrices A1 and A2 given by

Aab1 =− 1
4
√

2

(1
4B Ωab +

1
5C

ab
)

(42)

Ad,abc
2 =

1
2
√

2

[
Cabcd −Babcd

+
1
4
(
CabΩcd +

1
5ΩabCcd +

4
5Ωc[aCb]d

)]
.

4 Trivially vanishing terms are denoted by "...". The full variations can be found in
[SW05].
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δχ = 0 is easily solved as5

0 =Ad,abc
2 (43)

=
1

2
√

2

[
Cabcd −Babcd +

1
4
(
CabΩcd +

1
5ΩabCcd +

4
5Ωc[aCb]d

)]
=

1
2
√

2

[
C [ab](cd) −B[ab][cd]

+
1
4
(
C [ab]Ω[cd] +

1
5Ω[ab]C [cd] +

4
5Ωc[aCb]d

)]
.

Collecting the tensors in the same representation gives

C [ab](cd) = −1
5Ω(c[aCb]d) (44)

and

B[ab][cd] =
1
4C

[ab]Ω[cd] +
1
20Ω[ab]C [cd] +

1
5Ω[c[aCb]d], (45)

where the last term in (43) was decomposed into symmetric and anti-
symmetric parts.6
δψ = 0 can be reformulated by using that εa is a Killing spinor on

anti-de Sitter spacetime. The resulting equation is (cf. [SW05])

2A1 abε
b = ±

√
−V /15 Ωabε

b (46)

leading to

−1
2
√

2

(1
4B Ωab +

1
5Cab

)
= ±

√
−V /15 Ωab. (47)

Since the right-hand side is proportional to Ωab, Cab is restricted to be
of the form Cab = C Ωab for some C ∈ R .7 Furthermore ΩabCab =

0 = 4C. Therefore

Cab = 0 (48)

and

B = ∓8
√
−2
15 V . (49)

Inserting (48) into (44) and (45) gives

Cabcd = 0 = Bab
cd. (50)

So the only nonzero component of the T -tensor is B as given in (49).
We should check, if this T -tensor satisfies the closure constraint,

which is (cf. [SW05])

YMQZ
QN ,P + 2 εMRSTUZ

RS,NZTU ,P = 0, (51)

5 εe is an arbitrary symplectic spinor and Ωde is nondegenerate.
6 Nested brackets are interpreted as T (a[bc]d) = T (a|[bc]|d) = 1

2
(
Ta[bc]d + T d[bc]a

)
.

7 From (Cab)∗ = Cab it can be followed, that C is indeed real, since (Ωab)∗ = Ωab.
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with the Θ components ZMN ,P and YMN as in (33). ZMN ,P can be
obtained from the T -tensor via its USp(4) analogue Zabcd

ZMN ,P =
√

2VMab VNcdVPefΩbdZ(ac)[ef ]. (52)

In terms of the components of the T -tensor, Zabcd reads

Zabcd =
1
16 Ωa[cCd]b +

1
16 Ωb[cCd]a − 1

8 ΩaeΩbfCcdef . (53)

We thus see that ZMN ,P vanishes by (48) and (50). Therefore (51) is
trivially fulfilled and imposes no further constraints.

4.3 moduli of the ads vacua

In the previous section we found AdS vacua parametrized by the T -
tensor component B. The T -tensor is field dependent, since it is de-
fined using the scalar matrix VabM . Therefore the solutions can be varied
along the scalar manifold. We want to find moduli of the solutions, i.e.
variations of the scalars, along which solutions vary into new solutions,
while Λ is left constant and fixed.

A way to describe scalar variations is by right multiplication of V
with an element L cd

ab (x) of the adjoint of sl(5). One can use that the
adjoint of sl(5) splits under usp(4) as 24 7→ 10 + 14 and therefore
decompose

L cd
ab = 2 Λ [c

[a δ
d]
b] + Σcdab, (54)

where Λ c
a is in the 10 and Σcdab is in the 14. Then V varies as

δVabM = VcdMΣabcd(x)− 2Vc[am Λ b]
c (x). (55)

The 10 denoted by Λ c
a is the adjoint representation of USp(4). These

are the USp(4) ' SO(5) transformations which are divided out to
get the scalar coset SL(5)/SO(5). The 14 denoted by Σcdab then
parametrizes the 14 physical degrees of freedom of the coset space. As
we are interested in physical moduli, we thus need to consider

δΣVabM = VcdMΣabcd(x). (56)

Under this variation there are corresponding variations of B, Bab
cd, Cab

and Cabcd, since these are defined via V and therefore depend on the
scalars. These variations are (cf. [SW05])

δΣB =− 2
5 ΣabcdB

cd
ab

δΣB
ab
cd =− 2B Σabcd − ΣabefB

ef
cd − ΣefcdB

ab
ef

+
2
5
(
δabcd −

1
4ΩabΩcd

)
ΣefghB

gh
ef (57)
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and

δΣC
ab =

1
2 ΣabcdC

cd + 2Ωe[aΣb]fcdC
cd
ef

δΣC
ab
cd = 4 Ωe[aΣb]fe(cCd)f + Ωe[aδ

b]
(cΣ

gf
d)eCgf

+ Ωegδ
[a
(cΣ

b]f
d)eCgf

+ ΣabefC
ef
cd + Σg[aefδ

b]
(cC

ef
d)g

+ 4 Σegf (cΩd)eΩ
h[aCb]fgh

− δ[a(cΩd)fΩb]kΣfhgeC
eg
hk, (58)

where δabcd = δ
[a
c δ

b]
d = δa[cδ

b
d].

Along the moduli, solutions are varied into new solutions therefore
we need to solve δΣB

ab
cd = δΣC

ab = δΣC
ab
cd = 0. Furthermore V needs

to stay constant. Thus we also impose δΣB = 0. Inserting the solutions
Cab = Cabcd = Bab

cd = 0 leads to

δΣB = 0,
δΣB

ab
cd =− 2B Σabcd,

δΣC
ab = 0,

δΣC
ab
cd = 0. (59)

The only nontrivial constraint is 0 = −2B Σabcd. For an AdS back-
ground B ∝

√
−Λ 6= 0. Therefore Σabcd = 0, i.e. there are no phys-

ical moduli to the solution. Note, that in a Minkowski background
B ∝

√
−Λ = 0. This makes all constraints trivial and therefore all

directions of the scalar manifold are moduli of the Minkowski solution.

