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INTRODUCTION

In this thesis we will examine maximal supergravities of different di-
mensions for their anti de-Sitter vacua. Supergravities are quantum
field theories, which include gravity, i.e. a spin 2 field g,,, [Tan98|. They
build on supersymmetry - an extension of Poincaré symmetry, which
is the usual spacetime symmetry in Physicsﬂ Supersymmetry is so far
merely a conjecture and has not yet been observed. It is however of
great interest in theoretical and mathematical Physics, since the ex-
amination of supersymmetric theories sheds light on various areas of
mathematics and quantum field theory.

Gauge theories with high degrees of supersymmetry can be solved by
using new methods which build on intricate mathematics, which would
not be possible in non-supersymmetric quantum field theories (cf. for
example [Tes16]). Hence it is hoped to achieve a deeper understand-
ing of perturbation theory as well as of non-perturbative features of
quantum field theories in general.

Furthermore supergravities share the benefit of string theory, that
they give a way to tackle questions of quantum gravity in a meaningful
way. We will be concerned with maximally supersymmetric supergrav-
ities, which can be understood as massless limits of certain string the-
ories in various dimensions. Our main point of interest will be anti-de
Sitter backgrounds in these supergravities, which are maximally sym-
metric spaces with a negative cosmological constant A. These AdS
backgrounds are of interest due to the AdS/CFT conjecture. The Ad-
S/CFT conjecture was proposed by Maldacena in [Mal99] and was de-
veloped using string and M-theory. AdS/CFT is a duality between anti
de-Sitter backgrounds in a D dimensional supergravity and a super-
conformal field theory (SCFT) in D — 1 dimensions (for a review see
[Aha+00]). The duality allows to relate observables in the different
theories. Dualities like these are hoped to yield a deeper insight into
quantum field theory, as they may relate yet unsolved problems in one
theory to more tractable problems in the dual theory.

In our case of interest, we will find supersymmetric AdS backgrounds
and their moduli in the maximal supergravities in four to seven dimen-
sions. AdS backgrounds arise as vacuum states of gauged supergravities,
but not all possible AdS solutions of a given maximal supergravity are
compatible with all supercharges. The ones of interest in this thesis are
only the maximally supersymmetric AdS backgrounds.

More precisely the Poincaré group usually refers to the symmetries of Minkowski
spacetime.



INTRODUCTION

In the cases considered in this thesis all such AdS solutions will be
classified. Maximally symmetric spacetimes are classified by just one
parameter, the cosmological constant A. Different solutions with the
same A < 0 correspond to the same geometry. These solutions can
sometimes be deformed by giving vacuum expectation values to some
scalar fields. Giving such a vacuum expectation value to a scalar field
does not break the symmetry of the underlying spacetime. Variations
of the scalar fields which preserve the maximally supersymmetric AdS
solution and thus in particular leave A constant and fixed are called
moduli of the solution.

The AdS/CFT correspondence relates the moduli of a maximally su-
persymmetric AdS solution to the conformal manifold of the dual SCFT.
The conformal manifold is a manifold spanned by exactly marginal de-
formations of the theory, i.e. those which preserve conformal invariance
to all orders.

For the calculation an embedding tensor formalism is used. It de-
scribes all gauged supergravities of a given dimension in a covariant
way i.e. in a unified description, which is the same for any chosen gauge
group [DWST03][Sam08|[DWNS08]. Using this formalism reduces the
problems at hand to group theoretic calculations. Having a supersym-
metric AdS background constrains the embedding tensor and with it
the possible gauge groups. The resulting gauge group is also relevant
for the AdS/CFT correspondence, since it corresponds to symmetries
in the SCFT. In the maximally supersymmetric case the gauge group
corresponds to the R-symmetry of the SCFT, which is the symmetry
among the supercharges.

We will start the thesis with a preliminary part, which begins with
a general introduction to supersymmetry and supergravity in chapter
which leads to the description of gauged supergravities in chapter

The second part goes case-wise through the theories under consider-
ation. We start with the seven dimensional case in chapter [4 and then
lower the dimensions going through D = 6 in chapter 5, D = 5 in
chapter [6]and finally D = 4 in chapter[7] Each case consists of a theory
section, which provides the given theory, the calculations in which the
AdS vacua, their moduli and the allowed gauge groups are examined,
and a conclusion in which the obtained results are compared to results
in the dual SCFT.

The thesis ends with the conclusion in chapter [§|in which we will give
a short recapitulation of all obtained results and their correspondence
to results in the dual theories.
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2.1 RIGID SUPERSYMMETRY

Supersymmetry is an extension of the Poincaré algebra, which is the al-
gebra of spacetime symmetries generated by infinitesimal rotations and
boosts from the Lorentz algebra so(1, D — 1) together with infinitesi-
mal translations P, in arbitrary directionsﬂ Greek lowercase indices
w,V,...=0,...,D —1 are used to denote spacetime indices in D dimen-
sions, if not stated otherwise. There is a no-go theorem by Coleman
and Mandula concerning symmetries of the S-matrix, which states that
there are no allowed symmetries besides the Poincaré symmetry and
a finite number of operators belonging to a compact Lie group, which
are Lorentz scalars [CM67]. One of the assumptions of the theorem by
Coleman and Mandula is that all symmetries are realized as represen-
tations of a Lie algebra. There is a way to relax this assumption to
circumvent the theorem.

For this reason the notion of a Lie algebra is extended to a Lie su-
peralgebra. While ordinary Lie algebras are defined via commutation
relations, Lie superalgebras also include anticommutation relationsﬂ
The resulting structure admits a Zs-grading, i.e. elements can be di-
vided into even (or bosonic) elements of degree 0 and odd (or fermionic)
elements of degree 1. The Lie (super-)bracket is compatible with the
grading i.e. deg([z,y}) = deg(z) + deg(y) for z,y € g. In a Zy grading
the degree is taken modulo 2. Thus taking the bracket of two even ele-
ments gives an even one (0+ 0 = 0), as does taking the bracket of two
odd elements (1 + 1mod2 = Omod2). Any bracket [-,-} involving at
least one even element is taken to be the commutator, denoted [+, -]. For
two odd elements an anticommutator {-,-} is used. Note that the even
elements close into a Lie subalgebra - the even (or bosonic) subalgebra
- since any combination of even elements is again even. This is not the
case for the odd elements.

More precisely the Poincaré group can be written as a semidirect product

RYP~1 % 50(1,D —1).

More precisely a Lie algebra is defined via its Lie brackets, which are antisymmetric,
bilinear maps g ® g — g, which fulfill the Jacobi identity. To get to a Lie superalgebra,
one includes symmetric, bilinear maps g ® g — g, which fulfill an altered version of
the Jacobi identity.
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Connecting back to our initial motivation, there is an extension of
the Poincaré algebra called supersymmetry algebra. In four dimensions

it if]
{Q4,Qsn} = QUZBPM5§
{Q4,QF} = 0={Qaa,Qpp}
[PIMQS] =0= [PWQCYA]

[P.,P,] =0. (1)
The Qé are the odd elements, called supercharges. They come in a
spinor representation of so(1,3), labeled by «,... = 1,2, with conju-
gate spinors labeled by ¢,... = 1,2. A,B = 1, ..., N label the different

supercharges. The algebra is isomorphic under a complex rotation
of supercharges into each other, i.e. under U(N'). This symmetry is
called R-symmetry. It can be shown that supersymmetry leads to (su-
per-)multiplets of particles which differ in helicity by 1/ 2E| This symme-
try is thus a symmetry between bosonic and fermionic fields. Each such
multiplets contains 2V fields of A"+ 1 different helicities. For N = 2
for example there is the vector multiplet containing a vector field A,
two fermions A1, A2 and a scalar field ¢ (for a review of the N’ = 2 case
see for example [Tacl3]).

We can thus understand the notion of mazimal supersymmetry: For
a gauge theory without gravity, the highest helicity among fields should
be h = £1, corresponding to a vector field (or a p-form field in D > 4).
In D = 4 the maximal supersymmetry for a gauge theory is thus N' = 4
since 1 —4-(1/2) = —1. Adding another supercharge gives a field of
h=+3/2.

The number N counts the number of spinorial supercharges ). Any
spinor in D = 4 contains four real entries. Therefore the D = 4, N' =4
theory has 16 real supercharges. This is true for any gauge theory with
maximal supersymmetry. In different dimensions these 16 real super-
charges however fit into spinor representations of different dimensions.
Going to D = 3 for example, real 2-component spinors are used instead
of complex ones. The maximal supersymmetric gauge theory in D = 3
is thus labeled by N/ = 8. To avoid confusion with different values of
N for the same amount of supersymmetry it is customary to count
the number of real supercharges. In the gauge theory context without
gravity the maximal case is thus the one of 16 supercharges. For an
overview of these theories, see [Sei9§].

While this chapter focuses on the D = 4 case, most of its arguments can be made
for any other dimension. Appendix [A] gives an overview of the cases in different
dimensions.

Labeling states by helicity assumes massless fields. In the massive case the spin s is
used instead.
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2.2 LOCAL SUPERSYMMETRY

Since the supercharges close into Poincaré transformations, gauging su-
persymmetry also gauges the Poincaré transformations. Gauged Poinca-
ré symmetry however gives general coordinate transformations. Thus
a theory with gauged supersymmetry is as a theory of gravity, as it
includes a graviton field g,, as the gauge field of general coordinate
transformations (cf. [Tan98]). Furthermore a spin 3/2 field v, is intro-
duced as the gauge field of supersymmetry. v, is called the gravitino
and is the superpartner of the spin 2 graviton. It is customary to take
the vielbein field e}, instead of the g, as the representative of gravity.
They relate as

Juv = ezezb/nab (2)

with 74 being the flat Lorentzian metric in D dimensions with a, b, ... =
1,..D—1.

