
The Quaternion-Kähler Manifold
SO(4, 20)/(SO(4)× SO(20)) from the c-map and as

Moduli Space of K3 Surfaces
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Zusammenfassung

In dieser Diplomarbeit betrachten wir quaternion-Kählermannigfaltigkeiten,
insbesondere den symmetrischen Raum SO(4,20)

SO(4)×SO(20)
, und Koordinaten auf

diesen. Zum einen erhalten wir diese aus der c-Abbildung, die jeder speziel-
len Kählermannigfaltigkeit eine quaternion-Kählermannigfaltigkeit zuordnet.
Die c-Abbildung wird realisiert durch eine Konstruktion in der N = 2 Super-
gravitation, die kurz zusammengefasst wird. Als Beispiel wird die Klasse sym-
metrischer spezieller Kählermannigfaltigkeiten SU(1,1)

U(1)
× SO(2,n−1)

SO(2)×SO(n−1)
unter-

sucht, denen unter der c-Abbildung die Klasse der quaternion-Kählermannig-
faltigkeiten SO(4,n+1)

SO(4)×SO(n+1)
zugeordnet wird. Diese Mannigfaltigkeit tritt, für

den Fall n + 1 = 20, auch als Moduliraum von K3-Mannigfaltigkeiten auf.
Die Moduli erhält man bei der Kompaktifizierung der Typ IIA Supergra-
vitation von 10 auf 6 Dimensionen auf einer solchen K3-Mannigfaltigkeit.
Es wird versucht, eine Beziehung zwischen den Koordinaten auf SO(4,20)

SO(4)×SO(20)

herzustellen, die zum einen aus der c-Abbildung erhalten werden und zum
anderen von den Modulifeldern der K3-Mannigfaltigkeit.

Abstract

In this diploma thesis quaternion-Kähler manifolds, in particular the sym-
metric manifold SO(4,20)

SO(4)×SO(20)
, and coordinates on them, are considered. On

the one hand these are obtained from the c-map which assigns to every spe-
cial Kähler manifold a quaternion-Kähler manifold. The c-map is realised by
a construction in N = 2 Supergravity which will be reviewed. As an example
the class of symmetric special Kähler manifolds SU(1,1)

U(1)
× SO(2,n−1)

SO(2)×SO(n−1)
is con-

sidered to which the c-map assigns the class of quaternion-Kähler manifolds
SO(4,n+1)

SO(4)×SO(n+1)
. This manifold, for the case n + 1 = 20, is also related to the

moduli space of a K3 surface. The moduli are obtained by compactification
of type IIA Supergravity from 10 down to 6 dimensions on the K3 surface.
The aim is to establish a relationship between the coordinates on the space

SO(4,20)
SO(4)×SO(20)

obtained from the c-map on the one hand and from the moduli
fields of the K3 surface on the other.
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Chapter 1

Introduction

The Standard Model of particle physics has been very successful in describing
the fundamental particles and their interactions by Quantum Field Theories
(QFT’s), in particular quantised Yang-Mills theories for the electroweak and
strong forces (see e.g. [23]). However, the Standard Model does not include
the gravitational force, for which a successful description exists only classi-
cally by the General Theory of Relativity (GR, see e.g. [22]). It is possible
that a theory that describes all known (and yet unknown) particles and
their interactions including gravity may look very different from the famil-
iar theories QFT and GR, although these must be included in some sense
as a low-energy or classical limit, respectively. One of the most promising
candidates in this regard is String Theory (see e.g. [18]).

In String Theory the fundamental physical objects are one-dimensional
vibrating strings as opposed to point-like particles in the Standard Model. In
the Standard Model there are several different types of particles, the quarks
and leptons (and their antiparticles) which can be generated and observed by
today’s particle accelerators and detectors, as well as the gauge bosons that
mediate the forces between them. In String Theory there is only one type of
string and the different kinds of particles are explained as excitations of the
different vibrational modes of the string. The string can either be open, i.e.
with two lose ends, or closed.

String Theory took its starting point in the late 1960’s where it was
invented as a possible theory of strong interactions. It occured, however,
that in these theories there is always a massless spin-2 particle present. This
in particular has led to the insight that String Theory might play a role in
the description of a fundamental theory of all interactions including gravity
where one needs a spin-2 field to describe the graviton, the particle mediating
the gravitational force.
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To describe fermions within String Theory one imposes Supersymmetry
on the action of the theory which relates the bosonic and fermionic degrees
of freedom with one another, resulting in Superstring Theory. There are
five known consistent Superstring Theories which all describe strings in a
spacetime background of 10 dimensions. These are known as type I, type
IIA/B, SO(32)-heterotic and E8 × E8-heterotic Superstring Theories. The
type I theory describes open strings as well as closed strings, whereas the type
II and heterotic theories describe closed strings only. In this thesis we are
concerned with the low-energy effective theory of type IIA/B String Theories
which are N = 2 Supergravity theories.

Although the five Superstring Theories seem to be different there are
connections between them known as dualities, denoted as S-, T- and U-
duality, that suggest that they in fact describe the same physics and can
thus be seen as different aspects of one theory only. In this thesis, only
T-duality of the type IIA/B theories is considered.

For the concept of T-duality one assumes that one of the 10 dimensions is
periodic, i.e. the spacetime manifold has the topology M9×S1

R where M9 is 9-
dimensional Minkowsi space and S1

R is a circle of radius R. In this case we say
that one dimension of the original 10-dimensional spacetime is compactified.
Two theories are said to be related by T-duality if one theory compactified
on a circle with radius R is equivalent to the other theory compactified on a
circle with radius α′

R
, where α′ is the Regge slope.1

To explain our familiar 4-dimensional physical spacetime within String
Theory one assumes that 6 of the 10 dimensions are compact and in par-
ticular so small that they are not noticeable at scales accessible by today’s
high energy experiments. This means one assumes that the 10 dimensional
spacetime is of the form M4× Y 6 where M4 is Minkowski spacetime and Y 6

is a compact Ricci-flat 6-dimensional manifold. In case where Y 6 is a Calabi-
Yau manifold the resulting low-energy effective theory of the compactified
type IIA/B theory is an N = 2 Supergravity theory in D = 4 dimensions,
coupled to a number of vector multiplets and hypermultiplets which are the
basic particle multiplets in N = 2, D = 4 Supersymmetry.

The effect of a duality of two theories should also be encountered between
their low-energy effective theories as well as in their dimensionally reduced
versions. For the type IIA and type IIB theories, compactified on the same
Calabi-Yau manifold Y 6, T-duality is implemented by a further dimensional
reduction from 4 to 3 spacetime dimensions, performed on the low-energy
effective N = 2 Supergravity Lagrangian. The result of this procedure is
a mapping that relates the vector multiplet sector and the hypermultiplet

1α′ is the fundamental quantity in String Theory and has dimensions of lenght-squared.
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sector of N = 2 Supergravity in 4 dimensions with each other. This mapping
is referred to as the c-map in the literature [6, 12].

Each vector multiplet contains a complex scalar field and each hyper-
multiplet four real scalar fields. These fields are interpreted as coordinates
on a Riemannian manifold, the target manifold. Supersymmetry restricts
the type of manifold which are allowed as target spaces. For vector multi-
plets and hypermultiplets coupled to N = 2 Supergravity these manifolds
are restricted to be special Kähler manifolds and quaternion-Kähler man-
ifolds, respectively. Since the c-map maps the vector multiplet sector to
the hypermultiplet sector it can be seen as a mapping between these two
classes of manifolds. The manifolds in the image of the c-map are called dual
quaternion-Kähler manifolds. We will consider as an example of the c-map
the symmetric manifolds SU(1,1)

U(1)
× SO(2,n−1)

SO(2)×SO(n−1)
7→ SO(4,n+1)

SO(4)×SO(n+1)
.

As an intermediate step of compactification from 10 to 4 dimensions one
also considers dimensional reduction on a compact, complex 2-dimensional
Calabi-Yau manifold, leading to a theory in 6 spacetime dimensions. The
only examples of compact, 2-dimensional Calabi-Yau manifolds are the 4-
Tori, which are flat, and the K3 surfaces, which are hyper-Kähler manifolds.

By performing a compactification, one splits the set of coordinates into
spacetime and internal coordinates. Also, the components of fields are split
in this way. The degrees of freedom of fields ascribed to the internal manifold
can be interpreted as additional fields arising in the dimensionally reduced
spacetime. These moduli fields describe the variation of the internal manifold
over the spacetime manifold.

In this thesis we consider compactification of type IIA Supergravity on
a K3 surface, see e.g. [11]. The allowed variations of the K3 manifold are
the ones which leave the metric Ricci-flat. The variations are parametrised
by a set of 58 moduli fields for the metric. The B-field in the type IIA
Supergravity action yields a set of another 22 moduli. The moduli fields
together form a set of coordinates on the moduli space. It was shown e.g. in
[20] that these 80 fields are invariant under an SO(4, 20) symmetry and the

moduli space is locally of the form SO(4,20)
SO(4)×SO(20)

, which is the same manifold
as in our example for the c-map.

In this thesis the aim is to compare the description of the manifold
SO(4,20)

SO(4)×SO(20)
by the moduli fields of the K3 surface with the description of

this manifold obtained from the c-map. Therefore the coordinates obtained
from the c-map in [12] have to be brought into a similar form as the one
given in [11] that describes the moduli space of the K3 surface.
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Outline of the thesis

Chapter 2 gives an overview of N = 2 extended Supersymmetry and Super-
gravity. After some general remarks, the Supersymmetry algebra is written
down in section 2.1. The massless representations of the N = 2 Supersym-
metry algebra are described in section 2.2 and the field contents of the basic
N = 2 multiplets are given. In section 2.3 the couplings of an arbitrary
number of vector multiplets and hypermultiplets to N = 2 Supergravity are
discussed in turn. For the vector multiplet coupling we follow [7] and explain
that the scalar fields lying in the vector multiplets take values on a target
space which is restricted to be a special Kähler manifold. For hypermultiplets
coupled to Supergravity the scalar fields take values on a quaternion-Kähler
manifold, as shown in [3]. The definitions of Kähler, special Kähler and
quaternion-Kähler manifolds are given in appendix A.

In Chapter 3 the c-map, which establishes a relationship between the
vector multiplet and the hypermultiplet sectors of N = 2 Supergravity, is
discussed. The c-map is realised by a construction performed on the N = 2
Supergravity Lagrangian. In section 3.1 we review the result of this con-
struction as it is given in [12]. Mathematically speaking, the c-map is a
way to construct a quaternion-Kähler metric from a given special Kähler
metric. Appendix B gives more details on the calculations that lead to this
result. In section 3.2 the calculations are carried out for the specific example
SU(1,1)

U(1)
× SO(2,n−1)

SO(2)×SO(n−1)
of a special Kähler manifold to which is assigned the

quaternion-Kähler manifold SO(4,n+1)
SO(4)×SO(n+1)

under the c-map. The metric of
the quaternion-Kähler space is given in explicit coordinates by the couplings
of the scalar fields of the Lagrangian obtained by the c-map. The aim in
section 3.3 is to write the Lagrangian in a way that allows to compare the
scalar fields described by it with the moduli fields of a K3 surface, discussed
in the next chapter.

In chapter 4 compactification of type IIA Supergravity on a K3 surface
is considered. The compactification gives rise to moduli fields of the K3
surface. Section 4.1 gives a brief introduction on K3 surfaces and the moduli
space of Ricci-flat metrics on a K3 surface. The compactification is outlined
in 4.2 where we discuss the result of [20] that the full moduli space of the

K3 surface is of the form SO(4,20)
SO(4)×SO(20)

which is the same manifold as in our
example in section 3.2. In section 4.3 we make a comparison of the moduli
fields of a K3 surface with the coordinates that we get in 3.2 from the c-map.

Finally, in chapter 5 we conclude with a summary and discussion of the
work done in this thesis.
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Chapter 2

N=2 Supergravity

In this chapter the basic features of Supersymmetry and Supergravity and
their extended versions, in particular N = 2 Supergravity, are explained for
the context in which we need them. For a general introduction to Supersym-
metry and Supergravity see for example [23] or [24]. For N = 2 Supergravity
we refer to [1, 3, 7, 8, 9, 10].

The concept of Supersymmetry was introduced in the 1970’s when it was
realised that besides the symmetries of abelian and non-abelian gauge field
theories which are internal symmetries of the fields, there can be symmetries
of a physical theory that relate bosonic and fermionic degrees of freedom with
one another. The generators of these symmetries are fermionic in the sense
that they transform in a spinor representation of the Lorentz algebra and are
composed with each other by an anticommutator rather than a commutator.
It was shown in [16] that there is a very restricted way in physics of extending
the Poincaré algebra by Supersymmetry generators. The generators of the
Poincaré spacetime symmetry together with the Supersymmetry generators
form the super-Poincaré algebra.