4.4 allowed gauge groups

An AdS background imposes constraints on the T -tensor. These can be
translated into constraints on the embedding tensor Θ and thus into
constraints on the possible gauge groups. In (53) it was shown that
the Θ component ZMN ,P vanishes in an AdS solution. The remaining
component in the decomposition (33) is thus YMN .
In analogy to the way we defined Z(ab)[cd] from ZMN ,P in (52), one

defines Yab,cd such that

YMN = VabMVcdN Yab,cd. (60)

With only the 1 component of T being nonzero Yab,cd is of the form8

Yab,cd =
1√
2

(
ΩacΩbd −

1
4ΩabΩcd

)
B. (61)

8 The general formula can be found in [SW05].
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Inserting (61) into (60) gives

YMN =
1√
2
VabMVcdN (ΩacΩbd −

1
4ΩabΩcd)B. (62)

Since VabM belongs to the 5 of USP (4), ΩabVabM = 0 and (62) reduces to

YMN =
1√
2
VabMVcdN ΩacΩbdB. (63)

One can insert the definition ofMMN (34) to get

YMN =
B√

2
MMN . (64)

[SW05] discusses the case of ZMN ,P = 0 = Z(ab)[cd] and specifies the
resulting gauge group. First they diagonalize YMN :

YMN = diag(1, ..., 1︸ ︷︷ ︸
p

,−1, ...−, 1︸ ︷︷ ︸
q

, 0, ..., 0︸ ︷︷ ︸
r

), (65)

with p+ q+ r = 5. The resulting gauge group is then

G
(p,q,r)
0 = CSO(p, q, r) ≡ SO(p, q)nR(p+q)·r. (66)

Since YMN ∝ ±
√
−ΛMMN and MMN is positive definite, YMN is

either positive or negative definite. The only possible gauge group is
thus SO(5) = CSO(5, 0, 0) ' CSO(0, 5, 0). Again we can make a
consistency check with the Minkowski case YMN = 0, in which (66)
gives no gauge group.

There is thus a single possible gauge group consistent with a maxi-
mally supersymmetric anti-de Sitter background. This gauge group is
G0 = SO(5).

4.5 comparison to the dual scft

In section 4.2 we found a one parameter family of AdS vacua parame-
trized by the T -tensor component B ∝

√
−Λ. Note that there are two

solutions ±B for any given value of Λ < 0.9 There are however no
moduli of the solution. The only allowed gauge group is G0 = SO(5).
On the SCFT side, AdS backgrounds in the D = 7 maximal case

correspond to the N = (2, 0) SCFT in six dimensions. The moduli of
the AdS backgrounds correspond to the conformal manifold, spanned
by marginal operators in the SCFT. [LL15] examines the existence of
marginal operators for the N = (1, 0) case and concludes that there
are no marginal operators. Hence if there are no marginal operators for
N = (1, 0) there can not be any for N = (2, 0) either. The result we

9 From pseudoreality of the USP (4) representations, B∗ = B ∈ R and therefore
Λ ≤ 0. For Λ = 0 there is just one solution B = 0.
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obtained is thus in accordance with AdS/CFT as the nonexistence of
moduli corresponds to the nonexistence of marginal operators and vice
versa.

Furthermore the gauge group on the AdS side corresponds to the
R-symmetry of the SCFT. This is true for our result of G0 = SO(5) '
USp(4) [CDI16].
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ADS VACUA IN D=6 SUPERGRAVITY

5.1 gauged maximal d=6 supergravities

The ungauged maximalD = 6 supergravity was constructed by Tanii in
[Tan84]. [BSS08] gives a description of its gaugings via the embedding
tensor and is thus used as the main reference for this section.

The field content of the ungauged D = 6 theory is given by the
graviton multiplet

(erµ,AAµ ,BµνM ,Vαα̇A ;ψαµ+,ψα̇µ−,χaα̇+,χḃα−). (67)

The bosonic fields are the vielbein erµ, with flat spacetime indices r, s, ...
= 0, ..., 5, vector fields AAµ with A,B, ... = 1, ..., 16, 2-form fields BµνM
withM ,N , ... = 1, ..., 10 and the scalar matrix Vαα̇M with α,β, ...; α̇, β̇, ...
= 1, ..., 4. M ,N , ... label the fundamental representation of G =

SO(5, 5), which is the global symmetry group of the D = 6 theory.
A generic feature in even dimensions is that the global symmetry

group is not manifest in the Lagrangian and in fact not realized off shell.
In even dimensions field strengths can be selfdual under Hodge duality.
This leads to the division of (D/2− 1)-forms into electric and magnetic
degrees of freedom. Both kinds of degrees of freedom are needed for
invariance under G and since the equations of motion involve both,
these are indeed invariant under G. The Lagrangian however contains
just the electric degrees of freedom and is thus only invariant under a
subgroup GL(5) ⊂ SO(5, 5). The 2-forms therefore split into GL(5)
tensors Bµνm and Bm

µν with m,n, ... = 1, ..., 5 which are the electric
and magnetic 2-forms respectively. The used notation for BµνM is then
BµνM = (Bµνm,Bm

µν).
The maximal compact subgroup of G is H = SO(5) × SO(5). As

in seven dimensions indices α,β, ... = 1, ..., 4 and α̇β̇, ... = 1, .., 4 are
used to denote the representations ofH as USp(4) representations. The
dotted indices correspond to the right copy of SO(5) in the product,
while the undotted ones correspond to the left copy.

The fermions in D = 6 come in chiral representations. In the max-
imal case there are two pairs of supersymmetry generators, with op-
posite chirality. Hence it is usually labeled N = (2, 2) supergravity.
The gravitini and graviphotini also come in chiral representations as
ψ± and χ±. For the graviphotini χaα̇+,χḃα− the vector representation
of SO(5) is also used and denoted by a, b, ...; ȧ, ḃ, ... = 1, ..., 5. Again
dotted and undotted indices correspond to the right- and left copy of
SO(5)×SO(5). Vectors of SO(5)×SO(5) are then denoted by under-
lined indices A = (a, ȧ).

23
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The vector field AAµ is in the 16, which is the (Majorana-Weyl) spinor
representation of G = SO(5, 5). Thus, since the adjoint of SO(5, 5) is
the 45, Θ Q

A,P is in the 16⊗ 45. Using the generators t Q
P of G and

the embedding tensor, the generators XA of the gauge group G0 ⊂ G

are defined to be

XA = Θ Q
A,P t Q

P . (68)

The gauge covariant derivative is

Dµ = ∂µ − g AAµXA = ∂µ − g AAµΘ Q
A,P t Q

P , (69)

where g is again the gauge coupling parameter. The tensor product
16⊗ 45 of Θ can be decomposed into (cf. [DWNS08])

16⊗ 45 = 16 + 144 + 560. (70)

Supersymmetry constrains the possible representations of Θ to the
144c [BSS08]. With θ ∈ 144c, Θ is given by

ΘMN
A = −θB[Mγ

N ]
BA (71)

where γNAB is the gamma matrix of SO(5, 5).
To describe the scalar coset of the theory, two different matrices VAM

and V αα̇
A are used. VAM is a 10× 10 matrix, which can be written as a

block matrix

VAM =

 Vam V ȧm
Vma Vmȧ

 . (72)

it fulfills the relations

VMaVbM = δab, VMȧV ḃM = δȧḃ,
VMaV ȧM = 0, VaMVNa −V ȧMVNȧ = δNM . (73)