As done before let us take the D = 4, N/ = 1 case as an example.
The simplest theory to consider is pure supergravity, which field content

consists solely of the graviton multiplet

(eZ§ Yu)- (3)

The Lagrangian of this theory consists of the Einstein-Hilbert term and
additional terms containing the gravitino

L =-1/4det(e2)R+ ... (4)

We can thus see, that classical gravity is reproduced with additional
fermion terms, that would usually not appear. For more details on this
case we refer to [Tan98|, which also discusses various supergravities in
different dimensions and with different amounts of supercharges.

We will however only be concerned with maximal supergravities. Our
starting point for these is the unique supergravity in eleven dimensions.

2.3 THE D=11 SUPERGRAVITY

The D = 11 supergravity is a special case of interest, since eleven is
the maximal dimension in which a supergravity exists. For D > 11 the
spinor representations are at least 64—dimensionaE| and more than 32
real supercharges lead to higher spin fields with s > 2, which lead to
inconsistent theories (see for example the review [Roe05]). It is also a
unique theory without any possible deformations.

The field content of any maximal supergravity consists of a single
multiplet - the graviton multiplet. For D = 11 it is

<€Za C/wp§ 7!%) (5)

5 This is only true assuming Lorentzian spacetime signature.
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with the vielbein field e}}, a 3-form field C},, and a Majorana gravitino
1. Defining the field strength G' = dC' the bosonic Lagrangian is

E:H(R—%G-G—é*(GAGAC)). (6)

where the dot product is defined as contraction of all indices i.e. with
G = Gupodzt Ndx" Ndz? Ndz?, G- G = GupeG*P?. The Hodge
star operator x denotes Hodge dualization and turns a p-form w into a
D — p-form using the Levi-Civita tensor €q,,....ap-

The supergravity in D = 11 can be seen as being the fundamental
theory from which the other cases can be obtained by dimensional
reduction. In fact all maximal supergravities but one can be obtained
by this procedure. Hence we will discuss dimensional reduction next
and afterwards come back for the remaining case.

2.4 COMPACTIFICATIONS ON TP

The starting point for dimensional reduction is the Kaluza-Klein com-
pactification on a circle S'. Starting from the theory in D dimensions
we want to obtain a theory in D — 1 dimensions, by exchanging the
base manifold RP~11 s RP=21 x §1. We then call S! the internal
manifold and want to truncate the theory to a theory on RP~21,

Writing the spacetime coordinate in D dimensions as ™ = (2, y)
this amounts to taking an equivalence relation y ~ 2r Ry where R is
the radius of the circle S = S}. We can consider a massless scalar ¢
in D dimensions with Fourier decomposition in the y direction

Pzt y) = / dk €™ gy (z1). (7)

Taking the equivalence relation y ~ 2r Ry and cyclic boundary condi-
tions for the scalar ¢(z#,0) = ¢(z#,27R) turns the Fourier decompo-
sition into a discrete spectrum

p(at,y) = e/ Be, (at) (8)

with discrete modes ¢, (z#) which have the momenta k = n/R in the
y-direction. The Klein-Gordon equation splits modewise as

00" b — k* ¢, = 0. (9)

The momentum k in the compactified y-direction thus turns into a
mass m? = k* = (n/R)?. Hence all modes except the zero mode ¢y
are massive. One gets an infinite tower of massive scalar fields in the
lower dimensional theory in D — 1. The usual procedure from here is
to truncate the field content to the zero mode ¢g. By choosing R to be
very small, the masses n/ R go towards infinity. This procedure can be
repeated to get a D — d dimensional theory from compactification on
the d-dimensional torus 7¢ = (S1)%.



2.5 THE D=10 MAXIMAL SUPERGRAVITIES

The torus compactification can be seen as a special case of more
general compactifications since the torus is the only compact space in
d > 1 which is flat. More general cases will be presented in chapter

So far we have seen the reduction only for a scalar field. If we instead
take a graviton gjsn on a circle S, we get a decomposition into fields
of different spin

gMnN = {9uvs 9u,D—1,9D—1,0—1}- (10)

9w transforms as a spin-2-field, g, p—1 as a spin-1-field and gp_1,p—1 as
a scalarﬁ The diffeomorphism invariance of the theory with gravity in D
dimensions turns into a diffeomorphism invariance, a local U(1) gauge
symmetry and a global scale symmetry in the lower dimensional theory.
This was also the initial motivation by Kaluza and Klein: Gravity in
five dimensions compactified on a circle gives gravity and a U(1) gauge
theory (e.g. electromagnetism) in four dimensionsm

The decomposition can easily be generalized for the T¢ case
by iteration of the procedure. The resulting theory has a U (1)d gauge
symmetry and a global GL(n,R) symmetry, which can be decomposed
into an SL(n,R) and an R" scaling symmetry.

As a final note, the other fields are dimensionally reduced in a similar
way. For p-form fields the same procedure as in (|10 is used. For fermion
fields the spinor representation is decomposed and the spinors on the
internal manifold are set to a constant value.

2.5 THE D=10 MAXIMAL SUPERGRAVITIES

In ten dimensions there are two different maximal supergravities. The
Majorana-Weyl spinors used in D = 10 are 16-dimensional. Thus the 32
real supercharges form two spinors, which can be chosen to be of equal
or opposite chirality. Taking spinors of opposite chirality gives the non-
chiral theory with A/ = (1,1), which is called ITA supergravity since
it corresponds to the massless limit of the ITA string theory. Spinors
of equal chirality lead to a chiral theory, labeled N' = (2,0), which is
called IIB supergravity and corresponds to the massless limit of I/B
string theory.

The ITA case can be obtained from the maximal D = 11 supergravity
by compactification on a circle. This is not true for the IIB case. Never-
theless when going from ten to nine dimensions by S'-compactification,
both theories coincide in their zero modes. We thus get the same max-
imal supergravity in D = 9. Therefore for any supergravity in D < 9
there are two routes of compactifications that one can take. One route
starts at D = 11 supergravity and then goes with iterations of compact-
ifications on S! over the IIA supergravity to the supergravity in D < 9
The other route starts at the IIB supergravity in 10 dimensions and

6 This is the truncation to zero modes.
7 The additional scalar field gp_1 p—1 however seemed to be unphysical at that time.
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similarly uses S' compactifications to go to lower dimensions. For torus
compactifications both routes coincide, but for more general internal
manifolds different theories can be obtained.

2.6 GLOBAL SYMMETRIES

Maximal supergravities have certain global symmetry groups. In section
we have already seen, how the torus compactification gives rise to a
GL(n,R) symmetry in the lower dimensional theory. There is an even
larger symmetry under which the resulting theory is invariant. The
different fields obtained from the higher dimensional field content as
done in yield a larger symmetry group G, which is often called
hidden symmetry of the theory.

For the resulting theory in 11 — d dimensions this symmetry group is
G = Ej(q)- These groups are normal real forms of groups belonging to
the F-series. The E-series consists of the exceptional groups Fg, 7 and
FEg together with F5 ~ D5, F4 ~ A4 and further groups obtained from
cutting the corresponding Dynkin diagrams. The normal real forms

p| 9 | 8 7| 6 | 5 | 4
G | GL(2) | SL(2) x SL(3) | SL(5) | SO(5,5) | Ege) | Erery

Table 1: Overview over the different global symmetry groups of maximal su-
pergravities. Taken from [SamO08§].

E4(q) can be seen as maximal non-compact versions of the groups Ej.
A real form h of a complex Lie algebra g is a Lie algebra such that it
complexifies to g: he ~ g. There are in general several inequivalent real
forms for a given complex Lie algebra. Two special examples are the
compact real form and the normal real form, the latter of which can be
understood to be the least compact version of the algebra (cf. [FS03]).

2.7 SCALAR COSETS

The scalars in maximal supergravities form a sigma model with the
coset space G/ H as its target space, where G is the global symmetry
group, we just discussed, and H is its maximal compact subgroup. This
scalar coset is usually described by a matrix V € G which transforms
under rigid G and local H transformations as

Vi gVh(x) (11)

with g € G and h(z) € H. Gauge fixing the action of H in this descrip-
tion is equivalent to picking a representative of the coset G/ H.

The fermion fields also transform under local H transformations.
Thus V is also used in fermion interactions. One important applica-
tion for us, will be to map tensors of GG to tensors of H and vice versa,
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which is possible, since V carries a representation of both of them. We
will see this in more detail in section [3.3]

To obtain kinetic terms for these scalar matrices V different routes
can be taken. One route starts from the current [SamO§]

Ju,=V10,V € g = LieG, (12)
which can be split into
Ju=Qu+ P, (13)

with Q, € h = Lie H and P, € h' where h is the orthogonal comple-
ment such that g = h @ ht.
The scalar Lagrangian is then [SamO§]

1
e Localar = —iTr(PMP“). (14)

A different option is to define a positive definite symmetric scalar ma-
trix M by

M =yavt (15)

where A is an H-invariant positive definite matrix, e.g. A = 1. The
Lagrangian is then [Sam08]

e Localar = éﬂ(@uMaﬂM—l). (16)
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3.1 THE EMBEDDING TENSOR

When gauging a maximal supergravity, the choice of gauge group Gg
is restricted to be a subgroup of the global symmetry group G. The
reason for this is the unique field content, which can not be altered.
The vector fields form a representation of GG. For a gauging, a subset of
them is chosen to be in the adjoint representation of gg = Lie Gg. Thus
Gy is a subset of G and its dimensions is restricted by the number of
vector fields as dim Ry4(go) = dim Gy.

There is a general formalism to describe all possible gauge theories
in maximal supergravity using an embedding tensor © (cf. [Sam08] and
[DWNS08]). The embedding tensor can be understood as projecting g
onto go. This then defines a map from (the universal cover of) Gy into
(the universal cover of) G. While in a given gauge theory ® would be
set to a constant value, yielding a specific Gg, it is instead assigned
a proper transformation behavior under G to ensure that the theory
formulated via @ stays invariant under G. "Freezing" ® then breaks
the symmetry to give the desired gauge theory. The terminology for
this procedure is that © is a spurionic object.