Supersymmetry also arises in a natural way in String Theory when one
describes strings with fermionic degrees of freedom. The low-energy effective
theories of the known Superstring Theories are Supergravity theories in 10
dimensions, or Supergravity theories in lower dimensions for compactified
String Theories.

In this chapter we review N = 2 Supergravity in D = 4 dimensions.
In section 2.1 the algebra of N -extended Supersymmetry is discussed. An
overview of the field contents of massless representations of the N = 2 Super-
symmetry algebra is given in section 2.2. Then, in section 2.3, the coupling of
vector and hypermultiplets to the N = 2 Supergravity multiplet is described.
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2.1 Supersymmetry Algebra

The spacetime symmetry algebra of a physical theory in (3 + 1)-dimensional
spacetime is the Poincaré algebra which is spanned by the momentum op-
erators P µ and the angular momentum and Lorentz boost operators which
are arranged to form a skew-symmetric tensor Mµν with µ, ν = 0, 1, 2, 3, the
commutation relations of which are given by:

Poincaré

algebra


[P µ, P ν ] = 0,

[Mµν , P ρ] = i(ηνρP µ − ηµρP ν),

[Mµν ,Mρσ] = i(ηµσMνρ + ηνρMµσ − ηµρMνσ − ηνσMµρ),

(2.1)

with the metric tensor η = diag(−1,+1,+1,+1).
To extend the Poincaré algebra to include a symmetry between bosons

and fermions one can introduce the fermionic symmetry generators Qα and
Q̄α̇ = (Qα)†, where α, α̇ = 1, 2 are Weyl spinor indices, dotted and undotted
indices corresponding to transformation under the two different chiral repre-
sentations of the Lorentz algebra. In general one can have N such generators
QI
α, Q̄I|α̇ = (QI

α)†, I = 1, . . . , N , in which case one speaks of N -extended
Supersymmetry. The super-Poincaré algebra is the extension of the Poincaré
algebra by these Supersymmetry generators. They obey anticommutation
relations with each other and commutation relations with the elements of
the Poincaré algebra as follows:

supersymmetric

extension



[P µ, QI
α] = 0, [P µ, Q̄I|α̇] = 0,

[QI
α,M

µν ] = i(σµν)βαQ
I
β, [Q̄I|α̇,Mµν ] = i(σ̄µν)α̇

β̇
Q̄I|β̇,

{QI
α, Q

J
β} = 0, {Q̄I|α̇, Q̄J |β̇} = 0,

{QI
α, Q̄

J |β̇} = 2δIJ(σµ)β̇αPµ,
(2.2)

where σµ = (12×2, σ
i), σ̄µ = (12×2,−σi), σi, i = 1, 2, 3 being the Pauli ma-

trices and σµν = 1
4
(σµσ̄ν − σν σ̄µ) as well as σ̄µν = 1

4
(σ̄µσν − σ̄νσµ). In the

third line of the equations 2.2 we have omitted any central charges that can
appear on the right hand sides of both anticommutation relations. How-
ever, the central charges are not present in the case where there are no mass
parameters present in the Lagrangian of the theory.
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2.2 Multiplets of N = 2 Supersymmetry

Equations 2.1 and 2.2 together make up the symmetry algebra of a super-
symmetric physical theory. In the following representations of the N = 2
Supersymmetry algebra on physical states are discussed for the massless
case. Since the Supersymmetry generators QI , Q̄I do not commute with
the helicity operator h = ~J · ~p

|~p| , where J i = 1
2
εijkMjk, i, j, k ∈ {1, 2, 3}, the

irreducible representations of the Supersymmetry algebra contain states of
different helicities. Acting with a Supersymmetry generator QI (or Q̄I) on
a state results in a state with helicity raised (lowered) by 1

2
. For the case

N = 2, starting with a state of highest helicity λ in a multiplet, by acting
with Q̄1 or Q̄2 on that state, one obaines two different states of helicity λ− 1

2
.

Acting successively with Q̄1 and Q̄2 results, since Q̄1Q̄2 = −Q̄2Q̄1, in one
state with helicity λ− 1. Since Q̄1Q̄1 = Q̄2Q̄2 = 0 there are no further states
in the multiplet.

In this thesis we consider multiplets with helicities (2, 3
2
, 1) (Supergravity

multiplet), (1, 1
2
, 0) (vector multiplet) and (1

2
, 0,−1

2
) (hypermultiplet). To

make a Lorentz invariant theory, to every multiplet one has to include the
CPT conjugate multiplet with opposite helicities. Note, however, that the
hypermultiplet is its own CPT conjugate. The multiplets for the different
values of λ together with their CPT conjugate multiplets are listed in table
2.1. The field contents of the on-shell representations of the Supersymmetry
algebra on multiplets of classical fields for N = 2 Supergravity in D = 4
spacetime dimensions are, e.g. given in [8]:

• Supergravity multiplet:
{eaµ;ψiµ;Aµ}, (2.3)

where eaµ is the vierbein of the metric representing the spin-2 gravi-
ton, ψiµ, i = 1, 2 is a doublet of spin-3

2
gravitini and Aµ is the spin-1

graviphoton.

• Vector multiplet:
{Fµν ; Ωi;X}, (2.4)

where Fµν is the field strength of a spin-1 gauge boson, Ωi, i = 1, 2 a
doublet of spin-1

2
fermions and X a complex scalar.

• Hypermultiplet:
{χi;φa}, (2.5)

where φa, a = 1, 2, 3, 4 are four real scalar fields and χi, i = 1, 2 is a
doublet of spinor fields.

These fields are also listet in table 2.1.
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CPT Degrees
Multiplet Helicity Conjugate Field of Freedom

1 −1 Aµ 2
Vector multiplet 1

2
−1

2
Ωi 4

0 0 X 2
1
2

− χi 2
Hypermultiplet 0 − φa 4

−1
2

− χi 2
2 −2 eaµ 2

Supergravity multiplet 3
2

−3
2

ψiµ 4
1 −1 Aµ 2

Table 2.1: N = 2 supermultiplets

2.3 Coupling of Vector and Hypermultiplets

to N = 2 Supergravity

In this section we want to discuss the on-shell Lagrangians one obtains by
coupling to N = 2 Supergravity an arbitrary number of vector multiplets, as
for example discussed in [7], and hypermultiplets, described in [3]. We focus
on the bosonic parts of the Lagrangians. For the coupling it is important to
note that while the physical theory obtained is symmetric under the super-
Poincaré group, the underlying symmetry of the off-shell Lagrangian is the
superconformal group. For D = 4, N = 2, the superconformal group is

SU(2, 2|N = 2) ⊃ SU(2, 2)⊗ U(1)⊗ SU(2), (2.6)

where the SU(2, 2) factor is identified as the conformal group which contains
the Poincaré group enlarged by dilatations and conformal transformations.

Supergravity Multiplet
A representation of the superconformal group in terms of classical fields

is given by the Weyl multiplet which contains 24 + 24 bosonic + fermionic
degrees of freedom: {

eaµ;ψiµ; bµ;Aµ;V ijµ ;T ijab;χ
i;D
}
, (2.7)

Here, eaµ is the vierbein of the metric representing the graviton and ψiµ is
the gavitino doublet (i = 1, 2). The fields bµ and Aµ are the gauge fields
of dilatational symmetry and U(1) transformations, respectively, and the
antihermitean traceless tensor V ijµ , i, j = 1, 2 contains the gauge fields for
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the SU(2) transformations. The real tensor T ijab, antisymmetric in the SU(2)-
indices i, j as well as in the Lorentz indices a, b = 0, 1, 2, 3, the spinor doublet
χi and the real scalar D are auxilliary fields, which are eliminated by their
equations of motion.

Upon fixing the dilatational, U(1) and SU(2) symmetries, of the fields in
the Weyl multiplet only the vierbein eaµ and gravitini ψiµ remain as physical
degrees of freedom. The physical graviphoton in 2.3 is coming, as we will see
in the next section, from the spin-1 field of a vector multiplet.

Vector Multiplets Coupled to Supergravity
To couple n vector multiplets to Supergravity one introduces n+ 1 vector

multiplets to start with, labelled by I = 0, . . . , n. One of the n+1 vector mul-
tiplets (I = 0 by convention) is a compensating multiplet for the remaining
gauge degrees of freedom of the superconformal group.

The scalars XI span an (n+1)-dimensional complex space but as a result
of the U(1) and dilatational symmetry one of them can be eliminated by going
to inhomogeneous coordinates ZA = XA/X0, A = 1, . . . , n. These fields ZA

form coordinates on an n-dimensional complex manifold which is restricted
to be a projective (or local) special Kähler manifold (c.f. appendix A.3).

The result of coupling vector multiplets to N = 2 Supergravity is a La-
grangian that is encoded in a single holomorphic function F (X0, . . . , Xn),
called the prepotential, which has to be of homogeneous degree 2, that is
F (λX0, . . . , λXn) = λ2 · F (X0, . . . , Xn). The Lagrangian is given by

e−1Lvec =
1

2
R−KAB∂µZ

A∂µZ̄B+
1

4
(ImN )IJF

I
µνF

J |µν−1

4
(ReN )IJF

I
µνF̃

J |µν ,

(2.8)
where the field strength tensors F I

µν = ∂µA
I
ν − ∂νAIµ are derived from vector

potentials AIµ and F̃ I
µν = 1

2
εµνρσF

I|ρσ is the dual field strength tensor. Also,
R is the Ricci scalar and e the determinant of the vierbein eaµ. The Kähler

metric KAB = ∂2K

∂ZA∂Z̄B
of the projective special Kähler target manifold is

computed from the Kähler potential given by (c.f. definition A.10)

K = − ln i
(
X̄IFI −XIF̄I

)
, (2.9)

where FI denotes the derivative of the prepotential with respect to XI .
The matrix N that describes the couplings of the field strengths F I

µν of
the vector bosons AIµ is given by

NIJ = F̄IJ + 2i
(ImFIK)(ImFJL)XKXL

(ImFLK)XKXL
, (2.10)

where FIJ are the second derivatives of the prepotential.
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Hypermultiplets Coupled to Supergravity
The coupling of hypermultiplets to N = 2 Supergravity has been worked

out in [3]. Every hypermultiplets contains four real scalar fields. For the case
in which there are m hypermultiplets present we denote these scalar fields
by φu, u = 1, . . . , 4m. These scalar fields form coordinates on a real 4m-
dimensional target manifold which, shown in [3], is restricted by Supergravity
to be a quaternion-Kähler manifold (c.f. appendix A.2 for the definition). The
result of the coupling is a Lagrangian the bosonic part of which is given by

e−1Lhyp =
1

2
R + huv∂µφ

u∂µφv, (2.11)

where huv, u, v = 1, . . . , 4m is the quaternion-Kähler metric of the target
manifold of the scalar fields.

Summary
From the two previous paragraphs, the Lagrangian of an arbitrary number

of n vector multiplets and m hypermultiplets coupled to N = 2 Supergravity
can be summarised as

e−1L =
1

2
R + huv∂µφ

u∂µφv −KAB∂µZ
A∂µZ̄B

+
1

4
(ImN )IJF

I
µνF

J |µν − 1

4
(ReN )IJF

I
µνF̃

J |µν . (2.12)

The Lagrangian is fully specified by the quaternion-Kähler metric huv and
the holomorphic prepotential F . The Kähler potential K is obtained from
equation 2.9 and the coupling matrix N of the fields F I

µν from equation 2.10.
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Chapter 3

Quaternion-Kähler manifolds
from the c-map

As mentioned in the introduction, the c-map of N = 2 Supergravity which
we are going to discuss in the next section, is related to T-dualtity of type
IIA/IIB Superstring Theory. The known Superstring Theories are defined
in 10 dimensions. To explain our familiar 4-dimesional physical spacetime
within String Theory one assumes that 6 of the 10 dimensions are compact,
spacetime being of the form M4×Y 6 where M4 is Minkowski space and Y 6 is
a 6-dimensional compact Ricci-flat manifold, which we take to be a Calabi-
Yau 3-fold (3 complex dimensions = 6 real dimensions).1 The low-energy
effective theory of type IIA/B String Theories compactified in this way is an
N = 2 Supergravity in 4 dimensions coupled to vector and hypermultiplets,
the Lagrangian of which we have described in section 2.3.