The other object needed is the 16× 16 V αα̇
A with inverses V αα̇

A V B
αα̇ = δBA

and V αα̇
A V A

ββ̇
= δαβ δ

α̇
β̇
. It can be understood as being the spinorial version

of VAM as it is in the spinor representation of bothG andH and is related
to VAM by

VaM =
1
16 V

Aαα̇γMABγ
a β
α V B

βα̇,

V ȧM =
1
16 V

Aαα̇γMABγ
ȧ β̇
α̇ V B

αβ̇. (74)

From V αα̇
A one defines the matrix

MAB = V αα̇
A VBαα̇. (75)
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Using covariant field strengths H(2)A
µν for AAµ and H(3)

µνρm for Bµνm the
bosonic Lagrangian is then given by

e−1LB =
1
4 R−

1
4 MABH(2)A

µν H(2)µνB

− 1
12 K

mnH(3)
µνρmH(3)µνρ

n − 1
16 P

aȧ
µ Pµaȧ

− g2 V + e−1LV T (76)

where Kmn is a matrix built from the scalar fields to ensure duality
invariance of the Lagrangian, i.e. invariance under exchange of electric
into magnetic degrees of freedom (cf. [BSS08]). The potential V is given
in (80) and LV T is a collection of topological terms, needed to ensure
supersymmetry invariance of the gauged theory.

The scalar matrices V and V are also used to map the embedding
tensor to the T -tensor

T aαα̇ = VaMθAMVAαα̇,
T ȧαα̇ = −V ȧMθAMVAαα̇. (77)

TA denotes the full T -tensor. Furthermore one can define

T ab = γ [aT b], T ȧḃ = −T [ȧγ ḃ] (78)

and

T = γaT a = −T ȧγȧ (79)

where spinor indices are suppressed in both definitions.1 The T -tensor
contributes to the potential

V = −T aαα̇T aαα̇ +
1
2Tαα̇T

αα̇. (80)

As in seven dimensions this potential can take negative values and thus
support AdS vacua. In the upcoming section the existence of supersym-
metric AdS vacua will be examined.

5.2 finding the ads vacua

For supersymmetric AdS vacua the supersymmetry variations of the
fermions need to vanish. We get the constraints

0 = δψµ± = Dµε± ±
1
4gγµTε∓ + ... (81)

for the gravitini with different chirality ±, where trivially vanishing
terms have been omitted and spinor indices are suppressed. Further-
more for the graviphotini we get the constraints

0 = δχaα̇+ = 2g T aα̇αεα −
g

2 Tα̇βγ
a β
α εα + ... ,

0 = δχȧα− = 2g T ȧαα̇εα̇ +
g

2 Tαβ̇γ
ȧ β̇
α̇ εα̇ + ... . (82)

1 Tab = Tabαα̇ and T = Tαα̇.
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The first equation of (82) can be reformulated by omitting the arbitrary
spinor εα to get

T aα̇α = −1
4 Tα̇βγ

a β
α . (83)

One can multiply (83) by γa α
ρ to get

Tα̇ρ = −
1
4 Tα̇βγ

a β
α γa α

ρ . (84)

One can show γa β
α γa α

ρ = 5 δβρ by using the defining anticommutation
relation of gamma matrices. We get

Tα̇ρ = −
5
4 Tα̇ρ. (85)

This is only fulfilled for Tα̇ρ = 0. We can insert this result back into
(83) to find that T aα̇α = 0. The same argument can be made for T ȧ.
Hence the T -tensor vanishes and with it the embedding tensor2. The
potential (80) vanishes for T = 0 and thus vanishes for supersymmetric
backgrounds. There are no supersymmetric AdS vacua for the D = 6
maximal supergravity.

5.3 comparison to the dual scft

In section 5.2 it was shown that no maximally supersymmetric AdS
vacua exist for the D = 6 theory. This is in accordance with the fact
that there is no N = 2 SCFT in five dimensions [Min98]. The dual
SCFT thus does not exist.

2 Note that the assignment of T to θ in (77) is invertible, since the scalar matrices are
invertible.



6
ADS VACUA IN D=5 SUPERGRAVITY

6.1 gauged maximal d=5 supergravities

The ungauged maximal D = 5 supergravity was constructed by Crem-
mer, Scherk and Schwarz in [CSS79]. [DWST05] gives a description of
its gaugings via the embedding tensor and is thus used as the main
reference for this section.

The field content of the ungauged D = 5 theory is given by the
graviton multiplet

(erµ,AMµ ,VabM ;ψaµ,χabc). (86)

The bosonic fields are the vielbein erµ, with flat spacetime indices r, s, ...
= 0, ..., 4, vector fields AMµ with M ,N , ... = 1, ..., 27 and the scalar ma-
trix VabM with a, b, ... = 1, ..., 8.M ,N , ... label the fundamental represen-
tation of G = E6(6), which is the global symmetry group of the D = 5
theory. Its maximal compact subgroup is H = USp(8). USp(8) is rep-
resented by symplectic Majorana spinors with indices a, b, ... = 1, ..., 8.
The fermions come in these representations, namely the gravitino ψaµ
and the graviphotino χabc. The symplectic matrix preserved by USp(8)
is denoted as Ωab. As in seven and six dimensions, the vector repre-
sentations are pseudoreal, i.e. given a V ab

cd, the conjugate is given by
(V ab

cd)
∗ = V cd

ab = ΩaiΩbjΩkcΩldV ij
kl. A single vector index can be

mapped to a pair of antisymmetric, symplectic traceless indices [ab].
The generators of G in the adjoint representation are (tα) N

M with
α = 1, ..., 78. The vector fields AMµ are in the 27 of E6(6). Hence, since
the adjoint representation is the 78, the embedding tensor Θ α

M is in
the 27⊗ 78. Using the generators of G and the embedding tensor, the
generators XM of the gauge group G0 ⊂ G are defined to be

XM = Θ α
M tα. (87)

The gauge covariant derivative is

Dµ = ∂µ − g AMµ XM = ∂µ − g AMµ Θ α
M tα, (88)

where g is the gauge coupling parameter. The tensor product 27⊗ 78
of Θ can be decomposed into

27⊗ 78 = 27 + 351 + 1728. (89)

Supersymmetry constrains the possible representations of Θ to the 351
[DWST05]. This implies the conditions

(tα)
N

M Θ α
N = 0, (tβt

α) N
M Θ β

N = −2
3Θ α

M , (90)

27
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where α,β, ... are raised and lowered by the E6(6) Killing form ηαβ =

tr(tαtβ).
As in seven dimensions, higher p-form fields need to be added for

consistent gauge theories. Therefore the 2-form fields BµνM are intro-
duced. In the ungauged theory they can be obtained as the Hodge dual
of the 1-forms AMµ . These 2-form fields do not add degrees of freedom.
The embedding tensor encodes which fields become actual degrees of
freedom and which decouple (cf. [DWST05]).
The scalar coset space is represented by the matrix VabM = V [ab]M

with ΩabVabM = 0. Its inverse is given by VMab VabN = δMN . Furthermore
VMab VcdM = δcdab −