The vector fields are denoted by Aﬁ/l , where M refers to a represen-
tation of g to which Aﬁ/[ belongs. Labeling this representation R4, (9),
© = ©,," is an object in Ry, (g) ® Rad(g) Taking the generators
ta = (ta) MN in the adjoint representation of g, one defines the genera-
tors of G as

X = 0, 0. (17)

These can be coupled to Aﬁ/l . The gauge covariant derivative for exam-
ple is

Dy =0, — gAY Xu, (18)

where the flat spacetime derivative 0, is used and g € R is a gauge
coupling parameter. g can be thought of as parametrizing the deforma-
tion of the theory into a gauge theory. The limit g + 0 restores the
ungauged theory. We can conversely interpret @ as a map sending Ai‘f
to a field Aj} = ©,,%¢, in the adjoint representation of go C g.

A generic feature arising in gauged supergravities is the existence of
a potential term in the Lagrangian, which can be brought to the form

V= 92 VMNaﬁ(aMa@Nﬂa (19)

The indices run to the dimension of the respective representation, i.e. M =
1, .‘.,dimRAH and a = 1,...,dim R4.

11
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where VMY 5 is a scalar dependent matrix (cf. [Sam08]). This potential
is usually not positive definite. It thus supports anti de-Sitter vacuum
states with a negative cosmological constant, which are the main point
of interest of this thesis.

So far we did not ensure, that the image of @ actually forms a Lie
algebra. For this a closure constraint is imposed on @, which can be
shown to follow from the invariance of the embedding tensor under Gy.
Starting from the variation of ® under G

(5P®Ma = @pﬂtﬂMNG)Na + @)Pﬂfﬁ,ya@)]w,y = O (20)
one can contract it with ¢, to get the closure constraint
(X, Xn] = =Xyn"Xp = =X yn" Xp = fun® (21)

This gives a relation between X, and the structure constants fy,; " .
Unlike f3, 57, Xy has a symmetric part X(MN)P = Zy Nt The gen-
erators are only antisymmetric in the projected subspace of ®. There-
fore one demands

As a further remark, the X,,, also only satisfy the Jacobi identity in
the subspace projected by ® and the violation is again proportional to
Z. Besides the quadratic closure constraint there is a linear constraint
on © coming from supersymmetry. It is called the representation con-
straint and can be examined in a case by case basis. [DWNSO08] gives
an overview of the possible representations and their restrictions from
the representation constraint.

3.2 TENSOR HIERARCHIES

The failure of X, NP to satisfy the Jacobi identity also reflects in prob-
lems with the field strength defined as usual

[Du, D)) = —g Fl X, (23)

which is not covariant. To define a covariant field strength, the transfor-
mation behavior of Al]y is altered, including a 1-form gauge parameter

= NP
=
M M MmNP
Efy P is used to gauge away the vector fields in the sector of X M NP

which do not satisfy the Jacobi identity. The resulting transforma-
tion behavior of .7:% is not yet covariant. One defines a modified field
strength

Hyy, = Fo +9Zyp" B (25)
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using 2-form fields BI%N = B;(L]l\,/[N) which are assigned a transforma-

tion behavior that leads to
THyy = —g A" Xpp M H . (26)

To obtain the desired transformation behavior of HM

e B%N is gauge

transformed as

SBMN = 2D, 2NN — g AMN) 12 AM5AY) 4. (27)

[ "]
where the dots refer to yet unspecified parts, i.e. those that vanish
under contraction with 7, NP and therefore do not contribute to the
transformation of H%.

So to get a covariant transformation of the field strength of Aﬁ/f we
had to introduce a 2-form field B%N which also is gauge transformed.
For these 2-form fields one can define a field strength F, %,])V . To ensure
the covariant transformation behavior of these, further 3-form fields
have to be introduced. Continuing this procedure gives a tensor hierar-
chy (cf. [DWNSO08|) of gauge fields, which can be worked out in a case
by case study for every spacetime dimension D.

One might wonder, if adding new fields is in conflict with supersym-
metry, since supersymmetry fixes the number of degrees of freedom.
The procedure outlined here in fact adds fields, but does not add de-
grees of freedom. The additional fields are just part of a redundant
description of the theory. For any given gauge theory with constant
®, the number of degrees of freedom is just the value needed for it to
be maximally supersymmetric. The embedding tensor distributes the
degrees of freedom on the different p-form fields needed for the gauging.
The remaining fields decouple from the theory.

3.3 THE T-TENSOR

An important object derived from the embedding tensor is the T-tensor,
which is a tensor of the maximal compact subgroup H C G. The T-
tensor occurs in couplings of fermions and also plays an important role
in our calculation. It is defined as the embedding tensor dressed with
the scalar matrix V i.e.

Tﬂé == @MQVMEVEQ (28)

where underlined indices are used to denote the indices of the subgroup
H and « again denotes the adjoint, while M denotes the representa-
tion of Ai\f . VM and VB, refer to the scalar matrix in the respective
representations i.e. to an appropriate product of V in the fundamental
representation (cf. [SamO08]). Since 7' is defined via the scalar matrices,
it is field dependent T' = T'(¢). Also note that T inherits the linear

2 B%N is actually just in a subset of the symmetric tensor product. For details see
[IDWNSO08| p.7 following.

13
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representation constraint from ®. In practice one starts with ® in the
representation(s) that are allowed by the linear constraint and then
decomposes these under h to get components of T'.

Supersymmetric AdS vacua impose constraints on 7. These can be
translated back to constraints on @ and therefore restrictions on the
choice of Gg C G. Furthermore as T is field dependent, solutions to its
constraints can be varied along the scalar fields ¢.

3.4 GAUGED SUPERGRAVITY AND COMPACTIFICATIONS

A different way to construct gauged supergravities is by dimensional
reduction. In section we outlined the procedure of torus compactifi-
cations. This procedure can be altered, for example by using a different
internal manifold than the torus. Another way to alter the procedure
is by including a twist, where the cyclic boundary conditions imposed
on the fields are modified to include a transformation of a symmetry
G of the theory (cf. [Roe05]). Furthermore in the higher dimensional
theory, a p-form field can be given a background flux (cf. [Sam08]), or
the internal manifold can be supplied with torsion (a geometric fluz, cf.
[Sam08]).

In any case, the resulting lower dimensional theory usually is a gauged
supergravity. It is expected that all these theories are included in the
embedding tensor formalism [SamO08|. One case of interest are coset
reductions, where T is replaced by a coset G/ K, with G being a sym-
metry group of the theory and K C G being any subgroup of G. The
resulting gauge symmetry is the isometry group of the metric taken on
G/ K. The most symmetric metric is called round metric and has G as
its isometry group.

As an example consider the d-sphere S¢. S¢ is a coset S¢ = SO(d +
1)/S0(d) and the standard metric on S? is indeed round, with isometry
given by SO(d + 1). One can deform this metric to obtain smaller
isometry groups, corresponding to squashed spheres.



ADS VACUA IN D=7 SUPERGRAVITY

4.1 GAUGED MAXIMAL D=7 SUPERGRAVITIES

The ungauged maximal D = 7 supergravity was constructed by Sezgin
and Salam in [SS82]. [SWO05| gives a description of its gaugings via
the embedding tensor and is thus used as the main reference for this
section.

The field content of the ungauged D = 7 theory is given by the
graviton multiplet

(eh, AMN Buynr, Vigs v, x). (29)

The bosonic fields are the vielbein e}, with flat spacetime indices r, s, ...
=0,...,6, vector fields AIZL/IN and 2-form fields B,y with M, N, ... =
1,...,5 and the scalar matrix Vj'\‘}’ with a,b,... =1,...,4. M, N, ... label
the fundamental representation of G = SL(5), which is the global sym-
metry group of the D = 7 theory. Its maximal compact subgroup is
H = SO(5) ¢ SL(5). By s0(5) ~ usp(4) we use indices a,b,... =
1,...,4 to denote the representations of H as symplectic Majorana
spinorsE The fermions come in such representations, namely the grav-
itino ¢, and the graviphotino xbe,

The generators of G in the adjoint representation are (t,),,~ with
a = 1,...,24. The vector fields transform in the 10 of SL(5), which
is the second exterior power of the fundamental representation i.e.
ANMN — ALMN}. The embedding tensor @MN’PQ thus is in the 10 ® 24.
Using the generators of G and the embedding tensor, the generators
X of the gauge group Gy C G are defined to be

Xun = Oy ptp7. (30)
The gauge covariant derivative is

Dy =0,—gANXyn =0, — g AN Oy pOtp©. (31)
The tensor product 10 ® 24 of ® can be decomposed into

10®24 =10+ 15+ 40 + 175. (32)

Supersymmetry constrains the possible representations of ® to the 15
and 40 [SWO05|. The respective components are denoted by Yy ny =
Yprny and ZMNP = ZIMNLE wigh ZIMN.PL = 0. Explicitly

Ounp® = 5&YN]P — 2ennprs 21009, (33)

1 The definition of symplectic Majorana spinors is given in Appendix

15
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As described in section [3.2] one can define covariant field strengths
H,?,/)MN for the 1-form field Aﬁ/[N and 7-[(3) for the 2-form field By, /.

uvpM
For ’H,(EV)MN a term proportional to By, is added to the usual field
(2)M

strength F N Similarly for H;(L?p A one needs to add a 3-form field
S%p. This 3-form field does not add degrees of freedom. In the un-
gauged theory, it can be dualized via Hodge duality to B, . In gauge
theories there can be obstructions to these dualizations, coming from
the necessity of the fields carrying certain representations (cf. [SWO05]).
Therefore S/%p is needed in the general description of gauge theories.
® then distributes the degrees of freedom among the different p-form
fields.