T-duality is now implemented by a further dimensional reduction of the
N = 2 Supergravity Lagrangian on a circle with radius R from 4 to 3 dimen-
sions. This work was carried out in [12], which we will review in section 3.1.
The effect of the construction is that the vector multiplet sector is mapped
onto the hypermultiplet sector. Since the target manifolds of vector and
hypermultiplets are special Kähler and quaternion-Kähler manifolds, respec-
tively, the c-map can be viewed as a mapping between these two classes of
manifolds

c : {special Kähler manifolds} → {quaternion-Kähler manifolds} . (3.1)

In section 3.2 we consider as an example for the c-map the classes of symmet-
ric manifolds SU(1,1)

U(1)
× SO(2,n−1)

SO(2)×SO(n−1)
7→ SO(4,n+1)

SO(4)×SO(n+1)
, which was also discussed

in [1]. We then analyse coordinates on these manifolds in section 3.3.

1For a definition of Calabi-Yau manifolds see appendix A.1.
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3.1 The c-map of N = 2 Supergravity

As discussed in detail in [6], the c-map is a mapping between the target
spaces of the vector multiplet and hypermultiplet sectors of N = 2 Super-
gravity, special Kähler and quaternion-Kähler manifolds, respectively. It
thus gives an explicit way of constructing quaternion-Kähler metrics. It is
named after a similar construction of E. Calabi in [5] where the first exam-
ples of hyper-Kähler metrics were constructed. The explicit computation of
the metric on the quaternion-Kähler spaces is given in [12]. We now outline
the steps of this construction and discuss the result. More details of the
calculations can be found in appendix B. There we also compute explicitely
the three fundamental 2-forms associated with the quaternionic structure of
the quaternion-Kähler manifold.

The first step of the construction is a dimensional reduction from 4 to 3
dimensions of the N = 2 vector multiplet Lagrangian 2.8:

e−1Lvec =
1

2
R−KAB∂µZ

A∂µZ̄B+
1

4
(ImN )IJF

I
µνF

J |µν−1

4
(ReN )IJF

I
µνF̃

J |µν ,

(3.2)
with F I

µν = ∂µA
I
ν − ∂νAIµ. By dimensional reduction, every 4-vector field AIµ

splits into a 3-vector ÂIµ̂ and a scalar ζI := AI3, whereas the vierbein eaµ splits

into a dreibein eâµ̂, a 3-vector Bµ̂ and a scalar φ. Here, indices with a hat run
only over 0, 1, 2 whereas normal indices run over 0, 1, 2, 3. The scalar fields
ZA, Z̄A, A = 1, . . . , n are reduced to scalar fields in 3 dimensions which we

denote by ẐA, ˆ̄ZA.
In 3 dimensions, the 3-tensor field strengths F I

µ̂ν̂ = ∂µ̂Â
I
ν̂ − ∂ν̂Â

I
µ̂ and

Hµ̂ν̂ = ∂µ̂Bν̂ − ∂ν̂Bµ̂ can be dualised to scalars fields. (In 3 dimensions, an
antisymmetric tensor is Hodge dual to a vector field; then, these vector fields
can be dualised to scalars by Lagrange multipliers, for details see appendix
B). In this way the 3-vectors ÂIµ̂ and Bµ̂ are replaced in the Lagrangian

by scalar fields which we denote by ζ̃I and φ̃, respectively. The resulting
Lagrangian now describes a theory of only scalars in three dimensions, namely

the 4n+ 4 fields φ, φ̃, ζI , ζ̃I , I = 0, . . . , n and ẐA, ˆ̄ZA, A = 1, . . . , n.
This 3-dimensional theory is now reinterpreted again as a theory in 4

dimensions. The resulting Lagrangian is given by (c.f. equation B.20 of ap-
pendix B):

e−1L̃ =
1

2
R−KAB̄∂µẐ

A∂µ ˆ̄ZB̄ +
1

4φ2

(
(∂µφ)2 +

(
∂µφ̃− ζ̃I∂µζI + ζI∂µζ̃I

)2
)

+
1

2φ

(
NIK∂µζ

K + ∂µζ̃I

)
(ImN )−1|IJ

(
¯NJL∂

µζL + ∂µζ̃J

)
. (3.3)
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It is shown in [12] that the metric of the manifold described by this La-
grangian is quaternion-Kähler. It is thus a possible target manifold for hy-
permultiplets coupled to N = 2 supergravity. In fact, the Lagrangian 3.3
describes the bosonic part of a theory of n + 1 hypermultiplets coupled to
N = 2 supergravity. The effect of the described procedure thus is that the
vector multiplet sector of N = 2 supergravity is mapped onto the hyper-
multiplet sector (and vice versa, by the inverse c-map which we have not
considered here). In this way, to each special Kähler target manifold of the
vector multiplets is assigned a quaternion-Kähler manifold as possible target
manifold of the scalars in the hypermultiplets. Note, however, that not every
quaternion-Kähler manifold can be obtained in this way. The manifolds in
the image of the c-map are called dual quaternion-Kähler manifolds.

The Lagrangian 3.3 shows that the hypermultiplet sector with a dual
quaternion-Kähler target manifold - like the vector multiplet Lagrangian -
can be encoded in a single holomorphic function F . Note, however, that in
the case of both vector and hypermultiplets coupled to Supergravity we need
two holomorphic functions, one for the vector multiplet sector and one for the

hypermultiplet sector. Also note that the fields ẐA, ˆ̄ZA of the hypermultiplet
sector are then indepentent of the fields ZA, Z̄A from the vector multiplet
sector. The Lagrangian of a full theory in 2.12 with huv taken to be a dual
quaternion-Kähler metric is thus given by

e−1L =
1

2
R−KAB∂µZ

A∂µZ̄B +
1

4
(ImN )IJF

I
µνF

J |µν − 1

4
(ReN )IJF

I
µνF̃

J |µν

− K̂AB̄∂µẐ
A∂µ ˆ̄ZB̄ +

1

4φ2

(
(∂µφ)2 +

(
∂µφ̃− ζ̃I∂µζI + ζI∂µζ̃I

)2
)

+
1

2φ

(
ˆNIK∂µζ

K + ∂µζ̃I

)
(Im ˆN )−1|IJ

(
¯̂

NJL∂
µζL + ∂µζ̃J

)
, (3.4)

where the Kähler metric K and matrix N is derived from a holomorphic
function F (Z) and K̂ and ˆN are derived from an in general different holo-
morphic function F̂ (Ẑ).

In the following sections we will only consider the part of the Lagrangian
describing the dual quaternion-Kähler space and therefore will again omit
the hats there.
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3.2 An Example of Symmetric Manifolds

In this section we want to compute all data for the example of the c-map
assigning to each other the symmetric spaces [1, 6]:

SU(1, 1)

U(1)
× SO(2, n− 1)

SO(2)× SO(n− 1)
↔ SO(4, n+ 1)

SO(4)× SO(n+ 1)
, n ≥ 2. (3.5)

The special Kähler manifold SU(1, 1)/U(1)×SO(2, n−1)/(SO(2)×SO(n−1))
can be described by a holomorphic prepotential (c.f. appendix A.3) which is
given by [1]:

F (X0, . . . , Xn) =
X1

2X0
· ηMNX

MXN , (3.6)

ηMN = diag(−1,+1, . . . ,+1), M,N = 2, . . . , n.

The Kähler potential K is then given by (see appendix A, definition A.10)

exp (−K) = i(X̄IFI −XIF̄I) =
−i
2

(Z1 − Z̄1) · ηMN(ZM − Z̄M)(ZN − Z̄N),

(3.7)
where I = 0, . . . , n and we have setX0 = 1 by introducing the inhomogeneous
coordinates XI := ZI = (1, ZA) with ZA = XA/X0, A = 1, . . . , n. From K,
the Kähler metric KAB̄ = ∂2K

∂ZA∂Z̄B is computed to be

KAB̄ =

(
− 1

(Z1−Z̄1)2 0

0 2ηAB̄

(ZM−Z̄M )(ZM−Z̄M )
− 4ηAM (ZM−Z̄M )ηB̄N (ZN−Z̄N )

((ZM−Z̄M )(ZM−Z̄M ))2

)
,

(3.8)
where we have written ZM = ηMNZ

N , but note that M,N only run over
2, . . . , n.

The matrix FIJ (the second derivatives of the prepotential) is given by

FIJ =

 Z1 · (ZMZM) −1
2
(ZMZ

M) −Z1 · ZJ
−1

2
(ZMZ

M) 0 ZJ
−Z1 · ZI ZI Z1 · ηIJ

 . (3.9)

We can now compute the coupling matrix N of the gauge bosons. Therefore
note that

(FIJ − F̄IJ)ZJ =

(
−1

2
Z1 · (ZMZM − Z̄M Z̄M) + Z̄1 · Z̄M(ZM − Z̄M),

1

2
(ZM − Z̄M)(ZM − Z̄M), (Z1 − Z̄1) · (ZI − Z̄I)

)
, (3.10)
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as well as

ZI(FIJ − F̄IJ)ZJ = (Z1 − Z̄1) · (ZM − Z̄M)(ZM − Z̄M). (3.11)

From equation 2.10 we then get

NIJ = F̄IJ +
(FIK − F̄IK)ZK(FJL − F̄JL)ZL

(Z1 − Z̄1)(ZM − Z̄M)(ZM − Z̄M)

=

 P Q RJ

Q (ZM−Z̄M )(ZM−Z̄M )

4(Z1−Z̄1)
1
2
(ZJ + Z̄J)

RI
1
2
(ZI + Z̄I) Z̄1ηIJ + (Z1−Z̄1)(ZI−Z̄I)(ZJ−Z̄J )

(ZM−Z̄M )(ZM−Z̄M )

 , (3.12)

where the abbreviations P,Q,RM ,M = 2, . . . , n stand for

P =
((
Z1/2 · (ZMZM + Z̄M Z̄

M)− Z̄1 · ZM Z̄M
)2 − (Z1 − Z̄1)2·

· (ZMZM)(Z̄N Z̄
N)
)/(

(Z1 − Z̄1) · (ZM − Z̄M)(ZM − Z̄M)
)
,

Q =
−Z1/2 · (ZMZM + Z̄M Z̄

M) + Z̄1 · ZM Z̄M

2(Z1 − Z̄1)
,

RM =
(
− Z1/2 · (ZM − Z̄M) · (ZNZN − Z̄N Z̄N)+

Z̄1 · (ZM Z̄N − Z̄MZN)(ZN − Z̄N)
)/(

(ZN − Z̄N)(ZN − Z̄N)
)
.

(3.13)

To compute all the couplings in the Lagrangian 3.3 one also needs to know
the real and imaginary parts of the matrix N , as well as their inverses. The
real part of N is given by

(ReN )IJ = 1
8
(Z1 + Z̄1) · (ZM + Z̄M)2 −1

8
(ZM + Z̄M)2 −1

4
(Z1 + Z̄1)(ZJ + Z̄J)

−1
8
(ZM + Z̄M)2 0 1

2
(ZJ + Z̄J)

−1
4
(Z1 + Z̄1)(ZI + Z̄I)

1
2
(ZI + Z̄I)

1
2
(Z1 + Z̄1)ηIJ

 ,

(3.14)

where we used the shorthand notation (ZM−Z̄M)2 = (ZM−Z̄M)(ZM−Z̄M).
This matrix can be easily inverted:

(ReN)−1|IJ =


32

(Z1+Z̄1)(ZM +Z̄M )2
8

(ZM +Z̄M )2

8(ZJ+Z̄J )

(Z1+Z̄1)(ZM +Z̄M )2

8
(ZM +Z̄M )2 0 4(ZJ+Z̄J )

(ZM +Z̄M )2

8(ZI+Z̄I)

(Z1+Z̄1)(ZM +Z̄M )2

4(ZI+Z̄I)

(ZM +Z̄M )2
2ηIJ

Z1+Z̄1

 . (3.15)
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The imaginary part of N is given by

ImN =

 ImP ImQ ImRJ

ImQ −i(ZM−Z̄M )2

4(Z1−Z̄1)
0

ImRI 0 i(Z1 − Z̄1)
[

1
2
ηIJ − (ZI−Z̄I)(ZJ−Z̄J )

(ZM−Z̄M )2

]
 ,

(3.16)
with the abbreviations

ImP =

[
Z1Z̄1(ZM − Z̄M)

(
ZM(Z̄N Z̄

N)− Z̄M(ZNZ
N)
)

+
(
(Z1)2 + (Z̄1)2

)
·

·
(

1

2
(ZM Z̄

M)2 − (ZMZ
M)(Z̄N Z̄

N) +
1

8
(ZMZ

M + Z̄M Z̄
M)2

)]/
[
i(Z1 − Z̄1) · (ZM − Z̄M)(ZM − Z̄M)

]
,

ImQ =
i(Z1 + Z̄1)(ZM − Z̄M)2

8(Z1 − Z̄1)
,

ImRM =
i(Z1 − Z̄1)

2(ZN − Z̄N)(ZN − Z̄N)

[1

2
(ZM − Z̄M)(ZNZ

N − Z̄N Z̄N)

+ (ZM Z̄N − Z̄MZN)(ZN − Z̄N)
]
. (3.17)

To invert this matrix one can use the identity

(ImN )−1|IJ = 2i

(
−N−1|IJ +

Z̄IZJ + ZIZ̄J

Z̄NZ

)
, (3.18)

with NIJ = FIJ − F̄IJ and Z̄NZ = ZINIJZ
J . This formula can be checked

by multiplying with ImN obtained from equation 2.10. From equation 3.9
one can compute FIJ − F̄IJ and can check that

N−1|IJ =
[
(Z1 − Z̄1)(ZM − Z̄M)(ZM − Z̄M)

]−1 · 4 2(Z1 + Z̄1) 2(ZJ + Z̄J)
2(Z1 + Z̄1) 4Z1Z̄1 2(Z1ZJ + Z̄1Z̄J)
2(ZI + Z̄I) 2(Z1ZI + Z̄1Z̄I) 2(ZIZ̄J + Z̄IZJ) + (ZM − Z̄M)2ηIJ

 .