1
8 ΩcdΩab. As in previous cases we define

MMN = V ijMV
kl
NΩikΩjl (91)

which is used in the bosonic Lagrangian

e−1LB =− 1
2 R−

1
16MMNHMµνHµνN

− 1
12 |P

ijl
µ |2 − g2 V − e−1LV T . (92)

HMµν is the covariant field strength of AMµ and LV T is a collection of
topological terms, needed for consistency of the gauged theory.
VabM is used to define the T -tensor from Θ. The 351 of E6(6) branches

under usp(8) as

351 7→ 315 + 36. (93)

The 36 is denoted by Aij1 = A
(ij)
1 and the 315 by Ai,jkl2 = A

i,[jkl]
2

with A
[i,jkl]
2 = 0. The T -tensor is then expressed by the components

T klmnij in the 315 and T ijkl which belongs to both the 315 and the
36. Explicitly

T klmnij = 4Aq,[klm2 δ
n]
[i Ωj]q + 3Ap,q[kl

2 Ωmn]Ωp[iΩj]q,

T ijkl =−Ωim

(
Ωm[kA1l]j + Ωj[kA1l]m +

1
4 ΩklA1mj

)
−ΩimA2(m,j)kl. (94)

The T -tensor components contribute to the potential

V = −3 |Aij1 |2 +
1
3 |A

i,jkl
2 |2. (95)

As in previous cases this potential can take negative values, leading to
AdS Vacua. In the upcoming section the existence of supersymmetric
vacua will be examined.

6.2 finding the ads vacua

For supersymmetric AdS vacua we have to solve the constraints

δχijk = 0 = g Al,ijk2 Ωlmε
m + ... (96)
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and

δψiµ = 0 = Dµε
i − ig γµAij1 Ωjkε

k + ... (97)

where in both cases terms which vanish trivially have been omitted.
From the first constraint (96) we read off Al,ijk2 = 0.1

The second condition can be reformulated [DWST05] to yield

Aim1 A1jmε
j =

1
8
(
|A1|2 −

1
9 |A2|2

)
εi, (98)

where |A1|2 = A1ijA
ij
1 and |A2|2 = Al,ijk2 A2l,ijk. Hence

Aim1 A1jm =
|A1|2

8 δij . (99)

Note that this equation coincides with the closure constraint for A2 = 0
(cf. [DWST05] eq. (4.30)). Furthermore note that |A| ∝

√
−Λ by the

potential (95). For A2 = 0 it reads

V = −3g2 |A1|2. (100)

For our further calculations it is convenient to express A = A1 in an
su(4) basis.2 In (99) one can use Aim1 A1jm = −Ai1mAm1j = − |A1|2

8 δij
and thus see that the constraint can be brought to the form A2 ∝ −1.
Hence A acts as a complex structure and can be diagonalized, with four
eigenvalues +iλ and four eigenvalues −iλ (with constant λ ∈ R). One
can take an orthonormal basis of eigenvectors eiα, e

j
ᾱ such that

Aije
j
α = iλ eiα,

Aije
j
ᾱ = −iλ eiᾱ. (101)

Then

Aαβ = eαi A
i
je
j
β = iλ eαi e

i
β = iλ δαβ . (102)

This implies the normalization λ = |A|/
√

8. In a similar fashion we can
define Ωαβ̄ = eiαΩije

j
β̄
. Using the symmetry properties of A one finds

that it is consistent to have

Aαβ̄ =
i|A|√

8
δαβ̄ Aᾱβ =

i|A|√
8
δᾱβ,

Ωαβ̄ =δαβ̄ Ωᾱβ =− δᾱβ. (103)

All other components i.e. the αβ and ᾱβ̄ components are zero.

1 Recall: εm is an arbitrary symplectic spinor and Ωlm is nondegenerate.
2 The upcoming change of basis is based on the help of Severin Lüst, who not only
had the initial idea to change to an SU(4) basis, but also developed most of the
details used to determine the moduli in D = 5.
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6.3 moduli of the ads vacua

As seen in the previous chapter, supersymmetric AdS backgrounds im-
pose constraints on the T -tensor components A1 and A2. To find moduli
we will have to consider the variations of the A’s under variations of the
scalar fields. In a similar manner to the D = 7 case, variations of V can
be parametrized by an element of the adjoint of E6(6). Under usp(8) it
splits as 78 7→ 42 + 36. The 36 corresponds to the adjoint of USp(8).
These are the directions that are divided out to get the G/H coset.
The physical variations are given by the 42, denoted by Σijkl = Σ[ijkl],
which is symplectic traceless ΣijklΩij = 0.

The corresponding variations of the T -tensor components are given
by [DWST05]

δAij1 =
4
9 Ωp(iΣj)klmA2p,klm,

δAi,jkl2 =
3
2
(

ΩmiΣjkln + Ωm[jΣkl]in
)
A1mn

−
(

Ωi[jΩk|m|Σl]npq − 3 ΩniΩm[jΣkl]pq

− 1
6 ΩimΩ[klΣj]npq +

1
6 Ωm[jΩkl]Σinpq

)
A2m,npq. (104)

These have to vanish along the moduli. It is helpful to use the su(4)
basis as defined above. Under su(4) Σijkl decomposes as3

42 7→ 1 + 1 + 10 + 10 + 20. (105)

Σ is completely antisymmetric, hence the 1 can be expressed as

Σαβγδ = σ εαβγδ (106)

where σ ∈ C s.t. Σᾱβ̄γ̄δ̄ = σ̄ εᾱβ̄γ̄δ̄ as can be inferred from pseudoreality
of Σijkl. Given A2 = 0 the first constraint from (104) is trivial. The
other reads schematically

δAα,βγδ
2 = 0 = ΩmαΣβγδnAmn + Ωm[βΣγδ]αnAmn (107)

where the bars have to be picked consistently for α,β, γ, δ. m is used
in (107) to represent either an unbarred index ρ or a barred one ρ̄. The
summation extends over both ρ and ρ̄. The same is true for n which
represents either σ or σ̄. In this summation either the m = ρ, n = σ̄

or the m = ρ̄, n = σ term remains as Aρσ = 0 = Aρ̄σ̄. Furthermore
Ωmα in the first term is zero for the terms with α and m = ρ or ᾱ
and m = ρ̄. Similarly only one of the possibilities in the second term is
nonzero for a given choice of bars on α,β, γ, δ.
Another helpful observation is that for each choice of bars on α,β, γ, δ,

Σ inherits this index structure. For example checking δAα,βγδ
2 = 0 will

3 This decomposition is demonstrated in appendix B.
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involve only the 1 of Σ. Conversely this is the only constraining equa-
tion for the 1. Checking the constraints componentwise one can use the
antisymmetry of Σ to find that the 1 and 1 are unconstrained, while
all other components of Σ have to vanish. The full calculation can be
found in appendix B.
Therefore the 1 and 1 are the moduli of the solution. As one consis-

tency check one can consider Minkowski backgrounds. By (100) Λ = 0
implies A1 = 0. In that case (107) is trivial, i.e. all directions of the
scalar coset are moduli.