The scalar sector of the theory is described by a matrix V2. The
pair ab denotes the 5 of USp(4), which is a vector representation. Vec-
tor representations of USp(4) can be expressed using antisymmetric,
symplectic traceless spinor index pairs V$b thus satisfies V{2 = V][\Zb]
and Qg V¥ = 0, where )y, denotes the symplectic matrix preserved

by USp(4). Qg is also used to raise and lower indices, e.g. Vasap =
*
QachdVﬁ. The used representations are pseudoreal, i.e. (Vj‘{}) =

VMab E
For the kinetic terms in the bosonic Lagrangian the matrix My is

defined from V{2 as
Mun = ViV QaeQba. (34)

This matrix is unimodular and positive definite (cf. [DWSTO03]). The
bosonic Lagrangian is then

1

2 v
L MNg/(3) o (Buvp
o éM %uupMHN
1
+ g(aﬂMMN) (a#MMN> — g2 V 4+ G_I,CVT (35)

where V' is the potential, which is defined at a later point in and
Ly is a collection of topological terms. These topological terms couple
the different vector and tensor fields and in particular include a kinetic
term for the 3-form field S%,p. They are needed to ensure supersymme-
try invariance of the gauged theory [SWO05].

V¢ is also used to define the T-tensor, which is the U Sp(4) analogue
of the embedding tensor. It is given by

Teera) ™ = V2V V™V G0N p2VE (36)

2 With wvector representations we mean any actual tensor representation of SO(5)
as opposed to spinor representations which can only be defined by lifting to the
universal cover USp(4). (The vectors have an even number of spinor indices.)

3 Pseudoreality can only be demanded for the vector representations.



4.2 FINDING THE ADS VACUA

The T-tensor is used in couplings of fermions and is the main object
needed for the calculation in section It inherits the linear repre-
sentation constraint on @. The decomposition of @ into 15 and 40
branches under usp(4) as

15+ 40+ (1+14)+ (5 + 35) (37)
with the representations

1:BeR
14: B, = Bl QuB”,;=0=0Q"“B",
5: 0% =l 0,0 =0
35: C%y = Cl ), QuC¥y = 0. (38)

All these representations are pseudoreal. These T-tensor components
contribute to the potential

1
V=—o (15 B2 +2C™Cop, — 2 By B, = 2C™ yC ). (39)

This potential can take negative values. Thus there can be anti-de Sit-
ter backgrounds. For a supersymmetric AdS background, further con-
straints have to be fulfilled, which will be examined in the next section.

4.2 FINDING THE ADS VACUA

The supersymmetric AdS7 backgrounds can be found, by setting all
fields that break Lorentz invariance and all variations under supersym-
metry transformations to zero (or more precisely their expectation val-
ues). The fermion variations are the ones that impose constraints. These
are given by the gravitino Variatiorﬁ

0% = Dye® — gT AP Qpee” + ... (40)
and the graviphotino variation
% =g Ag’achdeee + ... (41)

with the fermion shift matrices Ay and Ay given by

1 /1 1
ab _ - ab = vab
Agb = 4\/5(430 +:C ) (42)
d,abc __ 1 abed abed
Adabe — ﬁ[c _B

L i(cabﬂcd n %Qabccd " gﬂc[acb]d)]'

4 Trivially vanishing terms are denoted by "...". The full variations can be found in

[SW05).

17



18

ADS VACUA IN D=7 SUPERGRAVITY

dx = 0 is easily solved asﬂ

0 =y (43)
1 bed bed | L (abeyed | L Aabed | A Aelabld
— abed _ pabe ~ (e ~ Qb ZQcla
2\@[0 +4(C + Q70 + ctld)]
1

= C[ab}(cd) - B[ab] [ed]
Qﬂ[

1 1 4
- [ab] y[cd] = Olabd] Hcd] = Nyclabld
+ 1 (C Qe + 5 Qeioted z Qe )] .

Collecting the tensors in the same representation gives

labl(ed) _ _%Q(c[acb}d) (44)

and
plablled) _ %C[ab]ﬂ[cd] n %Q[ab]c[cd] " éﬂ[c[acb]d]7 (45)

where the last term in was decomposed into symmetric and anti-
symmetric partsﬁ

01 = 0 can be reformulated by using that € is a Killing spinor on
anti-de Sitter spacetime. The resulting equation is (cf. [SW05])

2 A1 ape® = £V =V /15 Qupe (46)
leading to

_—1(130 +1c ) ==V=V/150 (47)

2\/5 4 ab 5 ab | — ab-

Since the right-hand side is proportional to ()., Cyp is restricted to be
of the form Cy, = C Q) for some C' € R E Furthermore Q%Cy;, =
0 = 4C. Therefore

c® =0 (48)

B= q:s,/%%. (49)

Inserting into and gives
Cy=0=B"y (50)

and

So the only nonzero component of the T-tensor is B as given in (49)).
We should check, if this T-tensor satisfies the closure constraint,
which is (cf. [SWO05])

YMQZQN’P + 2 GMRSTUZRS’NZTU’P =0, (51)

5 € is an arbitrary symplectic spinor and (g4 is nondegenerate.
6 Nested brackets are interpreted as 7labdd) — plallbe]ld) — %(Ta[bc]d + Td[bc]a),
7 From (C%)* = Cy it can be followed, that C is indeed real, since (Q%)* = Qg



4.3 MODULI OF THE ADS VACUA

with the ® components ZMN-P and Yysn as in . ZMN.P can be
obtained from the T-tensor via its USp(4) analogue Z

ZMN’P —_ \/ivé\b/lvégvel}abdz(ac)[eﬂ. (52)

In terms of the components of the T-tensor, Z*? reads

1 1 1
o Qa[c db | -+ Qb[c dla _ * Qe oed
16 c 4+ 16 C 3 Cy (53)

Zabcd —

We thus see that ZMN:F vanishes by and . Therefore is
trivially fulfilled and imposes no further constraints.

4.3 MODULI OF THE ADS VACUA

In the previous section we found AdS vacua parametrized by the T-
tensor component B. The T-tensor is field dependent, since it is de-
fined using the scalar matrix V{. Therefore the solutions can be varied
along the scalar manifold. We want to find moduli of the solutions, i.e.
variations of the scalars, along which solutions vary into new solutions,
while A is left constant and fixed.

A way to describe scalar variations is by right multiplication of V
with an element L_,°!(z) of the adjoint of s[(5). One can use that the
adjoint of s(5) splits under usp(4) as 24 + 10 + 14 and therefore
decompose

Lo = 2 A o)) 4+ 250, (54)

where A,¢ is in the 10 and £, is in the 14. Then V varies as
SV = Vst (z) — 2V M(z). (55)

The 10 denoted by A,° is the adjoint representation of USp(4). These
are the USp(4) ~ SO(5) transformations which are divided out to
get the scalar coset SL(5)/SO(5). The 14 denoted by X, then
parametrizes the 14 physical degrees of freedom of the coset space. As
we are interested in physical moduli, we thus need to consider

52]}]0\‘/? = V]c\(}zabcd(x)' (56)

Under this variation there are corresponding variations of B, B“bcd, cab
and Cabcd, since these are defined via V and therefore depend on the
scalars. These variations are (cf. [SWO05])

2
523 — g ZabchCdab
5ZBabcd =-2B Zade - ZIabef‘Befcd - z“efcd‘Babef

2 ab 1 ab e h
+ g(écd - ZQ ch)z fgth (if (57)
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and

L
2

050y = 40T | Oy + Oclag])

5ZCab _ ZabchCd + QQe[aZb]fchCdef

ngd)ecgf

+ Qs Cyf

ab e a b] e
+ 2O g+ T80T

+4%9, 0y Qe

— 610 ORI o9y (58)
where 338 = 6.5 = o700

Along the moduli, solutions are varied into new solutions therefore
we need to solve 52Babcd = 6y O = 520“de = 0. Furthermore V needs

to stay constant. Thus we also impose dz B = 0. Inserting the solutions
C® = = PBP® =0 leads to

0B =0,
bsB, = — 2B,
50" =0,
5 C% = 0. (59)
The only nontrivial constraint is 0 = —2B Zabcd. For an AdS back-

ground B o« v/—A # 0. Therefore Z“bcd = 0, i.e. there are no phys-
ical moduli to the solution. Note, that in a Minkowski background
B x v/—A = 0. This makes all constraints trivial and therefore all
directions of the scalar manifold are moduli of the Minkowski solution.

4.4 ALLOWED GAUGE GROUPS

An AdS background imposes constraints on the T-tensor. These can be
translated into constraints on the embedding tensor ® and thus into
constraints on the possible gauge groups. In it was shown that
the ® component ZMN:F vanishes in an AdS solution. The remaining
component in the decomposition is thus Yun.

In analogy to the way we defined Z(@)ledl from ZMN.P ip , one
defines Yy cq such that

Yun = VEVEY b ca- (60)

With only the 1 component of T" being nonzero Yy, .q is of the formlﬂ

1 1
Yabcd = 7 (Qachd - ZQabQCd)B- (61)

8 The general formula can be found in [SWO05].



4.5 COMPARISON TO THE DUAL SCFT

Inserting into gives

1
90V (Ve g — =) B. (62)

1
Y = —
MN \/i 4

Since V¢ belongs to the 5 of USP(4), QuV5s = 0 and (62) reduces to

1
Yun = ﬁvﬁvﬁnacnbdg (63)

One can insert the definition of My (34) to get
B

Yy = —

MN 2

[SWO05] discusses the case of ZMN.P' = (0 = z(@)ledl and specifies the
resulting gauge group. First they diagonalize Yy n:

Muyn. (64)

Yy = diag(1,...,1, -1,...—, 1,0, ...,0), (65)
—— —— N —

p q r

with p 4+ ¢+ r = 5. The resulting gauge group is then
G = CSO(p,4,7) = SO(p, @) x RIFD. (66)

Since Yy x £vV—AMuyn and My is positive definite, Yisn is
either positive or negative definite. The only possible gauge group is
thus SO(5) = CSO(5,0,0) ~ CSO(0,5,0). Again we can make a
consistency check with the Minkowski case Yy;ny = 0, in which
gives no gauge group.

There is thus a single possible gauge group consistent with a maxi-
mally supersymmetric anti-de Sitter background. This gauge group is

Go = SO(5).
4.5 COMPARISON TO THE DUAL SCFT

In section [f.2] we found a one parameter family of AdS vacua parame-
trized by the T-tensor component B o« v/—A. Note that there are two
solutions +B for any given value of A < OH There are however no
moduli of the solution. The only allowed gauge group is Gp = SO(5).