(3.19)

Also,

Z̄NZ = Z̄INIJZ
J = −1

2
(Z1 − Z̄1)(ZM − Z̄M)2. (3.20)
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Now insert 3.19 and 3.20 into 3.18. Although some of the entries of ImN
look rather complicated, (ImN )−1 has a somewhat simpler form:

(ImN )−1|IJ = −2i
[
(Z1 − Z̄1)(ZM − Z̄M)(ZM − Z̄M)

]−1 · 8 4(Z1 + Z̄1) 4(ZJ + Z̄J)
4(Z1 + Z̄1) 8Z1Z̄1 4(Z1ZJ + Z̄1Z̄J)
4(ZI + Z̄I) 4(Z1ZJ + Z̄1Z̄J) 4(ZIZ̄J + Z̄IZ̄J) + (ZM − Z̄M)2ηIJ

 .

(3.21)

We have thus computed all the data needed to describe the couplings in the
Lagrangian 3.3.
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3.3 Coordinates on Coset Spaces

The couplings of the scalar fields in the Lagrangian 3.3, computed in section
3.2, describe a metric on the space SO(4, n)/(SO(4)×SO(n)). Our aim in this
section is to arrange the fields into a matrix M ∈ SO(4, n) in a way that the
Lagrangian can be written in the form Tr(∂µM−1∂µM ). The motivation for
this is that in chapter 4 we want to compare these coordinates to coordinates
on the moduli space of K3 surfaces, for which the Lagrangian is written in
this form in [11]. We start with a little more general approach.

3.3.1 Coordinates on SO(m,n)/(SO(m)× SO(n))

We consider symmetric spaces of the form M = SO(m,n)/(SO(m)×SO(n)).
For the discussion we refer to [14]. On the level of Lie algebras we can write
a representative of the coset so(m,n)/(so(m)⊕ so(n)) as a matrix(

0 B
BT 0

)
, B ∈ Mat(m× n,R). (3.22)

We get a representative of an element in M by exponentiating this matrix:

M := exp

(
0 B
BT 0

)
=

( √
1 + qqT q

qT
√

1 + qT q

)
, (3.23)

where q ∈ Mat(m× n,R) is given by:

q = B

(
sinhBTB

BTB

) 1
2

. (3.24)

Here, the divison by BTB has to be understood formally for the power series
expansion of sinh in BTB since the matrix BTB need not be invertible. From
3.24 one obtains for the m×m and n× n submatrices of M :√

1 + qqT = (coshBBT )1/2,
√

1 + qT q = (coshBTB)1/2. (3.25)

We now want to discuss the two examples of SO(2, n)/(SO(2)× SO(n)) and
SO(4, n)/(SO(4)×SO(n)). We refer to the appendix of [1] where coordinates
for the first example are called Calabi-Vesentini coordinates. By a simple
analogy we then make a similar approach for the second example.
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Calabi-Vesentini coordinates on SO(2, n)/(SO(2)× SO(n))
Here, the submatrix q of the coset representative M in (3.23) is a 2 × n

matrix and we assemble the first two rows M Λ
0 ,M

Λ
1 of the matrix M into

one row of complex numbers:

ΦΛ =
1√
2

(M Λ
0 + iM Λ

1 ), Λ = 0, . . . , n+ 1. (3.26)

The fact that M ∈ SO(2, n) gives the orthonormality conditions

Φ̄ΣΦΛηΣΛ = 1, ΦΣΦΛηΣΛ = 0, η = diag(1, 1,−1, . . . ,−1). (3.27)

A solution to these equations is given by

ΦΛ =
XΛ√

X̄ΣXΛηΣΛ

, (3.28)

by setting

XΛ =

(
1

2
(1 + y2),

i

2
(1− y2), ya

)
, a = 2, . . . , n+ 1, (3.29)

for a set of n independent complex coordinates ya.
In fact, from 3.26, 3.28 and 3.29 we get for the entries of the upper left

2× 2 submatrix of M in 3.23:

M 0
0 =

1 + 1
2
(y2 + ȳ2)√

1− 2(yȳ) + y2ȳ2
, M 1

1 =
1− 1

2
(y2 + ȳ2)√

1− 2(yȳ) + y2ȳ2
, (3.30)

M 0
1 = M 1

0 =
−i
2

y2 − ȳ2√
1− 2(yȳ) + y2ȳ2

. (3.31)

For the 2× n matrix q one has

q =
1√

1− 2(yȳ) + y2ȳ2

(
y1 + ȳ1 · · · yn + ȳn

−i(y1 − ȳ1) · · · −i(y1 − ȳ1)

)
. (3.32)

One can now check that for the upper left 2× 2 matrix one has indeed(
M 0

0 M 1
0

M 0
1 M 1

1

)2

=
1

1− 2(yȳ) + y2ȳ2

(
(1 + y2)(1 + ȳ2) y2 − ȳ2

y2 − ȳ2 (1− y2)(1− ȳ2)

)
= 1 + qqT . (3.33)

The lower right n × n submatrix of M can be computetd from the 2 × 2
matrix

√
1 + qqT by the formula√

1 + qT q = 1 + qT (
√

1 + qqT − 1)(qqT )−1q, (3.34)

which can be easily checked by squaring the expression on the right-hand
side, but we do not write down the explicit result here.
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Coordinates on SO(4, n)/(SO(4)× SO(n))
We want to proceed in a similar way as in the previous paragraph to obtain

coordinates on SO(4, n)/(SO(4)× SO(n)). q is now a 4× n Matrix, and we
assemble the first 4 rows of the matrix M into two rows of complex numbers
by writing:

ΦΛ :=
1√
2

(M Λ
0 + iM Λ

1 ), ΨΛ :=
1√
2

(M Λ
2 + iM Λ

3 ), Λ = 0, . . . , n+ 3.

(3.35)
If we set

ΦΛ =
XΛ√

X̄ΣXΛηΣΛ

, ΨΛ =
Y Λ√

Ȳ ΣY ΛηΣΛ

, (3.36)

XΛ, Y Λ still have to fullfil the orthogonality conditions

XΣXΛηΣΛ =XΣY ΛηΣΛ = XΣȲ ΛηΣΛ = Y ΣY ΛηΣΛ = 0, (3.37)

η =diag(1, 1, 1, 1,−1, . . . ,−1). (3.38)

A solution of these is given by

XΛ =
( 1

2
√

2
(1 + A+B),

i

2
√

2
(1− A+B),

−1

2
√

2
(1 + A−B),

−i
2
√

2
(1− A−B), xa

)
, a = 4, . . . , n+ 3

Y Λ =
( 1

2
√

2
(1 +D + C),

−i
2
√

2
(1−D − C),

1

2
√

2
(1 +D − C),

−i
2
√

2
(1−D + C), ya

)
, a = 4, . . . , n+ 3, (3.39)

where xa, ya are 2n independent complex parameters and A,B,C,D are ex-
pressed by them as

A = x2, B = 2
|x2|2 · y2 · (xȳ)− x2 · y2 · (x̄ȳ) + x2 · (x̄y)− (xy)

|x2|2 · |y2|2 − 1
,

D = y2, C = 2
|y2|2 · x̄2 · (xy)− x̄2 · y2 · (xȳ) + y2 · (x̄ȳ)− (x̄y)

|x2|2 · |y2|2 − 1
. (3.40)

It is not obvious how the fields φ, φ̃, ζI , ζ̃I , I = 0, . . . , n and ẐA, ˆ̄ZA,
A = 1, . . . , n of the Lagrangian 3.3 can be associated with the parameters
xa, ya of equation 3.39 to write the Lagrangian in the form Tr(∂µM−1∂µM ).
In the next section we will therefore discuss some simpler examples.
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3.3.2 Coordinates for the Example

We can at least write part of the Lagrangian 3.3 in the form Tr(∂µM−1∂µM )

with some matrix M . As the simplest example we start with the SU(1,1)
U(1)

part
of the special Kähler manifold of our example that is described by only one
complex coordinate Z1 = X + iY . The metric belonging to this part is as
given in equation 3.8:

ds2 =
1

(Z1 − Z̄1)2
dZ1dZ̄1 = − 1

4Y 2

(
(dX)2 + (dY )2

)
= −1

4

(
dS2 + e−2SdX2

)
,

(3.41)
where we have introduced S = lnY . This can be written in the form

ds2 =
1

8
Tr
(
dM−1dM

)
, (3.42)

with the Matrix M and its invers given by [19]:

M =

(
eS eSX
eSX e−S + eSX2

)
, M−1 =

(
e−S + eSX2 −eSX
−eSX eS

)
. (3.43)

This result can be generalised for the SO(2,n)
SO(2)×SO(n)

part of the special Kähler

manifold. The metric given in 3.8 can be written with ZM = XM+iY M ,M =
2, . . . , n, as

ds2 =

(
− ηMN

2YLY L
+

YMYN
(YLY L)2

)
(dY MdY N + dXMdXN). (3.44)

For the moment we will concentrate only on the part of the Lagrangian which
doesn’t involve the coordinates XM :

ds2
Y =

(
ηMN

2YLY L
− YMYN

(YLY L)2

)
dY MdY N . (3.45)

If one introduces

S = −1

2
ln
(
−2YLY

L
)
, (3.46)

3.45 can be expressed as

ds2
Y = (dS)2 +e2SηMNdY MdY N = −1

2
Tr
(
dM−1dM

)
+
n− 3

2
(dS)2, (3.47)

with the matrix M and the invers matrix M−1 given by

M =


eS eSY 2 . . . eSY n

eSY 2

...
eSY n

e−SηMN + eSY MY N

 , (3.48)
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M−1 =


1
2
e−S −eSY2 . . . −eSYn
−eSY2

...
−eSYn

eSηMN

 . (3.49)

We can write M in the form M = V TV with the upper triangular matrix

V =


e

S
2 e

S
2 Y 2 . . . e

S
2 Y n

0
...
0

e−
S
2 ηMN

 . (3.50)

Here, it was only possible for us to bring part of the coordinates of the
Lagrangian 3.3 into the desired form. In particular, this looks difficult for
the part of the Lagrangian involving the coordinates ζI , ζ̃I because of the
complicated form of the coupling matrix N given in equation 3.12.
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Chapter 4

Moduli Space of K3 Surfaces

In order to obtain a physical theory in 4 spacetime dimensions, the space-
time background of 10-dimensional String Theory or its low-energy Super-
gravity theory is considered to be of product form M4×Y 6 of 4-dimensional
Minkowski space and an internal 6-dimensional manifold Y 6 which is com-
pact and Ricci-flat, for example a Calabi-Yau 3-fold (c.f. appendix A.1).

As an intermediate step of compactification down to 4 dimensions one can
compactify on a compact 4-dimensional (complex 2-dimensional) manifold
leading to a theory in 6 dimensions. Although there are a variety of complex
3-dimensional Calabi-Yau manifolds, there only exist two different classes of
compact, complex 2-dimensional Calabi-Yau manifolds which are the flat 4-
Tori on the one hand and the so-called K3 surfaces on the other, see e.g. [4]
for the latter.

