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Cosmological probes of 

Electroweak  symmetry breaking



2010: First collisions at the LHC   

Direct exploration of the TeV scale has started

What is the mechanism of Electroweak Symmetry breaking ?

main physics goal:



"e Standard Model of Pa#icle Physics

- one century to develop it

- tested with impressive precision

The Higgs is the only remaining unobserved piece

and a portal to new physics hidden sectors

- accounts for all data in experimental particle physics
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 Higgs Mechanism

The Higgs selects a vacuum state by developing a non zero background 
value. When it does so, it gives mass  to SM particles it couples to. 

EW symmetry breaking is described  by the condensation of a scalar field

We do not know what makes the Higgs condensate.
We ARRANGE the Higgs potential so that the Higgs condensates but 
this is just a parametrization that we are unable to explain dynamically.

the puzzle:



the Higgs or something else? ?

Electroweak symmetry breaking: 2 main questions
What is unitarizing the WLWL scattering amplitude?

What is cancelling the divergent diagrams?
: Hierarchy problem

→ theoretical need for new physics at the TeV scale

(i.e what is keeping the Higgs light?)

supersymmetry, gauge-Higgs unification, Higgs as a pseudo-goldstone boson...

need new degrees of freedom & new symmetries to cancel the divergences 

Λ , the maximum mass scale that 
the theory describes

strong sensitivity on UV unknown physics

⇒ δMH ∝ Λ 
2 2



Which new physics?

Electroweak 
symmetry breaking

Minimally extended 
(2 Higgs doublets)Supersymmetric

Composite, Higgs as 
pseudo-goldstone 

boson, H=A5
Higgsless, 

technicolor-like, 
5-dimensional

In all explicit examples, without unwarranted cancellations, new 
phenomena are required at a scale Λ~[3-5] × MHiggs



Which Higgs ?

Composite Higgs ?

Little Higgs ?

Littlest Higgs ?

Intermediate Higgs ?

Slim Higgs ?

Fat Higgs ?

Gauge-Higgs ?

Holographic Higgs ?

Gaugephobic Higgs ?

Higgsless ?

UnHiggs ?

Portal Higgs ?

Simplest Higgs ?

Private Higgs ?

Lone Higgs ?

Phantom Higgs ?



What % & nature of & electroweak phase transition ?
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LHC will provide insight as it will shed light on the Higgs sector

Question intensively studied within the Minimal Supersymmetric Standard 
Model (MSSM). However, not so beyond the MSSM (gauge-higgs unification in 

extra dimensions, composite Higgs, Little Higgs, Higgsless...) 



Why do we care?

1) Nature and properties of the EW phase transition reflect 
information on the dynamics behind EW symmetry breaking 

(e.g weakly or strongly interacting). 

2) Crucial for reliable computations of electroweak baryogenesis



● Does a Higgs boson exist ?

  If yes : 
 is there only one ? 
 what are its mass, width, quantum numbers ?  
 what are its couplings to itself and other particles 
 Spin determination 
 CP properties
 does it generate EW symmetry breaking and give mass to 
fermions too as in the Standard Model or is something else needed ?

 If not,   be ready for 
   • very tough searches at the (S)LHC (VLVL scattering, ...) or 
   • more spectacular phenomena such as  W’, Z’ (KK) resonances, technicolor, etc...

What questions the LHC experiments will try to answer : 
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Figure 7: Diphoton invariant mass spectrum in fb obtained with the Higgs boson plus one jet analysis
(see Section 5.2). The same procedure as in Fig. 6 in Section 5.1 is used to obtain the histograms in
Fig. 7. The same codes for signal and backgrounds are used as in Fig. 6.

Table 11: Expected cross-sections (in fb) of background for the Higgs boson plus one jet Analysis.
Results are given after the application of cuts Ia and IIa-IIc (see Section 5.2). In the last row the
expected cross-sections within a mass window of mγγ of ±2 GeV around 120 GeV are given.

Cut γγ Reducible γ j Reducible j j EW γγ j j Total
σ (fb) σ (fb) σ (fb) σ (fb) σ (fb)

Ia-IIa 9698 8498 937 99 19233
IIb 4786 4438 444 99 9768
IIc 501 824 89 71 1485

Mass Window 28 17 2.0 1.5 49

Higgs boson production mechanism after the application of cuts remains the gg→ H j process, closely
followed by the VBF mechanism. It is important to note that the gg→ H j process has been evaluated at
LO ignoring the large QCD NLO corrections.