On the SCFT side, AdS backgrounds in the D = 7 maximal case
correspond to the N = (2,0) SCFT in six dimensions. The moduli of
the AdS backgrounds correspond to the conformal manifold, spanned
by marginal operators in the SCFT. [LL15] examines the existence of
marginal operators for the N’ = (1,0) case and concludes that there
are no marginal operators. Hence if there are no marginal operators for
N = (1,0) there can not be any for N’ = (2,0) either. The result we

From pseudoreality of the USP(4) representations, B* = B € R and therefore
A < 0. For A = 0 there is just one solution B = 0.
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obtained is thus in accordance with AdS/CFT as the nonexistence of
moduli corresponds to the nonexistence of marginal operators and vice
versa.

Furthermore the gauge group on the AdS side corresponds to the
R-symmetry of the SCFT. This is true for our result of Gy = SO(5) ~
USp(4) |[CDI16).



ADS VACUA IN D=6 SUPERGRAVITY

5.1 GAUGED MAXIMAL D=6 SUPERGRAVITIES

The ungauged maximal D = 6 supergravity was constructed by Tanii in
[Tan84]. [BSS08] gives a description of its gaugings via the embedding
tensor and is thus used as the main reference for this section.

The field content of the ungauged D = 6 theory is given by the
graviton multiplet

(6’2,Aﬁ,BuuM,Vﬁd;¢ﬁ+,1/Jﬁ_aX3+aXg_)- (67)

The bosonic fields are the vielbein e}, with flat spacetime indices r, s, ...
=0,...,5, vector fields Aﬁ with A, B, ... = 1,...,16, 2-form fields B, s
with M, N,... = 1,...,10 and the scalar matrix V§§* with o, 3, ...; &, B, ...
=1,...,4. M, N,... label the fundamental representation of G =
SO(5,5), which is the global symmetry group of the D = 6 theory.

A generic feature in even dimensions is that the global symmetry
group is not manifest in the Lagrangian and in fact not realized off shell.
In even dimensions field strengths can be selfdual under Hodge duality.
This leads to the division of (D /2 — 1)-forms into electric and magnetic
degrees of freedom. Both kinds of degrees of freedom are needed for
invariance under G and since the equations of motion involve both,
these are indeed invariant under G. The Lagrangian however contains
just the electric degrees of freedom and is thus only invariant under a
subgroup GL(5) € SO(5,5). The 2-forms therefore split into GL(5)
tensors By,m and By, with m,n,... = 1,...,5 which are the electric
and magnetic 2-forms respectively. The used notation for B,,, s is then
By = (me,BL”V).

The maximal compact subgroup of G is H = SO(5) x SO(5). As
in seven dimensions indices a, 3,... = 1,...,4 and &3,... = 1,..,4 are
used to denote the representations of H as USp(4) representations. The
dotted indices correspond to the right copy of SO(5) in the product,
while the undotted ones correspond to the left copy.

The fermions in D = 6 come in chiral representations. In the max-
imal case there are two pairs of supersymmetry generators, with op-
posite chirality. Hence it is usually labeled N' = (2,2) supergravity.
The gravitini and graviphotini also come in chiral representations as
Y+ and x4. For the graviphotini x§&.,, Xba_ the vector representation
of SO(5) is also used and denoted by a,b,...;a,b,... = 1,...,5. Again
dotted and undotted indices correspond to the right- and left copy of
SO(5) x SO(5). Vectors of SO(5) x SO(5) are then denoted by under-
lined indices A = (a,a).

23
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The vector field Al‘;l is in the 16, which is the (Majorana-Weyl) spinor
representation of G = SO(5,5). Thus, since the adjoint of SO(5,5) is
the 45, @AJDQ is in the 16 ® 45. Using the generators tPQ of G and
the embedding tensor, the generators X 4 of the gauge group Gy C G
are defined to be

Xa=0,p%p" (68)
The gauge covariant derivative is
Dy=0,—gAlXa=0,—gAl0, p%p°, (69)

where ¢ is again the gauge coupling parameter. The tensor product
16 ® 45 of ® can be decomposed into (cf. [DWNS08§|)

16 © 45 = 16 + 144 + 560. (70)

Supersymmetry constrains the possible representations of ® to the
144, |[BSS08]. With 6 € 144, © is given by

@Y = —BMA T (71)

where 75 is the gamma matrix of SO(5,5).

To describe the scalar coset of the theory, two different matrices VJ%
and Vj“j‘ are used. VAA/I is a 10 x 10 matrix, which can be written as a
block matrix

yd [ Vm V) (72)
Vma Vma
it fulfills the relations
VMaV]bw —_ 5ab’ VMaV]\B/[ —_ 5&[)7
vMeyg =, Vi Ne — v Nt =gy (73)

The other object needed is the 16 x 16 V§ with inverses V{V.E = 6%
and V§¢ V[;}B =03 g It can be understood as being the spinorial version

of V]'\% as it is in the spinor representation of both G and H and is related
to V]‘\% by

1 .
Ve = 16 VA" 487" Viks

16
. 1 . o
V]‘Q = 1—6 VAaa’yMAB’yaaﬂV(fB. (74)

From de one defines the matrix

Map = V§*VBaa- (75)



5.2 FINDING THE ADS VACUA

Using covariant field strengths ’HELQV)A for Aﬁ and Hl(fl’,)pm for Byum the

bosonic Lagrangian is then given by
_ 1 1
¢ 'Ly =7 R~ MapH@) WP

1 3 3)uv 1 1 DM
- E Kmn/HELu)pmem Jup E P/iapad

— 92 V4 6_1£VT (76)

where K™" is a matrix built from the scalar fields to ensure duality
invariance of the Lagrangian, i.e. invariance under exchange of electric
into magnetic degrees of freedom (cf. [BSS08]). The potential V is given
in and Ly is a collection of topological terms, needed to ensure
supersymmetry invariance of the gauged theory.

The scalar matrices V and V are also used to map the embedding
tensor to the T-tensor

T2 = V40V 404,

Toy = V0" Vaaa. (77)
T4 denotes the full T-tensor. Furthermore one can define

Tab _ V[GTH, Tab _ _T[a,yb] (78)
and

T =T = —T%" (79)

where spinor indices are suppressed in both deﬁnitionsE The T-tensor
contributes to the potential

1 4
V= —To T + S Taa T (80)

As in seven dimensions this potential can take negative values and thus
support AdS vacua. In the upcoming section the existence of supersym-
metric AdS vacua will be examined.

5.2 FINDING THE ADS VACUA

For supersymmetric AdS vacua the supersymmetry variations of the
fermions need to vanish. We get the constraints

1
0=0vYu+ = Dyesr = Zg'yMTe:F + ... (81)
for the gravitini with different chirality 4, where trivially vanishing
terms have been omitted and spinor indices are suppressed. Further-

more for the graviphotini we get the constraints
0=06x%, =2gT0% " — % W e 4

0=0x% =29T%* + gTaﬂyaa'Bed + ... (82)

1 T% =T% and T = Thg.
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The first equation of can be reformulated by omitting the arbitrary
spinor €* to get

1
TS, = -1 Tapv®. (83)

One can multiply by v, to get

1
Tézp = _Z d,@ﬁyaaﬁvapa' (84)
One can show yaaﬁyapo‘ =5 6? by using the defining anticommutation
relation of gamma matrices. We get

Tap = —= Tap- (85)

4
This is only fulfilled for T,, = 0. We can insert this result back into
to find that T, = 0. The same argument can be made for T¢.
Hence the T-tensor vanishes and with it the embedding tensorﬂ The
potential vanishes for ' = 0 and thus vanishes for supersymmetric
backgrounds. There are no supersymmetric AdS vacua for the D = 6
maximal supergravity.

5.3 COMPARISON TO THE DUAL SCFT

In section [5.2] it was shown that no maximally supersymmetric AdS
vacua exist for the D = 6 theory. This is in accordance with the fact
that there is no N/ = 2 SCFT in five dimensions [Min98]. The dual
SCFT thus does not exist.

2 Note that the assignment of T" to 6 in is invertible, since the scalar matrices are

invertible.



ADS VACUA IN D=5 SUPERGRAVITY

6.1 GAUGED MAXIMAL D=5 SUPERGRAVITIES

The ungauged maximal D = 5 supergravity was constructed by Crem-
mer, Scherk and Schwarz in [CSS79]. [DWSTO05] gives a description of
its gaugings via the embedding tensor and is thus used as the main
reference for this section.

The field content of the ungauged D = 5 theory is given by the
graviton multiplet

(e/’;, Afy, Vab. it x2). (86)

The bosonic fields are the vielbein ey, with flat spacetime indices r, s, ...
=0, ...,4, vector fields Afy with M, N,... =1,...,27 and the scalar ma-
trix VJ‘\I}I’ with a,b,... = 1,...,8. M, N, ... label the fundamental represen-
tation of G = Ejg), which is the global symmetry group of the D =5
theory. Its maximal compact subgroup is H = USp(8). USp(8) is rep-
resented by symplectic Majorana spinors with indices a,b,... =1, ..., 8.
The fermions come in these representations, namely the gravitino ¥y
and the graviphotino xy®°. The symplectic matrix preserved by USp(8)
is denoted as Q. As in seven and six dimensions, the vector repre-
sentations are pseudoreal, i.e. given a Vabcd, the conjugate is given by
(Vab )* =V, = Q4 0,QF0V, - A single vector index can be
mapped to a pair of antisymmetric, symplectic traceless indices [ab].
The generators of G in the adjoint representation are (t,),,~ with
a =1,..,78. The vector fields A{Y are in the 27 of Egg). Hence, since
the adjoint representation is the 78, the embedding tensor ®,,% is in
the 27 ® 78. Using the generators of G and the embedding tensor, the
generators X s of the gauge group Gy C G are defined to be

The gauge covariant derivative is
Dy =0,—gA) Xy =0, — g A Oy ta, (88)

where g is the gauge coupling parameter. The tensor product 27 ® 78
of ® can be decomposed into

27 © 78 = 27+ 351 4 1728. (89)

Supersymmetry constrains the possible representations of @ to the 351
[DWSTO05]. This implies the conditions

2
(ta) s ON* =0, (t5t%) N O\ = _§®Maa (90)
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where «, §, ... are raised and lowered by the Eg) Killing form 7,5 =
tr(tatp).