In this chapter we consider compactification of type IIA Supergravity on a
K3 surface, spacetime being of the form M6×K3, as for example discussed in
[11, 15]. By carrying out the dimensional reduction, the degrees of freedom
of fields in the 10-dimensional theory that can be ascribed to the internal
manifold (the K3 surface), are reinterpreted as additional fields arising in
the 6-dimensional theory. These moduli fields correspond to the possible
variation of the configuration of the internal K3 surface over M6. The set of
moduli fields forms coordinates on the moduli space. At the end of section
4.1 we give a brief definition of the moduli space of Ricci-flat metrics on a
K3 surface. This space will be enlarged in section 4.2 where we also consider
moduli fields coming from the B-field in the Supergravity action. It turns out
that the moduli fields of the metric and the B-field together can be described
in a form invariant under O(4, 20) and that in fact the full moduli space is

locally of the form SO(4,20)
SO(4)×SO(20)

, the same space we obtained in section 3.2
from the c-map. In 4.3 we try to compare the fields which are obtained from
the c-map in section 3.2 with the moduli fields of the K3 surface.
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4.1 K3 Surfaces

In this section K3 surfaces are defined following [2] and some of their prop-
erties given. We also explain the notion of moduli space of Ricci-flat metrics
on a K3 surface. For mathematical notation for k-forms and basic definitions
of cohomology we refer to appendix C.

Definition 4.1. A K3 surface is a complex 2-dimensional manifold X with
the following properties

(i) X has vanishing first de Rham cohomology: H1(X,R) = 0,

(ii) X has vanishing first Chern class.1

It can be shown from these properties that all K3 surfaces are diffeomor-
phic to each other. In particular, K3 surfaces are compact, simply connected
manifolds that allow Ricci-flat metrics. Given a Ricci-flat metric on a K3
surface, it is indeed a hyper-Kähler manifold (c.f. appendix A.2).

The dimension of the second de Rham cohomology H2(X,R) of a K3
surface X is 22. It therefore contains 22 harmonic 2-forms Ωi, i = 1, . . . , 22.
One can decompose H2(X,R) as a direct sum of the space self-dual forms
and anti-self-dual forms, denoted by H+ and H−, the elements of which are
defined to satisfy ∗Ω = +Ω and ∗Ω = −Ω, respectively, where ∗ is the
Hodge-∗-operator:

H2(X,R) = H+ ⊕H−, (4.1)

with dimH+ = 3 and dimH− = 19.
Since X is real 4-dimensional the Hodge dual of a harmonic 2-form is

again a harmonic 2-form and thus a linear combination of the Ωi:

∗Ωi = Hj
i Ωj, (4.2)

where H is a 22×22 matrix. On a K3 surface, applying the Hodge-∗-operator
twice yields the identity: ∗∗ = 1 (c.f. appendix C). This implies

H i
jH

j
k = δik, (4.3)

i.e. H−1 = H, which shows that the matrix H has eigenvalues ±1 of which 3
are +1 and 19 are −1 because of 4.1.
The intersection matrix d is defined by

dij =

∫
K3

Ωi ∧ Ωj, (4.4)

1The first Chern class is an element of H2(X,Z), i.e. an equivalence class of 2-forms.
A representative of the first Chern class is given by the Ricci form ρ = i

2πRab̄dz
a ∧ dz̄b.
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which is symmetric and also has signature (3, 19). In fact, one can choose
the Ωi such that d = diag(1, 1, 1,−1, . . . ,−1). We also have

dijH
j
k =

∫
K3

Ωi ∧ (∗Ωk) =

∫
K3

(∗Ωi) ∧ Ωk = Hj
i djk, (4.5)

showing that the matrix d · H is symmetric. From equation 4.3 and 4.5
together one gets Hj

i djkH
k
l = dil, showing that Hj

i is an element of SO(3, 19).

Moduli Space of Ricci-flat Metrics on a K3 surface
Given a manifold M we denote the Ricci tensor with respect to a metric

g on M by Rg
mn, m, n = 1, . . . , dimM . The set of all Ricci-flat metrics on

M , i.e. metrics g with Rg
mn = 0, we denote by R(M). Two metrics g and

g̃ are said to be equivalent if there exists a transformation φ of M (i.e. a
diffeomorphism of M onto itself) such that g̃ = φ∗g. If D denotes the group
of all transformations of M then the quotient under this equivalence relation,

MM = R(M)/D, (4.6)

is called the moduli space of Ricci-flat metrics on M .
Infinitesimally, we can describe the moduli space locally around a given

metric g as deformations of the metric g → g + δg for which

Rg+δg
mn = 0 (4.7)

to leading order in δg. It is shown in [2] that the moduli space of a K3
surface is given by

MK3 = SO(Γ3,19)\SO(3, 19)/(O(3)× SO(19))× R+ (4.8)

where SO(Γ3,19) denotes the discrete subgroup of SO(3, 19) matrices leav-
ing a (3, 19)-dimensional integer lattice Γ3,19 invariant, acting on the space
SO(3, 19) from the left whereas the subgroup SO(3) × SO(19) is acting on
the right. The factor R+ corresponds to the modulus describing the volume
of the K3 surface. The moduli space thus has dimension 3 × 19 + 1 = 58.
The variation δg of the metric for constant volume of the K3 surface can be
expanded as

δgmn =
57∑
a=1

maδgamn, (4.9)

where δgamn, a = 1, . . . , 57 are a basis of infinitesimal deformations and the
set of parameters ma, a = 1, . . . , 57 are the moduli. The extra modulus
associated to the volume of the K3 surface will be denoted by ω.
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4.2 Type IIA Supergravity Compactified on

a K3 Surface

In this section compactification of 10-dimensional type IIA Supergravity on
a K3 surface is considered, see e.g. [11]. We thus assume that spacetime is
of product form M6 ×K3, with M6 being 6-dimensional Minkowski space.

The bosonic spectrum from the Neveu-Schwarz-Neveu-Schwarz sector of
type IIA Supergravity consists of the 10-dimensional metric ĝµ̂ν̂ representing

the gravition, the scalar dilaton field φ̂, and the Kalb-Ramond 2-form field
B̂. The action for this part of the theory is given by

Ŝ =

∫
e−φ̂

(
1

2
R̂ ∗ 1 +

1

2
dφ̂ ∧ ∗φ̂+

1

4
Ĥ ∧ ∗Ĥ

)
, (4.10)

where Ĥ = dB̂ is the ’field strength’ of the B̂-field. Throughout we denote
fields and quantities of the 10-dimensional theory with a hat, to distinguish
them from fields of the dimensionally reduced theory.

For the compactification we split the coordinates as

x̂µ̂ = (xµ, zm), µ̂ = 0, . . . , 9, µ = 0, . . . , 5, m = 6, 7, 8, 9. (4.11)

The metric on the K3 manifold can vary with xµ over the 6-dimensional
spacetime so one can locally decompose the metric on the 10-dimensional
spacetime as

ĝµ̂ν̂ =

(
gµν(x) 0

0 g0
mn(z) + δgm,n(x, z)

)
, (4.12)

where we can expand the deformation δgmn around g0
mn as

δgmn(x, z) =
57∑
j=1

mj(x)δgjmn(z), (4.13)

where the moduli fields mj, j = 0, . . . , 57 now only depend on the coordinates
xµ. The modulus ω associated to the overall volume V of the K3 surface is
given by:

ω(x) =
1

V

∫
K3

∗1. (4.14)

With this, the 10-dimensional dilaton field φ̂ decomposes as

φ̂(x̂) = φ(x) + lnω(z). (4.15)
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One also obtains moduli fields from the B̂-field which can be expanded in
terms of the 22 harmonic 2-forms Ωi(z) on the K3 surface:

B̂(x, z) = B(x) +
22∑
i=1

bi(x)Ωi(z). (4.16)

It is known that the full moduli space of a K3 surface is given by ([2, 20]):

SO(Γ4,20)\SO(4, 20)/(SO(4)× SO(20)), (4.17)

where again SO(Γ4,20) denotes the discrete subgroup of SO(4, 20) matrices
leaving invariant a (4, 20)-dimensional integer lattice Γ4,20.

After dimensional reduction and integration over the internal K3 surface
the 6-dimensional action is [11]:

S =

∫
e−φ

(
1

2
R ∗ 1 +

1

2
dφ ∧ ∗dφ+

1

4
H ∧ ∗H +

1

8
Tr
(
dM−1 ∧ ∗dM

))
,

(4.18)
where the action of the scalar fields coming from the expansion of the metric
and of the B-field have been arranged into a Matrix M which is an element of
SO(4, 20) and depends on the 80 parameters bi, i = 1, . . . , 22, gj, j = 1, . . . , 57
and ω as follows:

M =

 ω−1 −2ω−1bT −2ω−1(b̄b)
−2ω−1b 4ω−1bbT +Hd−1 4ω−1(b̄b)b+ 2Hb
−2ω−1(b̄b) 4ω−1(b̄b)bT + 2bTHT ω + 4ω−1(b̄b)2 + 4b̄Hb

 ,

(4.19)
where b̄ = bTd and the 22 × 22 matrix H, defined in 4.2, depends only on
the metric moduli ma, a = 1, . . . , 57. One can decompose the matrix M as
follows (see e.g. [15]):

M = V TV , V =

 ω−
1
2 −2ω−

1
2 bT −2ω−

1
2 (b̄b)

0 v 2vdb

0 0 ω
1
2

 , (4.20)

where v is an upper triangular 22× 22 matrix such that vTv = H · d−1. The
upper triangular matrix V can be easily inverted:

V −1 =

 ω
1
2 2b̄v−1 −2ω−

1
2 (b̄b)

0 v−1 −2ω−
1
2db

0 0 ω−
1
2

 , (4.21)
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from which one can calculate M−1 = V −1(V −1)T :

M−1 =

 ω + 4b̄H−1b+ 4ω−1(b̄b)2 2b̄H + 4ω−1(b̄b)b̄ −2ω−1(b̄b)
2dHb+ 4ω−1(b̄b)db 4ω−1dbb̄+ dH −2ω−1db
−2ω−1(b̄b) −2ω−1bTd ω−1

 .

(4.22)
From 4.19 and 4.22 the last term in the Lagrangian 4.18 can be computed,
done in the next section.

4.3 Comparison of the Moduli Space of K3

with the Coordinates from the c-map

In section 3.3 we tried to arrange the coordinates of the quaternion-Kähler
manifold obtained from the c-map into a matrix M to bring the Lagrangian
into the form Tr(∂µM−1∂µM ). This was only achieved for part of the coor-

dinates ZA, Z̄A of the special Kähler manifold SU(1,1)
U(1)

× SO(2,18)
SO(2)×SO(18)

which is

embedded in the quaternion-Kähler space SO(4,20)
SO(4)×SO(20)

.
One can now compute the part of the Lagrangian 4.18 involving the mod-

uli fields to compare it directly to the Lagrangian 3.3 obtained from the c-map
in section 3.1. With the matrix M given in 4.19 and M−1 given in 4.22 one
gets the result:

1

8
Tr
(
∂µM

−1∂µM
)

= − 1

4ω2
(∂µω)2 − 2

ω
(∂µbi)H

i
j(∂

µbj) + ∂µH
i
j∂

µHj
i . (4.23)

This result looks rather simple, however, the major part of this expression is
still encoded in the matrix H.

The form of 4.23 suggests that the modulus ω of the volume of the K3
surface can be associated with the field φ of the Lagrangian 3.3. Since the
matrix H depends only on the metric moduli fields ma, a = 1, . . . , 57, the
coupling of the fields bi, i = 1, . . . , 22 does not involve the fields bi themselves.
We have seen in section 3.3.2 that the coupling of the real parts XA of the
complex fields ZA, described by equations 3.41 and 3.44, does not involve
the fields XA themselves. It could therefore be suggested that the XA, A =
1, . . . , 19 can be associated with the fields bi. There are, however, only 19
of the coordinates XA and it is not clear what the remaining 3 of the 22
coordinates bi can be associated with. It is also not clear how the fields
ζI , ζ̃I , I = 0, . . . , 19 can be arranged into the matrix H.
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Chapter 5

Summary and Conclusions

In this thesis we have analysed two different sets of coordinates on the sym-
metric quaternion-Kähler manifold SO(4,20)

SO(4)×SO(20)
which arises in two different

situations. On the one hand this space is in the image of the c-map and on
the other it is related to the moduli space of K3 surfaces.