5.3 Higgs boson plus two jets analysis

This Section considers an event selection comprising two photons in association with two high pT jets,
or tagging jets. In this analysis the tagging jets are defined as the two leading jets in the event. The V BF
Higgs boson process at LO produces two high pT and relatively forward jets in opposite hemispheres
(backward-forward). The pseudorapidity gap and invariant mass of these jets tend to be significantly
larger than those expected for background processes. The NLO description of the VBF process does not
significantly distort this picture.3

3About 10% of the VBF events display the feature that a radiated gluon coming from one of the quark lines happens to
become a tagging jet. In this class of events the pseudorapidity gap and the invariant mass of the tagging jets appears similar to
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5.1 Inclusive analysis

The inclusive analysis refers to the search for a resonance in events with two photons that pass certain
quality criteria. The analysis reported here follows closely the event selection of past studies [3, 4]. The
detector performance and optimization studies succinctly presented in Sections 3 and 4 are geared toward
maximizing the discovery potential of the inclusive analysis.

The following cuts are applied:

Ia At least two photon candidates (see Section 3.2) in the central detector region defined as |η | < 2.37
excluding the transition region between barrel and endcap calorimeters, 1.37 < |η | < 1.52 (crack in
the following). At this level it is required that the event passes the trigger selection (see Section 4).

Ib Transverse momentum cuts of 40,25 GeV on the leading and sub-leading photon candidates, re-
spectively.

The fiducial cuts in Ia are motivated by the quality of the off-line photon identification and the
fake photon rate (see Section 3.2). The values of the cuts on the transverse momentum of the photon
candidates (cut Ib) are not varied and are obtained from previous optimization studies [3].
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Figure 6: Diphoton invariant mass spectrum after the application of cuts of the inclusive analysis. Results
are presented in terms of the cross-sections in fb. The contribution from various signal and background
processes are presented in stacked histograms (see text).

Figure 6 shows the expected diphoton mass spectrum after the application of cuts Ia and Ib. The
hashed histogram in the bottom corresponds to the contributions from events with one and two fake
photons. The second hashed histogram corresponds to the irreducible backgrounds (see Section 2.2). The
background contributions are obtained with MC samples with a fast detector simulation normalized to
the cross-sections specified in Section 2.2. The fast detector simulation is corrected in order to reproduce
the aspects of the detector performance critical to the analysis, which are obtained with a full detector
simulation (see Sections 3 and 4). The expected contribution from a Higgs boson signal for mH =
120 GeV, obtained with a full detector simulation, is also shown in Fig. 6.
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A number of variables are chosen that are sensitive to the different kinematics displayed by the signal
and background processes [9]. The following is the optimized event selection after the application of cut
Ia:

IIIa Transverse momentum cuts of 50 and 25 GeV on the leading and sub-leading photon candidates,
respectively.

IIIb Presence of at least two hadronic jets in |η | < 5 with pT > 40,20 GeV for the leading and sub-
leading jet, respectively. The tagging jets must be in opposite hemispheres, η j1 ·η j2 < 0, where η j1
and η j2 correspond to the pseudorapidity of the leading and sub-leading jets, respectively. Finally,
it is required that the pseudorapidity gap between the tagging jets be large, ∆η j j > 3.6.

IIIc Photons are required to have pseudorapidity between those of the tagging jets.

IIId Invariant mass of the tagging jets, m j j > 500 GeV.

IIIe Veto on events with a third jet with pT > 20 GeV and |η | < 3.2
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Figure 8: Diphoton invariant mass spectrum obtained with the Higgs boson plus two jet analysis (see
Section 5.3).

Figure 8 displays the resulting diphoton invariant mass spectrum after the application of cuts Ia and
IIIa-IIIe.

Tables 12 and 13 display the expected cross-sections for a Higgs boson signal with mH = 120 GeV
and background events in the mass range ±2 GeV around 120 GeV after the application of cuts Ia and
IIIa-IIIe. Table 12 shows that the dominant Higgs boson production mechanism surviving the events
selection is the VBF mechanism. Unfortunately, the QCD NLO corrections to the main backgrounds
included in Table 13 are not known and therefore these results suffer from large theoretical uncertainties.