As in seven dimensions, higher p-form fields need to be added for
consistent gauge theories. Therefore the 2-form fields B,y are intro-
duced. In the ungauged theory they can be obtained as the Hodge dual
of the 1-forms Aﬁ/l . These 2-form fields do not add degrees of freedom.
The embedding tensor encodes which fields become actual degrees of
freedom and which decouple (cf. [DWST05]).

The scalar coset space is represented by the matrix Vj‘\’/’[’ = V][\?[b]
with V8 = 0. Its inverse is given by V(%I Vi = §8. Furthermore
Vé\g Vﬁj}l = (52‘5 — %QCanb. As in previous cases we define

My = ViV, (91)
which is used in the bosonic Lagrangian
e 'L =— %R - % Moy Ho HN
- % |PI'?—g*V —e ' Lyr. (92)
H% is the covariant field strength of A{% and Ly is a collection of
topological terms, needed for consistency of the gauged theory.

V{8 is used to define the T-tensor from ®. The 351 of Ej(6) branches
under usp(8) as

351 — 315 + 36. (93)
The 36 is denoted by AY = Agij) and the 315 by Aé’jkl = Ag’[‘jkl]
with A[QZ Rl 0. The T-tensor is then expressed by the components

Tkl"ml-j in the 315 and Tijkl which belongs to both the 315 and the
36. Explicitly

klmn  _ q,[klm ¢n] p.alkl ymn
TH™ = 4 4GNSO, + 3 AR O 10,105,
T == Qim (Qm[kAu}j + QpAym + 2 leAmj)
— O Ao k- (94)
The T-tensor components contribute to the potential
g 1 ..
V = =3[V + 54PN, (95)

As in previous cases this potential can take negative values, leading to
AdS Vacua. In the upcoming section the existence of supersymmetric
vacua will be examined.

6.2 FINDING THE ADS VACUA

For supersymmetric AdS vacua we have to solve the constraints

5% =0 = g A5TFQue™ + .. (96)
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and

&/JL =0= Duei —1g V#Aijﬂjkek + ... (97)

where in both cases terms which vanish trivially have been omitted.

From the first constraint we read off AZQ’M b= 0
The second condition can be reformulated [DWSTO05] to yield
1

m j 1 i
A" Ay = S (1A — 5 |42l) (98)

y ik
where |A|? = Aq;;AY and |Ag]? = A5Y Ay ijk- Hence

. A2
A Ay = Al (99)

Note that this equation coincides with the closure constraint for Ao = 0
(cf. [DWSTO5] eq. (4.30)). Furthermore note that |A| o< v/—A by the
potential . For A = 0 it reads

V = —3¢% A% (100)
For our further calculations it is convenient to express A = A; inzan
su(4) basis In 1@' one can use A{"Ayj, = —A}, AT = —|A§| &

and thus see that the constraint can be brought to the form A% x —1.

Hence A acts as a complex structure and can be diagonalized, with four
eigenvalues +iA and four eigenvalues —i\ (with constant A € R). One

can take an orthonormal basis of eigenvectors €, e’ such that

A}ejo'é =i\el,
Alel, = —iXel. (101)
Then
G = el Alel, = idefely = i) g, (102)

This implies the normalization A = |A[/ V/8. In a similar fashion we can
define Q)5 = el Q);ie’s. Using the symmetry properties of A one finds

i 8
that it is consistent to have
i Al i|Al
AaB :% 5a8 A&,B :% 5@57
Qup =03 Qap = —dap- (103)

All other components i.e. the a3 and &3 components are zero.

Recall: €™ is an arbitrary symplectic spinor and );,,, is nondegenerate.

The upcoming change of basis is based on the help of Severin Liist, who not only
had the initial idea to change to an SU(4) basis, but also developed most of the
details used to determine the moduli in D = 5.
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6.3 MODULI OF THE ADS VACUA

As seen in the previous chapter, supersymmetric AdS backgrounds im-
pose constraints on the T-tensor components Ay and As. To find moduli
we will have to consider the variations of the A’s under variations of the
scalar fields. In a similar manner to the D = 7 case, variations of V can
be parametrized by an element of the adjoint of Egg). Under usp(8) it
splits as 78 + 42 + 36. The 36 corresponds to the adjoint of USp(8).
These are the directions that are divided out to get the G/H coset.
The physical variations are given by the 42, denoted by L7+ = ylikl],
which is symplectic traceless Zijklﬂij = 0.

The corresponding variations of the T-tensor components are given
by [DWSTO05]

4 .
SAY = 5 QP(ZZJ)kZmAgpMm,

(SAg’jkl — ; Qmizjkln + Qm[jzkl]zn)Almn
_ (Qi[jgklmlzl]nm _ 3 qriqymliykilpg
1

- QimQkydnpe 4 é QmliQk ZZ’"P4> Aornpg- (104)

These have to vanish along the moduli. It is helpful to use the su(4)
basis as defined above. Under su(4) Z¥* decomposes a

42+ 1+1+10+ 10+ 20. (105)
2. is completely antisymmetric, hence the 1 can be expressed as
I (106)

where o € C s.t. 297 = 5 €357 a5 can be inferred from pseudoreality
of L9k, Given Ay = 0 the first constraint from (104) is trivial. The
other reads schematically

JAGT = 0 = Qregfin g, + Qriizleng, (107)

where the bars have to be picked consistently for «, 3,v,d. m is used
in to represent either an unbarred index p or a barred one p. The
summation extends over both p and p. The same is true for n which
represents either ¢ or ¢. In this summation either the m = p,n = &
or the m = p, n = o term remains as A,, = 0 = Az. Furthermore
O™ in the first term is zero for the terms with a and m = p or &
and m = p. Similarly only one of the possibilities in the second term is
nonzero for a given choice of bars on «, 3,7, 6.

Another helpful observation is that for each choice of bars on «, 3,7, 9,
2. inherits this index structure. For example checking 5Ag’ﬂ 70 = 0 will

3 This decomposition is demonstrated in appendix
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involve only the 1 of 2. Conversely this is the only constraining equa-
tion for the 1. Checking the constraints componentwise one can use the
antisymmetry of ¥ to find that the 1 and 1 are unconstrained, while
all other components of % have to vanish. The full calculation can be
found in appendix [B]

Therefore the 1 and 1 are the moduli of the solution. As one consis-
tency check one can consider Minkowski backgrounds. By A=0
implies A1 = 0. In that case is trivial, i.e. all directions of the
scalar coset are moduli.

6.4 ALLOWED GAUGE GROUPS

A in the su(4) basis can be inserted into to get the components of
the T-tensor in this basis. One finds that most of the components are
zero. The remaining casesﬁ are captured by

a Al oo 1 o

With Tys = (T5s) 5% = 155 the commutator reads

Y
[T,;,(;, T[Ll/] = TU,B’_Y‘STO[O'/]V _ (6 o V) . (109)

Inserting (108) into (109)) yields

[Tss, Trw] = — 147 8‘ (5;16575511 — 1 950580 — 7 0, 05608
1, ey

The second and third term together are symmetric under (}") and

thus vanish in the commutator. The same holds true for the last term.

We thus find

AP, SR
(Tss, Tpw] = _‘8‘5’_‘ 0,058 — (5 o V)- (111)

This can be reformulated to give the defining relation of su(N)

[T’_y(57 T[w] = 5;15T'7V - 5’71/Tﬂ§' (112)
Using that %555@5@ is symmetric under (75") one obtains
A2 1 SR
[T55, Ta] = Téﬂg(—dgaﬁg +3% ) = o). (113)

Three additional nonzero components can be produced by symmetry arguments. T’
is antisymmetric in its last two indices (T Gy = -T¢ 3 5,7). Furthermore flipping all
indices from barred to unbarred and vice versa leaves T invariant.
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The bracketed term is just the definition of T¢ B3 Thus

o iAo SR
[T’ycSaTuz/] - \/g 5u6T'yy <5 oy (114)

which is the relation (|112)) up to a constant ig" which can be absorbed

into the definition ot the Lie bracket. Having 16 4 x 4 matrices that
fulfill (112]) as generators, we conclude that the allowed gauge group is
SU(4).

6.5 COMPARISON TO THE DUAL SCFT

In section AdS vacua were found which are parametrized by |A|
vV/—A. To obtain the parametrization by |A|, the 36-dimensional T-
tensor component Aij was diagonalized. It thus comes from an infinite
number of solutions, spanning a 35-dimensional solution space for any
A< OE| The moduli of the solutions where found to be parametrized
by a complex coordinate ¢ € C. This result is in accordance with
AdS/CFT in so far as the dual N' = 4 SYM in four dimensions has
a conformal manifold of complex dimension one [BNP15|. We were
however not able to determine the metric of the resulting moduli space.

The gauge group was found to be Gy = SU(4). This indeed corre-
sponds to the R-symmetry of the dual theory |[CDI16].

5 There are no solutions for A > 0 as v/—A o |A| € R. For A = 0 there is just one
solution A = 0.
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7.1 GAUGED MAXIMAL D=4 SUPERGRAVITIES

The ungauged maximal D = 4 supergravity was constructed by |[CJ7§]
and in more detail by de Wit and Nicolai in [DWN82]. [DWSTO07] gives
a description of its gaugings via the embedding tensor and is thus used
as the main reference for this section.