6.4 allowed gauge groups

A in the su(4) basis can be inserted into (94) to get the components of
the T -tensor in this basis. One finds that most of the components are
zero. The remaining cases4 are captured by

Tαβγ̄δ =
i|A|√

8

(
−δαδ δγ̄β +

1
4 δ

α
β δγ̄δ

)
. (108)

With Tγ̄δ = (Tγ̄δ)
α
β = Tαβγ̄δ the commutator reads

[Tγ̄δ,Tµ̄ν ] = T σβγ̄δT
α
σµ̄ν −

(
γ̄ ↔ µ̄

δ ↔ ν

)
. (109)

Inserting (108) into (109) yields

[Tγ̄δ,Tµ̄ν ] =−
|A|2

8
(
δµ̄δδγ̄βδ

α
ν −

1
4 δ

α
δ δγ̄βδµ̄ν −

1
4 δ

α
ν δγ̄δδµ̄β

+
1
16 δ

α
β δµ̄νδγ̄δ

)
−
(
γ̄ ↔ µ̄

δ ↔ ν

)
. (110)

The second and third term together are symmetric under (γ̄↔µ̄δ↔ν) and
thus vanish in the commutator. The same holds true for the last term.
We thus find

[Tγ̄δ,Tµ̄ν ] = −
|A|2

8 δµ̄δδ
α
ν δγ̄β −

(
γ̄ ↔ µ̄

δ ↔ ν

)
. (111)

This can be reformulated to give the defining relation of su(N)

[Tγ̄δ,Tµ̄ν ] = δµ̄δTγ̄ν − δγ̄νTµ̄δ. (112)

Using that 1
4 δ

α
β δγ̄νδµ̄δ is symmetric under (γ̄↔µ̄δ↔ν) one obtains

[Tγ̄δ,Tµ̄ν ] =
|A|2

8 δµ̄δ
(
−δαν δγ̄β +

1
4 δ

α
β δγ̄ν

)
−
(
γ̄ ↔ µ̄

δ ↔ ν

)
. (113)

4 Three additional nonzero components can be produced by symmetry arguments. T
is antisymmetric in its last two indices (Tαβγδ̄ = −T

α
βδγ̄). Furthermore flipping all

indices from barred to unbarred and vice versa leaves T invariant.
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The bracketed term is just the definition of Tαβγ̄ν . Thus

[Tγ̄δ,Tµ̄ν ] =
−i|A|√

8
δµ̄δTγ̄ν −

(
γ̄ ↔ µ̄

δ ↔ ν

)
(114)

which is the relation (112) up to a constant −i|A|√
8 which can be absorbed

into the definition of the Lie bracket. Having 16 4× 4 matrices that
fulfill (112) as generators, we conclude that the allowed gauge group is
SU(4).

6.5 comparison to the dual scft

In section 6.2 AdS vacua were found which are parametrized by |A| ∝√
−Λ. To obtain the parametrization by |A|, the 36-dimensional T -

tensor component Aij1 was diagonalized. It thus comes from an infinite
number of solutions, spanning a 35-dimensional solution space for any
Λ < 0.5 The moduli of the solutions where found to be parametrized
by a complex coordinate σ ∈ C. This result is in accordance with
AdS/CFT in so far as the dual N = 4 SYM in four dimensions has
a conformal manifold of complex dimension one [BNP15]. We were
however not able to determine the metric of the resulting moduli space.
The gauge group was found to be G0 = SU(4). This indeed corre-

sponds to the R-symmetry of the dual theory [CDI16].

5 There are no solutions for Λ > 0 as
√
−Λ ∝ |A| ∈ R. For Λ = 0 there is just one

solution A = 0.
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7.1 gauged maximal d=4 supergravities

The ungauged maximal D = 4 supergravity was constructed by [CJ78]
and in more detail by de Wit and Nicolai in [DWN82]. [DWST07] gives
a description of its gaugings via the embedding tensor and is thus used
as the main reference for this section.

The field content of the ungauged D = 4 theory is given by the
graviton multiplet

(erµ,AMµ ,VabM ;ψaµ,χabc). (115)

The bosonic fields are the vielbein erµ, with flat spacetime indices r, s, ...
= 0, ..., 3, vector fields AMµ with M ,N , ... = 1, ..., 56 and the scalar ma-
trix VabM with a, b, ... = 1, ..., 8.M ,N , ... label the fundamental represen-
tation of G = E7(7), which is the global symmetry group of the D = 4
theory. Its maximal compact subgroup is H = SU(8). The fundamen-
tal representation of H is denoted by indices a, b, ... = 1, ..., 8. Complex
conjugation for these indices is affected by raising respectively lowering
all indices. The fermions come in SU(8) representations, namely the
gravitino ψaµ and the graviphotino χabc.

The generators of G in the adjoint representation are (tα) N
M with

α = 1, ..., 133. The vector fields AMµ are in the 56 of G. Hence, since
the adjoint representation is the 133, the embedding tensor Θ α

M is in
the 56⊗133. Using the generators of G and the embedding tensor, the
generators XM of the gauge group G0 ⊂ G are defined to be

XMN = Θ α
M tα. (116)

The gauge covariant derivative is

Dµ = ∂µ − g AMµ XM = ∂µ − g AMµ Θ α
M tα, (117)

where g is the gauge coupling parameter. The tensor product 56⊗ 133
of Θ can be decomposed into

56⊗ 133 = 56 + 912 + 6480. (118)

Supersymmetry constrains the possible representations of Θ to the 912
[DWST07]. This implies the constraints

(tα)
N

M Θ α
N = 0, (tβt

α) N
M Θ β

N = −1
2Θ α

M (119)

where α,β, ... are raised and lowered by the E7(7) Killing form ηαβ =

tr(tαtβ).

33
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Similar to what we have seen in six dimensions, the 1-forms AMµ are
split into electric and magnetic degrees of freedom. The electric 1-forms
are denoted by AΛ

µ and the magnetic ones by AµΛ. Λ, Σ, ... = 1, ..., 28
denote the representations which are obtained when splitting the 56
of G under SL(8). The splitting is 56 → 28 + 28′. The 28 of SL(8)
is the second exterior power of the fundamental representation. The
Lagrangian contains only the electric degrees of freedom and thus is
invariant under the off-shell subgroup SL(8) ⊂ G. The full G symmetry
is only realized on shell.