After a brief introduction to N = 2, D = 4 Supergravity in chapter
2, we have discussed the c-map in chapter 3. Starting from the bosonic
N = 2 vector multiplet Lagrangian with a projective special Kähler target
manifold, by the c-map one obtaines a Lagrangian that describes a theory of
only scalar fields which are the component fields of hypermultiplets and thus
parametrise a quaternion-Kähler target manifold. As a specific example we
have considered the class of special Kähler manifolds SU(1,1)

U(1)
× SO(2,n−1)

SO(2)×SO(n−1)

to which by the c-map is assigned the class of manifolds SO(4,n+1)
SO(4)×SO(n+1)

. The
c-map yields explicit coordinates on the quaternion-Kähler space. In order
to compare these coordinates with the ones obtained for the moduli space
of K3 surfaces in chapter 4 we have tried to arrange them into a matrix M
such that Lagrangian can be written in the form Tr(∂µM−1∂µM ). This was
achieved only for part of the coordinates involved.

In chapter 4 we have discussed compactification of type IIA Supergravity
on a K3 surface. We have seen that the 58 moduli fields arising from the al-
lowed deformations of the metric on the K3 surface together with the 22 mod-
uli from the expansion of the B-field in terms of harmonic 2-forms together
describe a theory invariant under SO(4, 20). The moduli space is locally of

the form SO(4,20)
SO(4)×SO(20)

. It was shown in [11] that the part of the Lagrangian

describing the moduli fields can be written in the form Tr(∂µM−1∂µM ) with
an SO(4, 20) matrix M . In section 4.3 we have analysed how to compare the
coordinates of the moduli space of K3 surfaces with those obtained from the
c-map of our specific example in section 3.2.
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Appendix A

Kähler, Hyper-Kähler and
Quaternion-Kähler Geometry

In this chapter we give the basic definitions of the manifolds that appear as
target spaces of vector and hypermultiplets in N = 2 Supersymmetry and
Supergravity (chapter 2). We refer to [17] as a general reference for complex
and Kähler geometry and to [4, 21] for hyper-Kähler and quaternion-Kähler
geometry in section A.2. For special Kähler geometry in section A.3 we refer
to [7, 13].

A.1 Complex and Kähler Manifolds

Definition A.1. An almost complex manifoldM is a 2n-dimensional real
differentiable manifold on which is defined an almost complex structure
J , that is a globally (i.e. on the whole of M) defined smooth (1, 1)-tensor
field

J : M → End(TM), p 7→ Jp ∈ End(TpM), (A.1)

such that
J2
p = −1TpM ∀p ∈M. (A.2)

In a local coordinate chart (U ;x1, . . . , x2n), J can be given in components
with respect to the vector fields ∂

∂xa as J( ∂
∂xa ) = J ba

∂
∂xb .

Definition A.2. An almost complex structure is said to be integrable if
the Nijenhuis tensor N , which in components is given by

N i
jk = 2

2n∑
l=1

(
J lj∂lJ

i
k − J lk∂lJ ij − J il ∂jJ lk + J il ∂kJ

l
j

)
, (A.3)
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vanishes. An almost complex manifold (M,J) is a complex manifold if
and only if the almost complex structure is integrable in which case it is
referred to as a complex structure. On a complex manifold one can find
local coordinates (U ;x1, . . . , xn, y1, . . . , yn) on an open neighbourhood U such
that ∂

∂yk = J( ∂
∂xk ) for k = 1, . . . , n on U . One then introduces complex

coordinates zk = xk + iyk, z̄+ = xk − iyk with

∂

∂zk
=

1

2

(
∂

∂xk
− i ∂

∂yk

)
,

∂

∂z̄k
=

1

2

(
∂

∂xk
+ i

∂

∂yk

)
. (A.4)

On a complex manifold, the transition function from one set of complex
coordinates to another are holomorphic.

Definition A.3. A Hermitean metric on an almost complex manifold M
is a Riemannian metric g, in components gab = g( ∂

∂xa ,
∂
∂xb ), which is invariant

by the almost complex structure J , i.e.

(gp)ab(Jp)
a
c(Jp)

b
d = (gp)cd ∀p ∈M. (A.5)

The fundamental 2-form with respect to g is defined by

Φ = gacJ
c
bdx

a ∧ dxb. (A.6)

If M is a complex manifold, introducing complex coordinates z1, . . . , zn,
z̄1, . . . , z̄n, we denote the components of a metric g on M by

gab = g

(
∂

∂za
,
∂

∂zb

)
, gab̄ = g

(
∂

∂za
,
∂

∂z̄b

)
, gāb̄ = g

(
∂

∂z̄a
,
∂

∂z̄b

)
. (A.7)

For a Hermitean metric one has gab = gāb̄ = 0, and gab̄ is a Hermitean matrix
and one can write

ds2 = 2gab̄dz
adz̄b, (A.8)

with dza = dxa + idya and dz̄b = dxb − idz̄b and the fundamental 2-form is

Φ = −2igab̄dz
a ∧ dz̄b. (A.9)

Definition A.4. A Kähler manifold M is a complex manifold M for which
the complex structure J is parallel with respect to the Levi-Civita connec-
tion ∇g induced by a Hermitean metric g, or, equivalently, for which the
fundamental 2-form is closed:

(M, g) Kähler⇐⇒ ∇gJ = 0⇐⇒ dΦ = 0. (A.10)
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On a Kähler manifold the metric can be expressed locally on a coordinate
chart (U, z = (z1, . . . , zn)) in terms of a real-valued function K by

gab̄ =
∂2K

∂za∂z̄b
. (A.11)

The function K is referred to as the Kähler potential. The Kähler potential
is not uniquely defined on U since

K(z, z̄)→ K(z, z̄) + f(z) + f̄(z̄), (A.12)

where f(z) is an arbitrary holomorphic function on U , yields a different
Kähler potential that results in the same metric. This is called a Kähler
transformation. In particular, on the overlap of two coordinate charts Ui,
Uj, Kähler potentials Ki, Kj are related to each other by such a Kähler
transformation.

Finally, an equivalent characterisation of Kähler manifolds is to say their
holonomy group is contained in U(n) ⊂ SO(2n).1

Definition A.5. A Calabi-Yau manifold is a Kähler manifold which in
addition has vanishing Ricci curvature. These manifolds are characterised
by their holonomy group being contained in SU(n) ⊂ U(n).

A.2 Hyper-Kähler and Quaternion-Kähler

Manifolds

Definition A.6. A hyper-Kähler manifold is a 4n-dimensional Rieman-
nian manifold M on which there are two globally defined complex structures
I and J and a metric g such that

(i) (M, g) is a Kähler manifold with respect to both I and J ,

(ii) IJ = −JI.

Note that on a hyper-Kähler manifold K = IJ is another parallel complex
structure and more generally, for any triplet of real numbers (x, y, z) with
x2 + y2 + z2 = 1, xI + yJ + zK yields a parallel complex structure so that
there is a whole manifold (isometric to S2) of complex structures on M .

1The holonomy group of a Riemannian manifold M is obtained by all linear trans-
formations on the tangent space TpM at a given point p which are induced by parallel
transporting a tangent vector at p around a closed, piecewise differentiable loop at p with
respect to the Levi-Civita connection of M .
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An equivalent characterisation of hyper-Kähler manifolds is to say their
holonomy group is contained in Sp(n) ⊂ SO(4n). Note that since Sp(n) ⊂
SU(2n), hyper-Kähler manifolds are Calabi-Yau manifolds and thus auto-
matically Ricci-flat.

Definition A.7. An almost quaternionic manifold is a 4n-dimensional
real differentiable manifold M for which there exists a covering of M by open
sets {Ui} such that:

(i) on each Ui there are two locally defined almost complex structures J1

and J2,

(ii) J1J2 = −J2J1, and we set J3 = J1J2 which is another almost complex
structure on Ui,

(iii) for all points p ∈ Ui ∩ Uj in an intersection, the vector space of endo-
morphisms spanned by J1, J2 and J3 is the same for i and j.

Definition A.8. A quaternion-Kähler manifold is an almost quater-
nionic manifold M together with a metric g such that

(i) on each open set Ui the metric g is Hermitean with respect to J1, J2

and thus also J3,

(ii) the Levi-Civita derivative of J1, J2 or J3 lies again in the vector space
spanned by J1, J2 and J3.

An equivalent characterization of quaternion-Kähler manifolds is to say their
holonomy group is contained in Sp(n).Sp(1) := Sp(n) ×Z2 Sp(1) ⊂ SO(4n),
where the elements {−1,+1} of both groups Sp(n) and Sp(1) are identified.
Quaternion-Kähler manifolds are Einstein manifolds, i.e. the Ricci tensor is
proportional to the metric: Rg

ab = λgab, for some λ ∈ R. For λ = 0 a
quaternion-Kähler manifold becomes hyper-Kähler but note that for λ 6= 0 on
a quaternion-Kähler manifold in general there need not even exist a globally
defined almost complex structure.

From the locally defined almost complex structures J1, J2, J3 on an open
set Ui ⊂M one again defines 2-forms defined on the same set Ui:

Φi = gac(J
i)cbdx

a ∧ dxb, i = 1, 2, 3. (A.13)

The 2-forms Φi, i = 1, 2, 3 will in general not be closed unless λ = 0.
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A.3 Special Kähler Manifolds

The Kähler manifolds that appear as target spaces of the scalar fields XI , I =
0, . . . , n in the vector multiplets of N = 2 Supersymmetry and Supergravity
are of some restricted type called special Kähler manifolds. One distinguishes
between two types of special Kähler manifolds, rigid or affine special Kähler
manifolds and local or projective special Kähler manifolds which appear in
global (rigid) N = 2 Supersymmetry and local N = 2 Supergravity, re-
spectively. The names affine / projective refer to the terminology used in
the mathematics literature, whereas the terms rigid / local are used in the
physics literature. Following [7], we give the definitions of the two types of
manifolds which are adapted most for our use in N = 2 Supersymmetry /
Supergravity. They both rely on the existence of a holomorphic function
F (XI), called the prepotential, from which the Kähler potential of these
manifolds is computed.

Definition A.9. An affine (or rigid) special Kähler manifold of com-
plex dimension n is a Kähler manifold M satisfying the following conditions:

(i) On every coordinate chart (U, z = (z1, . . . , zn)) of M there are n holo-
morphic functions X = (X1(z), . . . Xn(z)) and a holomorphic function
F (X) such that a Kähler potential for this chart is given by

K(z, z̄) = i

(
XI ∂F̄ (X̄)

∂X̄I
− X̄I ∂F (X)

∂XI

)
. (A.14)

(ii) The transition functions on the overlap of two coordinate charts Ui and
Uj are given by(

X
∂F
∂X

)
(i)

= eic(ij) ·M(ij)

(
X
∂F
∂X

)
(j)

+

(
U
V

)
(ij)

, (A.15)

with c(ij) ∈ R, M(ij) ∈ Sp(2n,R) and (U, V )(ij) ∈ C2n.

(iii) The transition functions satisfy the cocycle condition on overlap regions
of three charts.

Definition A.10. A projective (or local) special Kähler manifold of
complex dimension n is a Kähler manifold M which satisfies the conditions:

(i) The cohomology class of the fundamental 2-form Φ on M is of even
integer type, meaning that the integral of Φ over an arbitrary 2-cycle
C is ∫

C
Φ = 2πin with n ∈ Z. (A.16)
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(ii) On every coordinate chart (U, z = (z1, . . . , zn)) of M there are n + 1
projective coordinate functions X = (X0(z), . . . Xn(z)) and a holomor-
phic function F (X) which in addition is homogeneous of second degree
such that a Kähler potential on this chart is given by

K(z, z̄) = − ln

(
iX̄I ∂F (X)

∂XI
− iXI ∂F̄ (X̄)

∂X̄I

)
. (A.17)

(iii) The transition function on the overlap of two coordinate charts Ui and
Uj is given by (

X
∂F
∂X

)
(i)

= exp(f(ij)) ·M(ij)

(
X
∂F
∂X

)
(j)

(A.18)

where M(ij) ∈ Sp(2(n + 1),R) and f(ij) is a holomorphic function on
Ui ∩ Uj. This amounts to a Kähler transformation of the potential
K(i)(z, z̄) = K(j)(z, z̄) + f(ij)(z) + f̄(ij)(z̄).

(iv) The transition functions satisfy the cocycle condition on overlap regions
of three charts.

On projective special Kähler manifolds we introduce inhomogeneous com-
plex coordinates ZI = (1, ZA) with ZA = XA

X0 , A = 1, . . . , n on a region with
X0 6= 0.
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Appendix B

Construction of the c-map

The bosonic part of the N=2 supergravity Lagrangian coupled to an arbitrary
number of n vector multiplets is given by (c.f. equation 2.8):

e−1Lvec =
1

2
R−KAB∂µZ

A∂µZ̄B+
1

4
(ImN )IJF

I
µνF

J |µν−1

4
(ReN )IJF

I
µνF̃

J |µν .