The field content of the ungauged D = 4 theory is given by the
graviton multiplet

(eh, AN VR s, x ). (115)

The bosonic fields are the vielbein €j,, with flat spacetime indices r, s, ...
=0,...,3, vector fields Aﬁ/f with M, N,... =1,...,56 and the scalar ma-
trix V]‘\l} with a,b,... = 1,...,8. M, N, ... label the fundamental represen-
tation of G = E(7), which is the global symmetry group of the D = 4
theory. Its maximal compact subgroup is H = SU(8). The fundamen-
tal representation of H is denoted by indices a,b, ... = 1, ...,8. Complex
conjugation for these indices is affected by raising respectively lowering
all indices. The fermions come in SU(8) representations, namely the
gravitino ¢j; and the graviphotino e,

The generators of G in the adjoint representation are (t,),,~ with
a = 1,...,133. The vector fields Afy are in the 56 of G. Hence, since
the adjoint representation is the 133, the embedding tensor ©,,% is in
the 56 ® 133. Using the generators of G and the embedding tensor, the
generators X of the gauge group Gy C G are defined to be

Xun = Oy . (116)
The gauge covariant derivative is
Dy =0,—gA) Xy =0, — g A Oy ta, (117)

where g is the gauge coupling parameter. The tensor product 56 ® 133
of ® can be decomposed into

56 ® 133 = 56 + 912 + 6480. (118)

Supersymmetry constrains the possible representations of @ to the 912
IDWSTO07|. This implies the constraints

[0 (0% 1 (07
(ta)ar ON* =0, (t5t*) )N Oy = —§®M (119)

where «, 3, ... are raised and lowered by the E7(7) Killing form 74 =
tr(tats).
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Similar to what we have seen in six dimensions, the 1-forms Aﬁ/f are
split into electric and magnetic degrees of freedom. The electric 1-forms
are denoted by Al‘} and the magnetic ones by A,A. A2, ... =1,...,28
denote the representations which are obtained when splitting the 56
of G under SL(8). The splitting is 56 — 28 + 28’. The 28 of SL(8)
is the second exterior power of the fundamental representation. The
Lagrangian contains only the electric degrees of freedom and thus is
invariant under the off-shell subgroup SL(8) C G. The full G symmetry
is only realized on shell.

The scalar coset space is represented by a 56 x 56 matrix VMM which
splits under su(8) and s[(8) into blocks

]
A= (A Ya) (120)
V=L VY
The blocks V are antisymmetric in ¢ and j and fulfill the relations
V%VNU - VMijV% =1iQmn,

M N~ ,ij _ sl
(@) VMVNkl = Z(Skl,

QMNYIYNE — (121)
where QMY is an E7(7y invariant which is antisymmetric and can be
written as a block matrix with 1 and —1 as off-diagonal blocks. Fur-
thermore QMNQnp = —5?3/[.

The bosonic Lagrangian is given by
-1 1 1. +Aq+pvy 7 —ANq—uvx
e 'Lp=— R~ ZZ(A/AZHW HAHE - Nps MM )
1 ..
-5 | PIR2 — gV + e Ly, (122)

where H* denote the self and anti-selfdual parts of H,v. The matrix
Ny is determined by the relation (cf. [DWST07])

VEI Ny = —VY. (123)

Ly is a collection of topological terms needed for consistency of the
theory (cf.[DWSTO07]) and the potential V' is given in (126).

Using VME7 the T-tensor can be defined. It can be decomposed ac-
cording to the split

912 -+ 420 + 420 + 36 + 36. (124)

The 36 is denoted by A7 = A{7) and the 420 by A,/% = A,/ with
A, * = 0. The barred representations are then related via complex
conjugation. We define

Tk = _1A2ijkl -3 AJI[ 59

4
klmn  __ [k Imn
T = -2 00T, I, (125)
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The T-tensor components contribute to the potential

1

V_24

- 3 .
A2 - 247 (126)
which can take negative values and thus supports AdS vacua.

7.2 FINDING THE ADS VACUA

To find the supersymmetric AdS vacua we have to set the fermion
variations to zero. The graviphotino variation yields

0 = 0x"7F = —2g A, ke (127)

from which we read off A2 = 0. The gravitino variation reads

O:(SwLZDIJEl_%
The constraint coming from 67 = 0 can be obtained by acting on ([128|)
with D, and antisymmetrizing over 1 and v. Alternatively the closure

constraint on A; and Ao can be examined to get the same result. With
Ag = 0 there is only one nontrivial closure constraint (cf. [DWSTO07])

Ailj%ﬁj' (128)

—20" Api AR 426K Ay AT = 0. (129)
Acting on (129)) with 6} gives
. A2
Ay = | ;' o, (130)

Since A; is symmetric it can be diagonalized. Combined with ((130)
this leaves A; to be proportional to diag(+1,...,+1,—1,...,—1) with
p positive and g negative eigenvalues. One can insert this result into

125]) to get
g
i 3 ilk ¢l
T kl

1

Furthermore one can relate |A1| to v/—A via the potential given in
(126). For Ay = 0 one gets

V= Z |Au?. (132)
For V = A this gives the relation |A;| = 2v/—A/3.
7.3 MODULI OF THE ADS VACUA
As done in the previous cases the constraints on T' can be varied along

the scalar manifold. The scalar variations can be expressed by an ele-
ment of the adjoint of E7(7), which is the 133. Under su(8) it splits as
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133 — 63 + 70. The 63 is the adjoint of SU(8) which is divided out to

obtain the scalar coset E7(z)/SU(8). The remaining 70 parametrizes
the physical variations denoted by X4k = y ikl

The resulting variations of the T—tensor are (cf. [DWST07])

imn>

. . 1 . .
5Ti]kl — 9 ngnpjwimnpkl . Z 51J'Zmnqumnqul + ZklmnTj
4

0T = —3

1
Zp[ijle]pmn - ﬂeiiklpqrszmmquqrstua (133)

where €;xipqrs is the fully antisymmetric tensor, which is an invariant
of SU(8).

Along the moduli these variations have to vanish. Using the form of
T given in the first constraint reads

0= zklm"AM[mafL]. (134)
Multiplication with A% gives
2 2
0= @z“maﬁl{sg = M!z’flm'. (135)

Thus either Z¥7J = (0 or |A| = 0. For an AdS background |A| o< v —A
can not be zero and hence there can be no moduli. For Minkowski space

however Y9k stays unconstrained. In either case the second condition
coming from ((133)) is trivially fulfilled.

7.4 ALLOWED GAUGE GROUPS

The generators X Alj[ n of the gauge group Gy are just Tijkl dressed with
the scalar matrices. Hence it is enough to examine the form of T7*.
With As = 0 one gets

3

-3 AllRsH (136)

jﬂijk'l —
These are the generators of the cso algebra. Diagonalizing A; to read

Azlj O(dlag(lyyly_lv_7170770) (137)
—— ——— — —

p q r

then gives the gauge group C'SO(p, q,r) with p+ ¢+ r = 8 (cf. [Roe05|).

We note from that A; is of full rank and therefore » = 0. This
leaves us with SO(p,8 — p) as possible gauge groups. As done before
we can also have a look at the Minkowski limit. A = 0 gives 41 = 0
and thus leaves no non-zero components of the T-tensor. No gauging
is compatible with the supersymmetric Minkowski vacuum.



7.5 COMPARISON TO THE DUAL SCFT

7.5 COMPARISON TO THE DUAL SCFT

Similar to the case in five dimensions we found moduli parametrized
by a 36-dimensional Aij , which can be diagonalized with |A;| oc v/ —A,
leaving a 35-dimensional solution space. It was found that there are no
moduli to the solution. This result is in accordance with the dual SCFT
in three dimensions which indeed has no conformal manifold [CDI16].

The allowed gauge groups are Gy = SO(8,8 — p) for 0 < p < 8. The
R-symmetry of the D = 3 SCFT rotates eight real supercharges and
is thus SO(8). It is therefore expected that another constraint on A;
has been overlooked, since only a positive or negative definite A; gives
SO(8) as the gauge group.
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CONCLUSION

In the chapters[4]to[7] the maximally supergravities in dimension four to
seven were examined for their maximally supersymmetric AdS vacua. In
each case these vacua were found by setting the gravitino and graviphotino
variations under supersymmetry to zero. The resulting constraints were
varied along the scalar manifold to examine the existence of moduli. Fur-
thermore the gauge groups which are consistent with supersymmetric
AdS vacua were determined in every case.

For the maximal D = 7 supergravity two solutions for any given
value of A < 0 were found. It was found that there are no moduli. This
result is in accordance with the dual D = 6, N' = (2,0) SCFT having
no marginal deformations. The resulting gauge group Gy = SO(5)
corresponds to the R-symmetry USp(4) of the dual D = 6 theory.

For the maximal D = 6 supergravity it was found that there are no
supersymmetric AdS vacua and hence no gauge group. This result is in
accordance with the nonexistence of the dual theory in five dimensions.

For the maximal D = 5 supergravity a 35-dimensional solution space
was found for any given value of A < 0. These solutions have moduli
parametrized by a complex coordinate ¢ € C. This is in accordance
with the fact that the conformal manifold of the dual SCFT has one
complex dimension. The metric of the moduli space was however not
determined and can thus not be compared to the SCFT result. The
gauge group was determined to be Gy = SU(4) which corresponds to
the SU(4) R-symmetry of the dual N' = 4 super Yang Mills theory.

For the maximal D = 4 supergravity a 35-dimensional solution space
was found for any given value of A < 0. These solutions do not have
any moduli. The corresponding SCFT in three dimensions has no con-
formal manifold. The result is thus in agreement with AdS/CFT. The
gauge group was narrowed down to be Gy = SO(p,8 — p). From the
R-symmetry of the dual D = 3 SCFT the expected gauge group is
SO(8). Thus the result is only partly in accordance with AdS/CFT, as
only solutions with p = 0 and p = 8 give the predicted gauge group.

There are thus two loose ends to be tied. In D = 5 the precise form
of the moduli space was not determined and in D = 4 it is expected
from AdS/CFT that additional constraints on the gauge group exist.
All other results were found to be in agreement with predictions from
the AdS/CFT conjecture.
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SPINOR REPRESENTATIONS AND
SUPERSYMMETRY IN DIFFERENT DIMENSIONS

A.1 SPINOR REPRESENTATIONS OF SO(P,Q)

Spinor representations are representations of so(p, ¢) which can not be
obtained by tensoring the fundamental representation [FS03]. Spinor
representations arise for SO(p, q) since these groups are not simply con-
nected. They are defined using the universal covering group, which is
denoted Spin(p, q) for SO(p, ¢). For four dimensional spacetime the cor-
responding symmetry group is the Lorentz group SO(1,3) ~ SO(3,1).
The universal cover is SL(2,C) [Wall0]. A spinor of SO(1,3) can thus
be represented by a vector with two complex components. The action
of A € SO(1,3) on these spinors is constructed by assigning an element
A€ SL(2,C) to A.