The scalar coset space is represented by a 56× 56 matrix V N
M which

splits under su(8) and sl(8) into blocks

V N
M =

 V ijΛ VΛkl

VΣij VΣ
kl

 . (120)

The blocks V are antisymmetric in i and j and fulfill the relations

V ijMVNij −VMijV ijN = iΩMN ,

ΩMNV ijMVNkl = iδijkl,

ΩMNV ijMV
Nkl = 0, (121)

where ΩMN is an E7(7) invariant which is antisymmetric and can be
written as a block matrix with 1 and −1 as off-diagonal blocks. Fur-
thermore ΩMNΩNP = −δMP .
The bosonic Lagrangian is given by

e−1LB =− 1
2 R−

1
4 i
(
NΛΣH+Λ

µν H+µνΣ − N̄ΛΣH−Λ
µν H−µνΣ

)
− 1

12 |P
ijkl
µ |2 − g2 V + e−1LV T , (122)

where H± denote the self and anti-selfdual parts of Hµν . The matrix
NΛΣ is determined by the relation (cf. [DWST07])

VΣijNΛΣ = −V ijΛ . (123)

LV T is a collection of topological terms needed for consistency of the
theory (cf.[DWST07]) and the potential V is given in (126).

Using V N
M , the T -tensor can be defined. It can be decomposed ac-

cording to the split

912 7→ 420 + 420 + 36 + 36. (124)

The 36 is denoted by Aij1 = A
(ij)
1 and the 420 by A jkl

2i = A [jkl]
2i with

A ikl
2i = 0. The barred representations are then related via complex

conjugation. We define

T jkl
i = −3

4 A
jkl

2i − 3
2 A

j[k
1 δ

l]
i

T klmnij = −
4
3 δ

[k
[i T

lmn]
j] . (125)
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The T -tensor components contribute to the potential

V =
1
24 |A

jkl
2i |

2 − 3
4 |A

ij
1 |

2 (126)

which can take negative values and thus supports AdS vacua.

7.2 finding the ads vacua

To find the supersymmetric AdS vacua we have to set the fermion
variations to zero. The graviphotino variation yields

0 = δχijk = −2g A ijk
2l εl (127)

from which we read off A2 = 0. The gravitino variation reads

0 = δψiµ = Dµε
i − g√

2
Aij1 γµεj . (128)

The constraint coming from δψ = 0 can be obtained by acting on (128)
with Dν and antisymmetrizing over µ and ν. Alternatively the closure
constraint on A1 and A2 can be examined to get the same result. With
A2 = 0 there is only one nontrivial closure constraint (cf. [DWST07])

−2 δml A1niA
ki
1 + 2δknA1liA

mi
1 = 0. (129)

Acting on (129) with δnk gives

A1liA
im
1 =

|A1|2

8 δml . (130)

Since A1 is symmetric it can be diagonalized. Combined with (130)
this leaves A1 to be proportional to diag(+1, ...,+1,−1, ...,−1) with
p positive and q negative eigenvalues. One can insert this result into
(125) to get

T jkl
i = −3

2 A
j[k
1 δ

l]
i

T klmnij = 0. (131)

Furthermore one can relate |A1| to
√
−Λ via the potential given in

(126). For A2 = 0 one gets

V =
3
4 |A1|2. (132)

For V = Λ this gives the relation |A1| = 2
√
−Λ/3.

7.3 moduli of the ads vacua

As done in the previous cases the constraints on T can be varied along
the scalar manifold. The scalar variations can be expressed by an ele-
ment of the adjoint of E7(7), which is the 133. Under su(8) it splits as
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133→ 63+ 70. The 63 is the adjoint of SU(8) which is divided out to
obtain the scalar coset E7(7)/SU(8). The remaining 70 parametrizes
the physical variations denoted by Σijkl = Σ[ijkl].
The resulting variations of the T−tensor are (cf. [DWST07])

δT jkl
i = 2 ΣjmnpT kl

imnp −
1
4 δ

j
iΣmnpqT kl

mnpq + ΣklmnT jimn,

δT mn
ijkl = −4

3Σp[ijkT
pmn
l] − 1

24εijklpqrsΣ
mntuT pqrstu, (133)

where εijklpqrs is the fully antisymmetric tensor, which is an invariant
of SU(8).
Along the moduli these variations have to vanish. Using the form of

T given in (131) the first constraint reads

0 = ΣklmnA1i[mδ
j
n]. (134)

Multiplication with Aip1 gives

0 =
|A|2

8 Σklmnδpmδ
j
n =

|A|2

8 Σklpj . (135)

Thus either Σklpj = 0 or |A| = 0. For an AdS background |A| ∝
√
−Λ

can not be zero and hence there can be no moduli. For Minkowski space
however Σijkl stays unconstrained. In either case the second condition
coming from (133) is trivially fulfilled.

7.4 allowed gauge groups

The generators XP
MN of the gauge group G0 are just T jkl

i dressed with
the scalar matrices. Hence it is enough to examine the form of T jkl

i .
With A2 = 0 one gets

T jkl
i = −3

2 A
j[k
1 δ

l]
i . (136)

These are the generators of the cso algebra. Diagonalizing A1 to read

Aij1 ∝ diag(1, ..., 1︸ ︷︷ ︸
p

,−1, ...−, 1︸ ︷︷ ︸
q

, 0, ..., 0︸ ︷︷ ︸
r

) (137)

then gives the gauge group CSO(p, q, r) with p+ q+ r = 8 (cf. [Roe05]).
We note from (130) that A1 is of full rank and therefore r = 0. This

leaves us with SO(p, 8− p) as possible gauge groups. As done before
we can also have a look at the Minkowski limit. Λ = 0 gives A1 = 0
and thus leaves no non-zero components of the T -tensor. No gauging
is compatible with the supersymmetric Minkowski vacuum.
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7.5 comparison to the dual scft

Similar to the case in five dimensions we found moduli parametrized
by a 36-dimensional Aij1 , which can be diagonalized with |A1| ∝

√
−Λ,

leaving a 35-dimensional solution space. It was found that there are no
moduli to the solution. This result is in accordance with the dual SCFT
in three dimensions which indeed has no conformal manifold [CDI16].

The allowed gauge groups are G0 = SO(8, 8− p) for 0 ≤ p ≤ 8. The
R-symmetry of the D = 3 SCFT rotates eight real supercharges and
is thus SO(8). It is therefore expected that another constraint on A1
has been overlooked, since only a positive or negative definite A1 gives
SO(8) as the gauge group.





8
CONCLUS ION

In the chapters 4 to 7 the maximally supergravities in dimension four to
seven were examined for their maximally supersymmetric AdS vacua. In
each case these vacua were found by setting the gravitino and graviphotino
variations under supersymmetry to zero. The resulting constraints were
varied along the scalar manifold to examine the existence of moduli. Fur-
thermore the gauge groups which are consistent with supersymmetric
AdS vacua were determined in every case.

For the maximal D = 7 supergravity two solutions for any given
value of Λ < 0 were found. It was found that there are no moduli. This
result is in accordance with the dual D = 6, N = (2, 0) SCFT having
no marginal deformations. The resulting gauge group G0 = SO(5)
corresponds to the R-symmetry USp(4) of the dual D = 6 theory.