(B.1)
The complex scalars ZA, Z̄A are coordinates of a projective special Kähler
manifold. The construction of the c-map is performed by several manipu-
lations of this Lagrangian that in the end yield a Lagrangian describing a
manifold of only scalars which which are coordinates on a quaternion-Kähler
manifold.

The first step is a dimensional reduction on a circle with radiusR from 4 to
3 spacetime dimensions. Therefore one chooses the vierbein of the spacetime
metric to be of the form

eµa =

(
eµ̂â 0
φBµ̂ φ

)
, µ, a = 0, 1, 2, 3; µ̂, â = 0, 1, 2. (B.2)

By this choice the 4-metric and its inverse take on the form

gµν =

(
ĝµ̂ν̂ + φBµ̂Bν̂ φBµ̂

φBν̂ φ

)
, gµν =

(
ĝµ̂ν̂ −Bµ̂

−Bν̂ B2 + 1
φ

)
, (B.3)

where now ĝµ̂ν̂ = ηâb̂e
â
µ̂e
b̂
ν̂ is the 3-metric and ĝµ̂ν̂ its inverse.

The 4-dimensional Ricci scalar is

R(4) = gµρR(4) ν
µνρ = gµρ(∂νΓ

ν
µρ − ∂µΓννρ + ΓσµρΓ

ν
σν − ΓσνρΓ

ν
σµ), (B.4)

the Christoffel symbols being defined by

Γµνρ =
1

2
gµσ(∂νgρσ + ∂ρgνσ − ∂σgνρ). (B.5)
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If one writes out the fourth components explicitely, the 4-dimensional Ricci
scalar becomes

R(4) = R(3) − 1

4
φĝµ̂ρ̂ĝν̂σ̂(∂µ̂Bν̂ − ∂ν̂Bµ̂)(∂ρ̂Bσ̂ − ∂σ̂Bρ̂) +

1

2φ2
ĝµ̂ρ̂(∂µ̂φ̂)(∂ρ̂φ̂)

= R(3) − 1

4
φHµ̂ν̂H

µ̂ν̂ +
1

2φ2
(∂µ̂φ)(∂µ̂φ), (B.6)

where we have introduced the field strength Hµ̂ν̂ = ∂µ̂Bν̂ − ∂ν̂Bµ̂ of the field
Bµ̂ and the 3-indices are now lowered and raised by the 3-metric and its
inverse, respectively.
The 4-vectors AIµ of the vector multiplets are split in the following way into

3-vectors ÂIµ̂ and scalars ζI :

AIµ =
(
ÂIµ̂ +Bµ̂ζ

I , ζI
)
, (B.7)

where Bµ̂ is the same field as in the metric. Writing out the fourth compo-
nents explicitely, the field strength tensors of the vector fields AIµ are

F I
µν =

(
∂µ̂(ÂIν̂ +Bν̂ζ

I)− ∂ν̂(ÂIµ̂ +Bµ̂ζ
I) ∂µ̂ζ

I

−∂ν̂ζI 0

)
. (B.8)

By this the remaining terms in the Lagrangian B.1 become:

1

4
(ImN )IJF

I
µνF

J |µν =
1

4
(ImN )IJ

[
(F̂ I

µ̂ν̂ +Hµ̂ν̂ζ
I)(F̂ J |µ̂ν̂ +H µ̂ν̂ζJ)

+
2

φ
(∂µ̂ζ

I)(∂µ̂ζJ)

]
, (B.9)

1

4
(ReN )IJF

I
µνF̃

J |µν =(ReN )IJε
µ̂ν̂ρ̂
(
F̂ I
µ̂ν̂ +Hµ̂ν̂ζ

I
) (
∂ρ̂ζ

J
)
. (B.10)

In 3 dimensions the field strengths F̂µ̂ν̂ = ∂µ̂Âν̂ − ∂ν̂Âµ̂ and Hµ̂ν̂ can be

converted to vector fields by Hodge dualisation, i.e. we define F̂µ̂ = −1
2
εµ̂ν̂ρ̂F̂

ν̂ρ̂

and Hµ̂ = −1
2
εµ̂ν̂ρ̂H

ν̂ρ̂. The scalar fields ZA, Z̄A simply reduce to scalar fields

in three dimensions which we denote by ẐA, ˆ̄ZA. The dimensionally reduced
Lagrangian then reads

e−1
(3)L

(3)
vec =

1

2
R(3) − 1

4
φ2Hµ̂H

µ̂ +
1

4φ2
(∂µ̂φ)(∂µ̂φ)−KAB̄∂µ̂Ẑ

A∂µ̂ ˆ̄ZB̄

+ (ReN )IJ(F̂ I
µ̂ +Hµ̂ζ

I)(∂µ̂ζJ)

+
1

2
φ(ImN )IJ(F̂ I

µ̂ +Hµ̂ζ
I)(F̂ J |µ̂ +H µ̂ζJ)− 1

2φ
(ImN )IJ(∂µ̂ζ

I)(∂µ̂ζJ).

(B.11)
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Here e(3) denotes the determinant of the dreibein eâµ̂, i.e. we have φ · e(3) = e.
The next step in the construction of the c-map is to convert the 3-dimensional
vector fields F̂ I

µ̂ and Hµ̂ in the Lagrangian B.11 into scalars. Therefore note

that since the field strenghts F̂ I
µ̂ν̂ , Hµ̂ν̂ are derived from vector potentials ÂIµ̂,

Bµ̂, they obey Bianchi identities: εµ̂ν̂ρ̂∂µ̂F̂
I
ν̂ρ̂ = 0, εµ̂ν̂ρ̂∂µ̂Hν̂ρ̂ = 0. We modify

the Lagrangian B.11 by adding Lagrange multipliers to it so that the Bianchi
identities become field equations of the modified Lagrangian L (3)

mod:

e−1
(3)L

(3)
mod = e−1

(3)L
(3)
vec − F̂ I|µ̂∂µ̂ζ̃I +

1

2
H µ̂∂µ̂(φ̃− ζI ζ̃I). (B.12)

The field equations of the fields φ̃ and ζ̃I are

0 =∂µ̂

(
∂L (3)

mod

∂(∂µ̂ζ̃I)

)
− ∂L (3)

mod

∂ζ̃I
= −∂µ̂F̂ I|µ̂ − 1

2
(∂µ̂H

µ̂)ζI , (B.13)

0 =∂µ̂

(
∂L (3)

mod

∂(∂µ̂φ̃)

)
− ∂L (3)

mod

∂φ̃
=

1

2
∂µ̂H

µ̂. (B.14)

By inserting these back into B.12 we can restore, up to a divergence term, the
original Lagrangian L (3)

vec . Instead, however, we can solve for the equations
of motion for the fields F̂ I

µ̂ and Hµ̂ which are

0 = (ReN )IJ∂
ν̂ζJ − φ(ImN )IJ(F̂ J |ν̂ +H ν̂ζJ) + ∂ ν̂ ζ̃I , (B.15)

and

0 = −1

2
φ2H ν̂+(ReN )IJζ

I∂ ν̂ζJ−φ(ImN )IJζ
I(F̂ J |ν̂+H ν̂ζJ)−1

2
∂ ν̂(φ̃−ζI ζ̃I),

(B.16)
and solve these to get

F̂ I|ν̂ +H ν̂ζI =
1

φ
(ImN )−1|IJ

(
(ReN )JK∂

ν̂ζK + ∂ ν̂ ζ̃J

)
, (B.17)

H ν̂ = − 1

φ2

(
∂ ν̂φ̃− (∂ ν̂ζI)ζ̃I + ζI∂ ν̂ ζ̃I

)
. (B.18)

Here, as always in the following, the inverse of the matrix ImN is written
with upper indices.
By inserting B.17 and B.18 into B.12 we get the result:

e−1
(3)L̃sca =

1

2
R(3) −KAB̄∂µ̂Ẑ

A∂µ̂ ˆ̄ZB̄ +
1

2φ

[
(ImN )IJ(∂µ̂ζ

I)(∂µ̂ζJ)

−
(

(ReN )IK∂µ̂ζ
K + ∂µ̂ζ̃I

)
(ImN )−1|IJ

(
(ReN )JL∂

µ̂ζL + ∂µ̂ζ̃L
) ]

+
1

4φ2

[
(∂µ̂φ)2 +

(
∂µ̂φ̃− (∂µ̂ζ

I)ζ̃I + ζI∂µ̂ζ̃I

)2
]
. (B.19)
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The Lagrangian L̃sca now describes, apart from the curvature term, a theory
of only scalar fields, φ, φ̃, ζI , ζ̃I (I = 0, . . . , n), ZA, Z̄Ā (A = 1, . . . , n), in
3 dimensions. The Lagrangian is now reinterpreted again as describing a
theory in 4 dimensions:

e−1L̃ =
1

2
R(4) −KAB̄∂µZ

A∂µZ̄B̄ +
1

2φ
(ImN )IJ(∂µζ

I)(∂µζJ)

− 1

2φ

(
(ReN )IK∂µζ

K + ∂µζ̃I

)
(ImN )−1|IJ

(
(ReN )JL∂

µζL + ∂µζ̃L
)

+
1

4φ2

[
(∂µφ)2 +

(
∂µφ̃− (∂µζ

I)ζ̃I + ζI∂µζ̃I

)2
]
. (B.20)

One can write B.20 in a more compact form by introducing the complex fields

σµ := ∂µφ+ i
(
∂µφ̃− (∂µζ

I)ζ̃I + ζI∂µζ̃I

)
, (B.21)

WI|µ := NIJ∂µζ
J + ∂µζ̃I . (B.22)

The Lagrangian then reads

e−1L̃ =
1

2
R−Kab̄∂µZ

a∂µZ̄b +
1

4φ2
σµσ̄

µ − 1

2φ
(ImN )−1|IJWI|µW̄

µ
J . (B.23)

To see that this Lagrangian describes a quaternion-Kähler manifold, one
can specify a vielbein of the Lagrangian B.20, find the connection 1-forms
ω, and compute from these the curvature. One then has to show that the
curvature 2-forms Ω = dω+ω∧ω take their values in sp(1)⊕sp(n). Then the
holonomy group of the manifold is contained in Sp(1).Sp(n), showing that it
is a quaternion-Kähler manifold (c.f. section A.2).1

A vielbein of the Lagrangian B.23 is given by

u =
1√
φ

1√
iZ̄NZ

(FIdζ
I + ZIdζ̃I) =

1√
φ

ZI

√
iZ̄NZ

(
NIJ∂µζ

J + ∂µζ̃I

)
,

eA = eAI dZI , A = 1, . . . , n,

v =
1

2φ
(dφ+ i(dφ̃+ ζ̃Idζ

I − ζIdζ̃I)),

EA =

√
iZ̄NZ√
φ

eAI N
−1|IK(NKLdζL + dζ̃K), A = 1, . . . , n, (B.24)

together with their complex conjugate 1-forms. Here eAI denotes a vielbein
of the original special Kähler manifold, i.e. we have eAI (eAJ )∗ = KIJ̄ . Also,
Z̄NZ = Z̄INIJZ

J and NIJ = FIJ − F̄IJ .