In a more general setting the group SO(p, q) keeps a (pseudo-)metric

n® invariant which has p positive and ¢ negative eigenvalues i.e.

n® = diag(+1, ..., +1, -1, ..., —1) (138)
P q
where a,b, ... = 1, ...,d with d = p + q. Using ® one can define gamma
matrices by the anticommutation relation [Tan9§|
{77} = 29 (139)

The smallest realization of such matrices are 24/2) x 2[d/2] matrices,
where the brackets [d/2] denote the integer part of d/2 i.e. d/2 for
even d and (d — 1)/ 2 for odd d. The gamma matrices act on Dirac
spinors v which are vectors with 2/%/2 complex components. Given a
generator A" of SO(p,q), its action on 1) is given by

1

The Dirac spinors in general are reducible representations of SO(p, q).
There are different ways to reduce the representation by Dirac spinors
depending on the dimension and the signature (p,q). The Weyl condi-
tion can only be defined in even dimensions and uses the matrix

g = (~1)1P= D12 (141)

which squares to 1 and anticommutes with all other gamma matrices.
It is a generalization of the matrix 7° in four dimensions and can be
used to define Weyl spinors 1+ of positive and negative chirality by

Y+ = £+ (142)
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A Dirac spinor ¢ can then be reduced to its Weyl components, using
the projector Py with

1+7
Piyp = T'yw = Pt (143)
The other reducibility condition is the Majorana condition. We start

with the observation that +(~*)* satisfy the same anticommutation
relations as v® [Tan98|[] Then there are matrices By which fulfill

+(7%)* = Bey"Bi". (144)

which are used to define charge conjugation. In even dimensions it is
defined as either

4° = By'W* or ¢ = BZ'y* (145)

such that the relation (¢¢)¢ = 1 holds. The Majorana condition is then

=y (146)

In odd dimensions charge conjugation as well as the Majorana con-
dition are defined similarly, but the condition holds only for
a = 1,...,d — 1. For the d-th gamma matrix a different condition is
used, which is

Biy'By! = (-1)2 -0 ()", (147)

The Majorana condition can not always be imposed, since the relation
(1°)¢ = 9 can not be achieved in general.

We thus get up to two different reducibility conditions, depending
on the dimension and the signature (p,q), each of which reduces the
dimension of the minimal spinor representation by the factor of a half.
In some cases either the Majorana or the Weyl condition can be used to
get a irreducible representation. This is true for example for spacetime
spinors in four dimensions. There are also special cases in which both
conditions can be used together to get a Majorana- Weyl spinor. Table
gives an overview over which conditions can be used for spacetime
spinors i.e. p=1or ¢ = 1.

In the cases where the Majorana condition can not be imposed, one
gets (1°)¢ = —1. This allows to define a similar condition. Using an
even number of spinors ¥ with i = 1, ...,2n one can impose

Y= Q9(0)", (148)
with Q% = —()%. Spinors satisfying are symplectic Majorana
spinors. 2n such spinors are equivalent to n Dirac spinors. This represen-
tation is useful, if there is a symplectic symmetry, as is indeed the case
for the D = 5, 6,7 maximal supergravities in which the R-symmetry is
given by the unitary symplectic group USp(8), USp(4) x USp(4) and
USp(4) respectively.

1 ()* denotes complex conjugation



A.2 SUPERSYMMETRY ALGEBRA IN DIFFERENT DIMENSIONS

d | Majorana | Weyl | Majorana-Weyl | Minimimal Dimension
2 yes yes yes 1
3 yes - - 2
4 yes yes - 4
5 - - - 8
6 - yes - 8
7 - - - 16
8 yes yes - 16
9 yes - - 16
10 yes yes yes 16
11 yes - - 32

Table 2: Overview over spinor conditions that can or can not be imposed on
spinors of SO(d —1,1). Taken from [Pol98].

A.2 SUPERSYMMETRY ALGEBRA IN DIFFERENT DIMENSIONS

In different dimensions the real supercharges fit differently into the
Weyl-, Majorana- or Majorana-Weyl spinors as outlined in the previous
section. The supersymmetry algebra thus looks slightly different in any

case.
In d = 4,8 mod 8 the supercharges form Weyl spinors Q’;F with pos-
itive chirality with 4,j,... = 1,..., NV [Tan98|. The charge conjugate

supercharges have the opposite chirality (Qﬁr)C = Q_iﬂ The nonzero
anticommutators of the supercharges are thenE|

{Q}, QL) = Pia"CPS;, (149)

where P, are the generators of translations and C' is a charge con-
jugation matrix which is derived from By as Ci = Bj_El’yOT. The
d = 4mod 8 case uses C' = C_ and the d = 8 mod 8 case uses C' = C.
The R-symmetry is U(N).

For d = 10 mod 8 the supercharges form Majorana-Weyl spinors Q’_'|r

and Q’l with positive and negative chirality with 4, j,... = 1, ..., N'y and
i',7,...=1,..., N_. The nonzero anticommutators of the supercharges
are then

{Q4. Q1) = Py C_Pus”

(Q", Q") = P_yrC_P,6"7. (150)

The R-symmetry is SO(N4) x SO(NZ).

The notation with + is equivalent to the notation with @ and @ used in the second
chapter.

For this supersymmetry algebra as well as all other cases the possibility of additional
central charges is not considered. These would show up in the anticommutators
between Q’s of the same chirality.
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For d = 6 mod 8 the supercharges form symplectic Majorana-Weyl
spinors Q’_'|r and QY with positive and negative chirality with ¢,j,... =
1,..,Nyand 7,5, .. =1,..., N_. The symplectic Majorana conditions
read Qfﬁ(Qﬂr)C = @', and Ql,/]/(Q],/)c = Q" , where Q4 are antisym-
metric as discussed above. N as well as N_ can only be even numbers.
The nonzero anticommutators of the supercharges are then

Q@) = Pry'C_POY
(Q",@""y = P_y*c_P,Q" (151)

The R-symmetry is USp(Ny) x USp(N-).

For d = 9,11 mod 8 the supercharges form Majorana spinors @Q° with
i,7,... = 1,...,N. The nonzero anticommutators of the supercharges
are then

{Q", Q") =A"CPu0Y, (152)
where C' = C; for d = 9mod8 and C' = C_ for d = 11 mod8. The
R-symmetry is SO(N).

For d = 5, 7mod 8 the supercharges form symplectic Majorana spinors
Q' with,7,... = 1, ..., N'. The symplectic Majorana condition is Q% (Q7)¢

= @Q'. N can only be an even number. The nonzero anticommutators
of the supercharges are then

{Q", Q") =4"CP.0OY, (153)

where C = C for d = 5mod8 and C' = C_ for d = 7Tmod8. The
R-symmetry is USp(N).



CONSTRAINTS ON MODULI IN D=5

B.1 VARIATIONS AND CONSTRAINTS

As described in section the physical variations of the scalar coset
are described by LUk = ¥kl which is symplectic traceless. In the
su(4) basis this leads to the following components

1:329P70 — eaefeze?Zijkl,

i
1:32087 = e?eere?Zijkl,

10 : 200 — e?e?ezefzijkl,

10 : 24970 — e?eere?Zijkl,

20 : 597 = e?eere?ZUM. (154)

These components inherit the antisymmetry of X7+ £ for example
can be obtained as L7 = — 5807,

To find the moduli one can start from the schematic constraint given
in (107])

§A° =0 = Qmeghin g, + Qmisrleng, (155)

where o stands schematically for o or &, 3 for 3 or 3 and so on. For m
and n the different possibilities m = p, p and n = 0,7 are summed up.
Conveniently only one term in this summation is nonzero as the other
terms vanish by either A% =0 = A% or O =0 = Q.

In the resulting equations 5Ag"6 7 — 0 with different choice of bars

on a,3,7,d, ¥ inherits this choice of bars, i.e. 5A3”875 = 0 involves
only the 1, (5Ag"’375 = 0 involves only the 10 and so on.
B.2 SOLVING THE CONSTRAINTS
For the 1 the resulting constraint from ((155) is
0 = QPaypréo As + PPy dlac Asy
& 6

= —gaxhre _ slyndlas

— _ypvéa _ y[vdlalf]

— _257504 + 2[755]0‘

—0 (156)

which is thus trivially fulfilled for any choice of £*?9. Since the con-
straints are homogeneous with respect to the involved representations,
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there is no other constraint involving the 1. Still £ can be brought to
a simpler form by using the fully antisymmetric invariant tensor e*#79
of su(4). Then

B0 — B9, (157)

The same arguments hold for the T, where %79 = 5¢3379 ig taken to
fulfill pseudoreality.

For the 10 we will start with 5A§’B 7 — (. This constraint is a bit
easier to manage than the others, since one does not need to resolve the
antisymmetrization brackets in the second term. The resulting equation
is

0= s/ 4, + OBy dlac Apy
_ 52267(56 _ 5([}_5275]110
— yBvéa 4 ylydfla
= 2yfoa, (158)
Thus °79¢ vanishes, as do all components obtained by permutation of
indices. The same arguments hold for the 10 which thus also vanishes.
For the 20 examine 64577 = 0 to get
0= Qrxf974,
+ 3 (QP'BZVM‘;AM—, + QPVZMO‘”A,@U + Q’)‘;ZBW"A,;U)
— yBrda }<Zv5df5’ _ yoBay _ Zﬁ_vdﬁ)
3
— _yaBys 1(207575 _yabys _ Zdﬁvz?)
3
4 -
— _ Zyabys (159)
3
The 20 thus vanishes.
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