For the maximal D = 6 supergravity it was found that there are no
supersymmetric AdS vacua and hence no gauge group. This result is in
accordance with the nonexistence of the dual theory in five dimensions.

For the maximal D = 5 supergravity a 35-dimensional solution space
was found for any given value of Λ < 0. These solutions have moduli
parametrized by a complex coordinate σ ∈ C. This is in accordance
with the fact that the conformal manifold of the dual SCFT has one
complex dimension. The metric of the moduli space was however not
determined and can thus not be compared to the SCFT result. The
gauge group was determined to be G0 = SU(4) which corresponds to
the SU(4) R-symmetry of the dual N = 4 super Yang Mills theory.
For the maximal D = 4 supergravity a 35-dimensional solution space

was found for any given value of Λ < 0. These solutions do not have
any moduli. The corresponding SCFT in three dimensions has no con-
formal manifold. The result is thus in agreement with AdS/CFT. The
gauge group was narrowed down to be G0 = SO(p, 8− p). From the
R-symmetry of the dual D = 3 SCFT the expected gauge group is
SO(8). Thus the result is only partly in accordance with AdS/CFT, as
only solutions with p = 0 and p = 8 give the predicted gauge group.

There are thus two loose ends to be tied. In D = 5 the precise form
of the moduli space was not determined and in D = 4 it is expected
from AdS/CFT that additional constraints on the gauge group exist.
All other results were found to be in agreement with predictions from
the AdS/CFT conjecture.
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A
SP INOR REPRESENTATIONS AND
SUPERSYMMETRY IN DIFFERENT DIMENS IONS

a.1 spinor representations of so(p,q)

Spinor representations are representations of so(p, q) which can not be
obtained by tensoring the fundamental representation [FS03]. Spinor
representations arise for SO(p, q) since these groups are not simply con-
nected. They are defined using the universal covering group, which is
denoted Spin(p, q) for SO(p, q). For four dimensional spacetime the cor-
responding symmetry group is the Lorentz group SO(1, 3) ' SO(3, 1).
The universal cover is SL(2, C) [Wal10]. A spinor of SO(1, 3) can thus
be represented by a vector with two complex components. The action
of Λ ∈ SO(1, 3) on these spinors is constructed by assigning an element
λ ∈ SL(2, C) to Λ.
In a more general setting the group SO(p, q) keeps a (pseudo-)metric

ηab invariant which has p positive and q negative eigenvalues i.e.

ηab = diag(+1, ...,+1︸ ︷︷ ︸
p

,−1, ...,−1︸ ︷︷ ︸
q

) (138)

where a, b, ... = 1, ..., d with d = p+ q. Using ηab one can define gamma
matrices by the anticommutation relation [Tan98]

{γa, γb} = 2 ηab. (139)

The smallest realization of such matrices are 2[d/2] × 2[d/2] matrices,
where the brackets [d/2] denote the integer part of d/2 i.e. d/2 for
even d and (d− 1)/2 for odd d. The gamma matrices act on Dirac
spinors ψ which are vectors with 2[d/2] complex components. Given a
generator Λµν of SO(p, q), its action on ψ is given by

δψ = −1
4Λµνγ[µγν]ψ. (140)

The Dirac spinors in general are reducible representations of SO(p, q).
There are different ways to reduce the representation by Dirac spinors
depending on the dimension and the signature (p, q). The Weyl condi-
tion can only be defined in even dimensions and uses the matrix

γ̄ = (−1)
1
4 (p−q)γ1γ2...γd (141)

which squares to 1 and anticommutes with all other gamma matrices.
It is a generalization of the matrix γ5 in four dimensions and can be
used to define Weyl spinors ψ± of positive and negative chirality by

γ̄ψ± = ±ψ±. (142)
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A Dirac spinor ψ can then be reduced to its Weyl components, using
the projector P± with

P±ψ ≡
1± γ̄

2 ψ = ψ±. (143)

The other reducibility condition is the Majorana condition. We start
with the observation that ±(γa)∗ satisfy the same anticommutation
relations as γa [Tan98].1 Then there are matrices B± which fulfill

±(γa)∗ = B±γ
aB−1
± . (144)

which are used to define charge conjugation. In even dimensions it is
defined as either

ψc = B−1
+ ψ∗ or ψc = B−1

− ψ∗ (145)

such that the relation (ψc)c = ψ holds. The Majorana condition is then

ψ = ψc. (146)

In odd dimensions charge conjugation as well as the Majorana con-
dition are defined similarly, but the condition (144) holds only for
a = 1, ..., d− 1. For the d-th gamma matrix a different condition is
used, which is

B±γ
dB−1
± = (−1)

1
2 (p−q+1)(γd)∗. (147)

The Majorana condition can not always be imposed, since the relation
(ψc)c = ψ can not be achieved in general.

We thus get up to two different reducibility conditions, depending
on the dimension and the signature (p, q), each of which reduces the
dimension of the minimal spinor representation by the factor of a half.
In some cases either the Majorana or the Weyl condition can be used to
get a irreducible representation. This is true for example for spacetime
spinors in four dimensions. There are also special cases in which both
conditions can be used together to get a Majorana-Weyl spinor. Table
2 gives an overview over which conditions can be used for spacetime
spinors i.e. p = 1 or q = 1.

In the cases where the Majorana condition can not be imposed, one
gets (ψc)c = −ψ. This allows to define a similar condition. Using an
even number of spinors ψi with i = 1, ..., 2n one can impose

ψi = Ωij(ψj)c, (148)

with Ωij = −Ωji. Spinors satisfying (148) are symplectic Majorana
spinors. 2n such spinors are equivalent to n Dirac spinors. This represen-
tation is useful, if there is a symplectic symmetry, as is indeed the case
for the D = 5, 6, 7 maximal supergravities in which the R-symmetry is
given by the unitary symplectic group USp(8), USp(4)×USp(4) and
USp(4) respectively.

1 (·)∗ denotes complex conjugation
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d Majorana Weyl Majorana-Weyl Minimimal Dimension
2 yes yes yes 1
3 yes - - 2
4 yes yes - 4
5 - - - 8
6 - yes - 8
7 - - - 16
8 yes yes - 16
9 yes - - 16
10 yes yes yes 16
11 yes - - 32

Table 2: Overview over spinor conditions that can or can not be imposed on
spinors of SO(d− 1, 1). Taken from [Pol98].

a.2 supersymmetry algebra in different dimensions

In different dimensions the real supercharges fit differently into the
Weyl-, Majorana- or Majorana-Weyl spinors as outlined in the previous
section. The supersymmetry algebra thus looks slightly different in any
case.