The event selections presented in this and the previous Sections have a certain degree of overlap.
This is particularly relevant for the VBF Higgs boson production mechanism. In Section 7 the signal
significance of a combined analysis is presented that takes into account the event overlap.

that displayed by a typical QCD background process. This effect is well reproduced by the HERWIG generator.
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Figure 9: Expected distribution of the invariant mass of the two photons for the signals and main back-
grounds after applying the analysis cuts for events having one lepton reconstructed in the final state.
Due to a lack of MC statistics for the diphoton and the Wγ backgrounds, their expected distribution is
approximated by showing an average of the number of events passing the analysis cuts in the mγγ mass
range shown.

Va As in Section 5.4, a cut on the transverse momentum of the most energetic photon above 60 GeV
and a cut on the second more energetic photon pT of 30 GeV are applied to suppress the diphoton
background. Events where one of the two photons is reconstructed in the crack region are then
removed.

Vb The selection is then based mostly on the requirement of high missing transverse momentum. A
cut of Emiss

T > 80 GeV suppresses almost completely the γγ background while reducing the Wγ
background by a factor 20 and the ZH→ ννγγ signal by a factor 2.

Vc In order to further suppress the Wγ background, where the electron is often reconstructed as a
converted photon, events where either of the photons appears to have converted are rejected.

Vd At this point, because of potentially significant background from QCD events, difficult to evaluate,
a cut requiring that the scalar sum of the pT of the jets in the event be larger than 150 GeV is
imposed. It suppresses the contribution from the tt̄γγ and bb̄γγ backgrounds, as well as of the tt̄H
signal.

Table 15 summarizes the expected cross-sections after the different cuts applied for this analysis for
signal and backgrounds. The expected mass distributions of diphotons from the associated W/Z plus
Higgs boson and from the backgrounds are shown in Fig. 10, after the application of all cuts. To account
for the Wγ → µνγ , the Wγ → eνγ background has been multiplied by two in the figure although some
double counting is introduced. The uncertainty in the background level, due to Monte Carlo statistics
only, is estimated to be 15%. The reconstructed mass resolution is 1.31 GeV. This result is expected to
be sensitive to uncertainties in the simulation and reconstruction of Emiss

T tails.
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 ● Searches for other new particles: Do they play any role in EW symmetry breaking?



Searching for complementary probes of the EW symmetry 
breaking mechanism in cosmological observables

New TeV scale 
physics

Cosmological
signatures

- baryogenesis (this talk)
- dark mattermainly from

(see also recent interest 
in higgs inflation)

LHC will most likely not provide the final answer



Imagine what our universe would look like if electroweak 
symmetry was not broken 

- quarks and leptons would be massless

- mass of proton and neutron (the strong force confines quarks into hadrons) would be a little changed

- proton becomes heavier than neutron (due to its electrostatic self energy) ! no more stable

-> no hydrogen atom

-> very different primordial nucleosynthesis

-> a profoundly different (and terribly boring) universe



 2 major observations unexplained by & Standard Model

15% baryonic matter (1% in stars, 14% in gas)

85% dark unknown matter

}

}
nB-nB
nB+nB-

-
baryon asymmetry:             ~ 10-10

the (quasi) absence of antimatter in the universe

 the Dark Matter of the Universe
Some invisible transparent matter (that does not interact with photons)  which 

presence is deduced through its gravitational effects

that may have something to do with new physics at the electroweak scale



Ma'er Anti-ma'er asymmetry of & universe:
characterized in terms of the 

baryon to photon ratio η ≡

nB − nB

nγ
~ 6. 10-10 

 10 000 000 001
Matter

 The  great annihilation between 
nucleons & anti-nucleons

 10 000 000 000
Anti-matter

1
(us)

n + n̄→ π + π → γ + γ + ...

Γ ∼ (mNT )3/2e−mN /T /m2
π ∼ H ∼ √g∗T

2/mPloccurs when

corresponding to a freeze-out temperature TF ~ 20 MeVΓ! H

Γ ∼ H

Γ! H

nN

s

≈ 7 × 10
−20

109 times smaller than observed, 
and there are no antibaryons

-> need to invoke an initial asymmetry

 In absence of 
an asymmetry:



Sakharov’s conditions for baryogenesis (1967)

Γ(∆B > 0) > Γ(∆B < 0)

1) Baryon number violation 

2) C (charge conjugation) and CP (charge conjugation ×Parity) violation

3) Loss of thermal equilibrium

(we need a process which can turn antimatter into matter)

(we need to prefer matter over antimatter)

(we need an irreversible process since in thermal equilibrium, the 
particle density depends only on the mass of the particle  and on 

temperature --particles & antiparticles have the same mass , so no 
asymmetry can develop)

In thermal equilibrium, any reaction which destroys baryon number  will be exactly 
counterbalanced by the inverse reaction which creates it. Thus no asymmetry may 
develop, even if CP is violated. And any preexisting asymmetry will be erased by 

interactions



Why can’t we achieve baryogenesis in the Standard Model?