1This is a consequence of the Ambrose-Singer theorem, see e.g. [17].
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To prove that B.24 indeed is a vielbein one shows that the Lagrangian
can be written as

e−1L̃ = eA ⊗ ēA + EA ⊗ ĒA + u⊗ ū+ v ⊗ v̄, (B.25)

where the notation ⊗ from [12] denotes the composition of two 1-forms ψ =
ψν(x)dxν , ω = ων(x)dxν , defined by ψ ⊗ ω = ηµνψ(∂µ) · ω(∂ν). We see
that eA ⊗ ēA = ηµν(eAI ∂ρZ

Idxρ)(∂µ) · (ēA
J̄
∂σZ̄

J̄dxσ)(∂ν) = KIJ̄∂µZ
I∂µZ̄ J̄ and

v ⊗ v̄ = 1
4φ2σµσ̄

µ. For the remaining term in B.23 one computes:

EA ⊗ ĒA =
iZ̄NZ

φ
KIJ̄N

−1|IKN−1|JL(NKM∂µζ
M + ∂µζ̃K)( ¯NLN∂

µζN + ∂µζ̃L)

=
−i
φ

(
−N−1|IJ +

Z̄IZJ

Z̄NZ

)
(NIM∂µζ

M + ∂µζ̃I)( ¯NJN∂
µζN + ∂µζ̃J),

u⊗ ū =
1

φ

ZIZ̄J

iZ̄NZ
(NIM∂µζ

M + ∂µζ̃I)( ¯NJN∂
µζN + ∂µζ̃J). (B.26)

By the identity (c.f. equation 3.19)

−N−1|IJ +
Z̄IZJ + ZIZ̄J

Z̄NZ
=

1

2i
(ImN )−1|IJ , (B.27)

which is checked by multiplying with ImN from equation 2.10, one gets

EA ⊗ ĒA + u⊗ ū = − 1

2φ
(NIM∂µζ

M + ∂µζ̃I)(ImN )−1|IJ( ¯NJN∂
µζN + ∂µζ̃J)

= − 1

2φ
(ImN)−1|IJWI|µW̄

µ
J , (B.28)

which prooves B.25.
The vielbein 1-forms B.24 are now arranged into a 2× (2n+ 2) matrix V αΓ

where α = 1, 2 and Γ = 0, . . . , 2n− 1:

V αΓ =


u v
eA EA

v̄ −ū
ĒA −ēA

 . (B.29)

To find the connection 1-forms with respect to this vielbein, i.e. 1-forms ωαIβJ
such that

dV αΓ =
∑
β,∆

ωαΓ
β∆ ∧ V β∆, (B.30)
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one needs the exterior derivatives of the vielbein 1-forms given in [12] by:

du =

[
−1

2
(v + v̄) +

Z̄NdZ − ZNdZ̄

2Z̄NZ

]
∧ u− ĒA ∧ eA,

dv =v ∧ v̄ + u ∧ ū+ EA ∧ ĒA,

deA =η A
B ∧ eB,

dEA =

[
−η − 1

2
(v + v̄)− Z̄NdZ − ZNdZ̄

2Z̄NZ

]
∧ EA − ū ∧ eA

− 1

2
(Z̄NZ)PN−1(dF )N−1P T ∧ ĒA, (B.31)

where η A
B is the connection of the original special Kähler manifold. P is an

n × (n + 1) matrix given by PA
I = eAI , P I

0 = −eAI ZI and F is the matrix of
the second derivatives FIJ of the prepotential of the special Kähler manifold.
By comparing B.31 with B.30 one can read off the connection 1-forms ωαΓ

β∆.
In fact, they decompose as

ω = p× 1(2n+2)×(2n+2) + 12×2 × q, (B.32)

where the (2n+ 2)× (2n+ 2) matrix q is an element of sp(n+ 1) and p is in
sp(1) = su(2). We only need p here:

p =

(
1
4
(v − v̄)− Z̄NdZ−ZNdZ̄

4Z̄NZ
−u

ū −1
4
(v − v̄) + Z̄NdZ−ZNdZ̄

4Z̄NZ

)
. (B.33)

The sp(1)-curvature 2-form P computed from B.33 is given by:

P = dp+ p ∧ p =[
v ∧ v̄ − u ∧ ū+ EA ∧ ĒA − eA ∧ ēA −2

(
u ∧ v̄ + eA ∧ ĒA

)
−2
(
v ∧ ū+ EA ∧ ēA

)
u ∧ ū− v ∧ v̄ − EA ∧ ĒA + eA ∧ ēA

]
.

(B.34)

On a quaternion-Kähler manifold, the sp(1) = su(2) part of the curvature
is proportional to the fundamental 2-forms associated to the quaternionic
structure of the manifold, also arraged into a 2× 2 matrix:

P =

(
P 1

1 P 2
1

P 1
2 P 2

2

)
= dp+ p ∧ p = iλ

(
Φ3 Φ1 − iΦ2

Φ1 + iΦ2 −Φ3

)
. (B.35)

In Supergravity the constant λ is restricted to be −1.
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The components of P , expressed in the coordinates φ, φ̃, ζI , ζ̃I , Z
A, Z̄A,

are given by:

P 1
1 = −P 2

2 = − i

4φ2

(
dφ ∧ dφ̃+ ζ̃Idφ ∧ dζI − ζIdφ ∧ dζ̃I

)
+

i

2φ
dζI ∧ dζ̃I

+
i

φZ̄NZ

(
FIF̄JdζI ∧ dζJ + (FIZ̄

J − F̄IZJ)dζI ∧ dζ̃J + ZIZ̄Jdζ̃I ∧ dζ̃J

)
+

1

2

(
NIJ

Z̄NZ
− (NZ̄)I(NZ)J

(Z̄NZ)2

)
dZI ∧ dZ̄J ,

P 2
1 = −P̄ 1

2 =
(

2
√
φ
√
iZ̄NZ

)−1
[

1

φ

(
FId(φ− iφ̃) ∧ dζI + ZId(φ− iφ̃) ∧ dζ̃I

+ iFI ζ̃JdζI ∧ dζJ + i(ZI ζ̃J + ζIFJ)dζ̃I ∧ dζJ − iZIζJdζ̃I ∧ dζ̃J

)
− 2FIJdZJ ∧ dζI − 2dZI ∧ dζ̃I

]
. (B.36)

From equations B.34 and B.35 we have

Φ1 =− ImP 2
1 = −i

(
u ∧ v̄ + v ∧ ū+ eI ∧ ĒI + EI ∧ ēI

)
,

Φ2 =−ReP 2
1 = −

(
u ∧ v̄ − v ∧ ū+ eI ∧ ĒI − EI ∧ ēI

)
, (B.37)

Φ3 =− ImP 1
1 = i

(
v ∧ v̄ − u ∧ ū+ EI ∧ ĒI − eI ∧ ēI

)
.

We now want to compute the three fundamental 2-forms for the example
of the quaternion-Kähler manifold studied in section 3.2. Note that in the
expression for P 1

1 one has, since the Kähler potential of the special Kähler
manifold K = − ln i(Z̄IFI − ZIF̄I) = − ln iZ̄NZ,

NIJ

Z̄NZ
− (NZ̄)I(NZ)J

(Z̄NZ)2
= − ∂2K

∂ZI∂Z̄J
= −KIJ̄ , (B.38)

which is the Kähler metric, computed in equation 3.8. The three fundamental
2-forms are given by:

Φ1 =
(

2
√
φ
√
iZ̄NZ

)−1
[

1

2φ

(
i(FI − F̄I)dφ ∧ dζI + (FI + F̄I)dφ̃ ∧ dζI

+ i(ZI − Z̄I)dφ ∧ dζ̃I + (ZI + Z̄I)dφ̃ ∧ dζ̃I − (FI + F̄I)ζ̃JdζI ∧ dζJ

− ((ZI + Z̄I)ζ̃J + ζI(FJ + F̄J))dζ̃I ∧ ζJ + (ZI + Z̄I)ζJdζ̃I ∧ dζ̃J

)
− iFIJdZI ∧ dζJ + iF̄IJdZ̄I ∧ dζJ − id(ZI − Z̄I) ∧ dζ̃I

]
, (B.39)
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Φ2 =−
(

2
√
φ
√
iZ̄NZ

)−1
[

1

2φ

(
(FI + F̄I)dφ ∧ dζI − i(FI − F̄I)dφ̃ ∧ dζI

+ (ZI + Z̄I)dφ ∧ dζ̃I − i(ZI − Z̄I)dφ̃ ∧ dζ̃I + i(FI − F̄I)ζ̃JdζI ∧ dζJ

+ i((ZI − Z̄I)ζ̃J + ζI(FJ − F̄J))dζ̃I ∧ dζJ − i(ZI − Z̄I)ζJdζ̃I ∧ dζ̃J

)
− FIJdZI ∧ dζJ − F̄IJdZ̄I ∧ dζJ − d(ZI + Z̄I) ∧ dζ̃I

]
, (B.40)

Φ3 =
1

4φ2

(
dφ ∧ dφ̃+ ζ̃Idφ ∧ dζI − ζIdφ ∧ dζ̃I

)
− 1

2φ
dζI ∧ dζ̃I

− 1

φZ̄NZ

(
FIF̄JdζI ∧ dζJ + (FIZ̄

J − F̄IZJ)dζI ∧ dζ̃J + ZIZ̄Jdζ̃I ∧ dζ̃J

)
+

(
2(ZM − Z̄M)(ZN − Z̄N)

((ZK − Z̄K)2)2
− ηMN

(ZK − Z̄K)2

)
dZM ∧ dZ̄N

+
1

2(Z1 − Z̄1)2
dZ1 ∧ dZ̄1. (B.41)

Here one has, computed from the prepotential F in section 3.2,

FI = (F0, F1, FI) =

(
−1

2
Z1ZMZ

M ,
1

2
ZMZ

M , Z1ZI

)
, (B.42)

FIJ =

 Z1 · (ZMZM) −1
2
(ZMZ

M) −Z1 · ZJ
−1

2
(ZMZ

M) 0 ZJ
−Z1 · ZI ZI Z1 · ηIJ

 . (B.43)

We have thus computed all the data needed to describe the quaternionic
structure of the dual quaternion-Kähler manifold obtained from the c-map.
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Appendix C

Mathematical notation

C.1 Notation for k-forms

Let M be a differentiable manifold of dimension m and x1, . . . , xn local co-
ordinates on a neighbourhood U of some point p ∈ M . For a differential
k-form on M , 0 ≤ k ≤ m, we use the notation

ωk =
1

k!
ωi1...ikdxi1 ∧ · · · ∧ dxik , (C.1)

where ωi1...ik is totally antisymmetric in its indices.
The wedge (or exterior) product of a k-form ωk and l-form ηl is given by

ωk ∧ ηl =
1

k!l!
ωi1...ipηj1...jldx

i1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl , (C.2)

defining a (k + l)-form.
The exterior differential d assigns to a k-form a (k + 1)-form by

dωk =
1

k!
∂jωi1...ikdxj ∧ dxi1 ∧ · · · ∧ dxik . (C.3)

The exterior differential is nilpotent: d2 = 0.
Given a Riemannian metric gij on M , the Hodge dual of a k-form is

defined as

∗ωk =
1

k!(m− k)!
ωi1...ikε

i1...ik
ik+1...in

dxik+1 ∧ · · · ∧ dxin , (C.4)

where εi1,...,in is the totally antisymmetric tensor with ε1···n = 1 and the
indices are raised by the invers metric gij. The Hodge-∗-operator applied
twice satisfies

∗ ∗ ωk = (−1)k(n−k)ωk, (C.5)

for any k-form on M .

45



C.2 Cohomology

A k-form ωk is closed if dωk = 0. We denote the space of all closed k-
forms on a differentiable manifold M , also called k-cocycles, by Zk(M). A
k-form is exact if there is a (k − 1)-form ηk−1 such that dηk−1 = ωk. We
denote the space of all exact k-forms on M by Bk(M). Since d2 = 0 we have
Bk(M) ⊂ Zk(M). The obstruction for a closed k-form to be exact is called
its cohomology class and the quotient space

Hk(M) = Zk(M)/Bk(M) (C.6)

is called the k-th de Rham cohomology of M . Also,

bk = dimHk(M) (C.7)

is called the k-th Betti number of M . If M is a compact Riemannian mani-
fold, each equivalence class of Hk(M) contains exactly one harmonic k-form.
A harmonic form ωk is defined by the condition ∆ωk = 0, where ∆ is the
Laplacian on M being defined by ∆ = d ∗ d ∗+ ∗ d ∗ d. Thus, every closed k-
form ωk can be expanded as a linear combination of the bk harmonic k-forms
on M , modulo an exact k-form.

On a complex manifold M the space of k-forms decomposes as

ΛkM =
⊕
p+q=k

Λp,qM (C.8)

where a (p, q)-form ωp,q ∈ Λp,q is written as

ωp,q =
1

p!q!
ωi1...ip ī1...̄iqdzi1 ∧ · · · ∧ dzip ∧ dz̄ ī1 ∧ · · · ∧ dz̄ īq . (C.9)

Also, the exterior differential operator decomposes into d = ∂ + ∂̄ with

∂ = dzi∂i, ∂̄ = dz̄ ī∂ī, (C.10)

where both operators are nilpotent: ∂2 = 0 = ∂̄2. Further,

Hp,q

∂̄
(M) = Zp,q

∂̄
(M)/Bp,q

∂̄
(M) (C.11)

is called the (p, q)-th Dolbeault cohomology and the Hodge numbers of M
are defined to be

hp,q = dimHp,q

∂̄
(M). (C.12)
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[5] E. Calabi, Métriques kählériennes et fibrés holomorphes, Ann. Sci. École
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