In d = 4, 8mod 8 the supercharges form Weyl spinors Qi+ with pos-
itive chirality with i, j, ... = 1, ...,N [Tan98]. The charge conjugate
supercharges have the opposite chirality (Qi+)

c = Q−i.2 The nonzero
anticommutators of the supercharges are then3

{Qi+,QT−j} = P+γ
µCPµδ

i
j , (149)

where Pµ are the generators of translations and C is a charge con-
jugation matrix which is derived from B± as C± = B−1

± γ0T . The
d = 4mod 8 case uses C = C− and the d = 8mod 8 case uses C = C+.
The R-symmetry is U(N ).

For d = 10mod 8 the supercharges form Majorana-Weyl spinors Qi+
and Qi′− with positive and negative chirality with i, j, ... = 1, ...,N+ and
i′, j′, ... = 1, ...,N−. The nonzero anticommutators of the supercharges
are then

{Qi+,QjT+ } = P+γ
µC−Pµδ

ij

{Qi′−,Qj
′T
− } = P−γ

µC−Pµδ
i′j′ . (150)

The R-symmetry is SO(N+)× SO(N−).

2 The notation with ± is equivalent to the notation with Q and Q̄ used in the second
chapter.

3 For this supersymmetry algebra as well as all other cases the possibility of additional
central charges is not considered. These would show up in the anticommutators
between Q’s of the same chirality.
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For d = 6mod 8 the supercharges form symplectic Majorana-Weyl
spinors Qi+ and Qi′− with positive and negative chirality with i, j, ... =
1, ...,N+ and i′, j′, ... = 1, ...,N−. The symplectic Majorana conditions
read Ωij

+(Q
j
+)

c = Qi+ and Ωi′j′

− (Qj
′

−)
c = Qi

′
−, where Ω± are antisym-

metric as discussed above. N+ as well as N− can only be even numbers.
The nonzero anticommutators of the supercharges are then

{Qi+,QjT+ } = P+γ
µC−PµΩij

+

{Qi′−,Qj
′T
− } = P−γ

µC−PµΩi′j′

− . (151)

The R-symmetry is USp(N+)×USp(N−).
For d = 9, 11mod 8 the supercharges form Majorana spinors Qi with

i, j, ... = 1, ...,N . The nonzero anticommutators of the supercharges
are then

{Qi,QjT } = γµCPµδ
ij , (152)

where C = C+ for d = 9mod 8 and C = C− for d = 11mod 8. The
R-symmetry is SO(N ).

For d = 5, 7mod 8 the supercharges form symplectic Majorana spinors
Qi with i, j, ... = 1, ...,N . The symplectic Majorana condition is Ωij(Qj)c

= Qi. N can only be an even number. The nonzero anticommutators
of the supercharges are then

{Qi,QjT } = γµCPµΩij , (153)

where C = C+ for d = 5mod 8 and C = C− for d = 7mod 8. The
R-symmetry is USp(N ).



B
CONSTRAINTS ON MODUL I IN D=5

b.1 variations and constraints

As described in section 6.3 the physical variations of the scalar coset
are described by Σijkl = Σ[ijkl] which is symplectic traceless. In the
su(4) basis this leads to the following components

1 : Σαβγδ = eαi e
β
j e
γ
ke
δ
l Σ

ijkl,

1 : Σᾱβ̄γ̄δ̄ = eᾱi e
β̄
j e
γ̄
ke
δ̄
l Σ

ijkl,

10 :Σαβγδ̄ = eαi e
β
j e
γ
ke
δ̄
l Σ

ijkl,

10 : Σᾱβ̄γ̄δ = eᾱi e
β̄
j e
γ̄
ke
δ
l Σ

ijkl,

20 : Σαβγ̄δ̄ = eαi e
β
j e
γ̄
ke
δ̄
l Σ

ijkl. (154)

These components inherit the antisymmetry of Σijkl. Σαβγ̄δ for example
can be obtained as Σαβγ̄δ = −Σαβδγ̄ .
To find the moduli one can start from the schematic constraint given

in (107)

δAα,βγδ
2 = 0 = ΩmαΣβγδnAmn + Ωm[βΣγδ]αnAmn (155)

where α stands schematically for α or ᾱ, β for β or β̄ and so on. For m
and n the different possibilities m = ρ, ρ̄ and n = σ, σ̄ are summed up.
Conveniently only one term in this summation is nonzero as the other
terms vanish by either Aαβ = 0 = Aᾱβ̄ or Ωαβ = 0 = Ωᾱβ̄.
In the resulting equations δAα,βγδ

2 = 0 with different choice of bars
on α,β, γ, δ, Σ inherits this choice of bars, i.e. δAα,βγδ

2 = 0 involves
only the 1, δAα,βγδ̄

2 = 0 involves only the 10 and so on.

b.2 solving the constraints

For the 1 the resulting constraint from (155) is

0 = Ωρ̄αΣβγδσAρ̄σ + Ωρ̄[βΣγδ]ασAρ̄σ

= −δασΣβγδσ − δ[βσ Σγδ]ασ

= −Σβγδα − Σ[γδ|α|β]

= −Σβγδα + Σ[γδβ]α

= 0 (156)

which is thus trivially fulfilled for any choice of Σαβγδ. Since the con-
straints are homogeneous with respect to the involved representations,
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there is no other constraint involving the 1. Still Σ can be brought to
a simpler form by using the fully antisymmetric invariant tensor εαβγδ
of su(4). Then

Σαβγδ = σεαβγδ. (157)

The same arguments hold for the 1, where Σᾱβ̄γ̄δ̄ = σ̄εᾱβ̄γ̄δ̄ is taken to
fulfill pseudoreality.
For the 10 we will start with δAᾱ,βγδ

2 = 0. This constraint is a bit
easier to manage than the others, since one does not need to resolve the
antisymmetrization brackets in the second term. The resulting equation
is

0 = ΩρᾱΣβγδσ̄Aρσ̄ + Ωρ̄[βΣγδ]ᾱσAρ̄σ

= δᾱσ̄Σβγδσ̄ − δ[βσ Σγδ]ᾱσ

= Σβγδᾱ + Σ[γδβ]ᾱ

= 2 Σβγδᾱ. (158)

Thus Σβγδᾱ vanishes, as do all components obtained by permutation of
indices. The same arguments hold for the 10 which thus also vanishes.

For the 20 examine δAᾱ,β̄γδ
2 = 0 to get

0 = ΩρᾱΣβ̄γδσ̄Aρσ̄

+
1
3
(

Ωρβ̄Σγδᾱδ̄Aρσ̄ + Ωρ̄γΣδβ̄ᾱσAρ̄σ + Ωρ̄δΣβ̄γᾱσAρ̄σ
)

= Σβ̄γδᾱ +
1
3
(

Σγδᾱβ̄ − Σδβ̄ᾱγ − Σβ̄γᾱδ
)

=− Σᾱβ̄γδ +
1
3
(

Σᾱβ̄γδ − Σᾱβ̄γδ − Σᾱβ̄γδ
)

=− 4
3 Σᾱβ̄γδ. (159)

The 20 thus vanishes.
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