B is violated

C and CP are  violated

Electroweak phase transition is a smooth cross over

Also, CP violation is too small (suppressed by the small quark masses, 
remember there is no CP violation if quark masses vanish)

but which out-of-equilibrium condition?

no heavy particle which could decay out-of-equilibrium

no strong first-order phase transition



broken phase 

<Φ>≠0
Baryon number

 is frozen

2)  CP violation at phase interface
 responsible for mechanism  

of charge separation

3)  In symmetric phase,<Φ>=0,
very active sphalerons convert chiral 
asymmetry into baryon asymmetry

Chirality Flux 
in front of the wall

Baryon asymmetry and & EW scale

Electroweak baryogenesis mechanism relies on 
a first-order phase transition

1)  nucleation  and expansion of 
bubbles of broken phase



EW baryo(nes% % natural ...

dnB

dt
∼ nB

Γsph

T 3

nB =

∫ +∞

−∞

dnB

dt

dz

vz } nB ∝

Γsph

T 3vz

∫ 0

−∞

nL dz

Γsph ∼ 25 α
5
wT

4
∼ α

4
wT

4

If CP violating effects are large at weak 
energies, we obtain the right amount of 

baryon asymmetry

nB

s
∼

α
4
w

g∗
εCP ∼ 10

−10

εCP 10
−2>

∼

-> However, strong bounds from EDMs



Rate of B violation in & EW broken phase 

Γ= 2.8 × 105(
αW

4π
)4κC

−7

Arnold-McLerran’87
Khlebnikov-Shaposhnikov’88

Carson-McLerran’90
Carson-Li-McLerran-Wang’90

Out-of-equilibrium condition:

➾ 
〈φ〉

T

∣

∣

∣

∣

Tc

> 1

=`sphaleron bound ’

T
4

(

Esph

T

)7

e
−Esph/T

Γ

T 3
< H ∼

√
ρ

mPl
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What to expect for & EW

phase transition



Effective potential at finite temperature

High-temperature expansion



In the SM, a 1rst-order phase transition can occurr 
due to thermally generated cubic Higgs interactions: 

mh<35 GeV would be needed to get Φ/T>1 and for mh 
>72 GeV, the phase transition is 2nd order

−ETφ3

−ETφ3
⊂ −

T

12π

∑

i

m3

i (φ)

Sum over all bosons which couple to the Higgs

In the SM:
∑

i

!

∑

W,Z
not enough 

V (φ, T ) ≈
1

2
(−µ2

h + cT 2)φ2 +
λ

4
φ4



Strength of the transition in the SM:

〈φ(Tc)〉 =
2 E Tc

λ ➾
〈φ(Tc)〉

Tc

=
2 E v2

0

λ v2
0

=
4 E v2

0

m2
h

v0 ≈ 246 GeV and E =
2

3

2m3
W

+ m3
Z

4πv3
0

∼ 6.3 × 10−3

〈φ(Tc)〉

Tc

>
∼ 1 mh

<
∼ 47 GeV

In the MSSM: new bosonic degrees of freedom with large 
coupling to the Higgs

Main effect due to the stop



−ETφ3
⊂ −

T

12π

∑

i

m3

i (φ)

in MSSM, ‘stop’ contribution: 

m2

t̃R
(h, T ) ≈ m2

U + mt(h)2 + csT
2

we need  m
2

U < 0

i.e. the ‘stop’ should be lighter than the top quark.

95 GeV ! mt̃R
! 125 GeV

the other stop must be very heavy to have                          .

mt̃L
! 6 TeV

mh > 114 GeV



The (fine-tuned) MSSM EW baryogenesis window:
A Stop-split supersymmetry spectrumThe MSSM EWBG Spectrum

3

t   , f
L 1,2

1,2u,d

~ ~

!

0.1 TeV

1 TeV

10 TeV

0

R

~
h  , t   , h    ,

~
!

• Stop-split supersymmetry spectrum . . .

from EDM bounds

from Higgs mass bound

for strong 1st order 
phase transition

for sufficient CP 
violation

bounds get relaxed when adding singlets or in BSSM

The light stop scenario: testable at the LHC, although challenging.



Effective field *eory a+roach

 add a non-renormalizable Φ6 term to the  SM Higgs  potential and allow a negative quartic coupling

 “strength” of the transition does not rely on the one-loop thermally 
generated negative self cubic Higgs coupling

V (Φ) = µ2
h|Φ|2 − λ|Φ|4 +

|Φ|6
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Figure 4: Plot of the ratio ξn = 〈φ(Tn)〉/Tn characterizing the strength of the phase transition
using the thermal mass approximation of [2] (left) and the complete one-loop potential
(right). The contours are for ξn = {1, 2, 3, 4} from top to bottom. f is the decay constant
of the strong sector the Higgs emerges from, and mh is the physical Higgs mass.

detailed in this article. We compare these results with the sensitivities of current gravity
wave detectors, and of proposed gravity wave detectors of the future.

3.2.1 Characterizing the spectrum

Previous studies [24, 25, 26] of the gravity wave spectrum culminate in showing that it can
be fully characterized by the knowledge of only two parameters derived ultimately from the
effective potential6. The first one is the rate of time-variation of the nucleation rate, named
β. Its inverse gives the duration of the phase transition, therefore defining the characteristic
frequency of the spectrum. The second important parameter, α, measures the ratio of the
latent heat to the energy density of the dominant kind, which is radiation at the epoch
considered: α ≡ ε/ρrad. They are both numerically computed from the effective action S3/T
at the nucleation temperature as follows. The time-dependence of the rate of nucleation is
mainly concentrated in the effective action and β is defined by β ≡ −dSE/dt

∣∣
tn

. Using the

6This conclusion is valid under the assumption of detonation. However, in practice the bubble expand in
a thermal bath and not in the vacuum and friction effects taking place in the plasma slow down the bubble
velocity. Therefore, it might be important to consider the deflagration regime as in Ref. [27]. When the
phase transition is weakly first order, we obtained under the approximations of [28] a wall velocity lower
than the speed of sound. However, in the interesting region where the phase transition gets stronger, we
approach the detonation regime and the approximations of [28] have to be refined to accurately compute the
wall velocity.
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at a Hadron Collider at an e+ e-  Linear Collider

"% scena,o pre-cts lar( deviations to & Higgs self-c/plings

where

deviations between a factor 0.7 and 2

The dotted lines delimit 
the region for a strong 1rst 

order phase transition

µ = 3
m

2
H
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η = 3
m

2
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+ 36
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2
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3
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H
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µ
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H3 +

η
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H4 + ...



EW phase transition in the minimal extension of the 
Standard Model: the SM+ a real scalar singlet

EDM bounds (like for 2-Higgs Doublet Model)

V (H,S) = −µ2
HH2 + λHH4 + λmH2S2 − µ2

SS2 + λSS4

Interestingly, there are well-motivated models  
that realize naturally an extended Higgs sector: 

models of compositeness

-> Gripaios et al, 0902.1483

EW breaking
Minimum

EW preserving
Minima

Out of Equilibrium

V (H,S)

V (H,S)

= −µ2
HH2 + λHH4 + λmH2S2 − µ2

SS2 + λSS4+λmH2S2

For simplicity: Z2 (=CP) symmetric case

mercoledì, 4 maggio 2011

EW preserving 
min.

EW broken 
min.F. Riva et al.



SU(2)L × SU(2)R SU(2)V

SU(3)c
QCD:

global symm. 

on u,d
stro

ng int.
U(1)Q

⊃

6           -          3    =  3 PNGB π±,π0

global symm. on 

techniquarks

SO(6)× U(1)x SO(5)× U(1)Y

SU(Nc)
Composite 
Higgs:

⊃ SU(2)×
U(1)Y

16           -         11    =  5 PNGB     H, S

SO(5)/SO(4) -> SM
SO(6)/SO(5) -> SM + S
SO(6)/SO(4) -> 2 HDM

associated 
LHC tests

Higgs scalars as pseudo-Nambu-Goldstone bosons of new 
dynamics above the weak scale



strong
sector

G→H⊃SO(4)⌇︴
	
 
⌇︴

━━━━

W a
µ , Bµ

Ψ
Lint = AµJµ + Ψ̄O + h.c.

New strong sector endowed with a global 
symmetry G spontaneously broken to H 

→ delivers a set of Nambu Goldstone bosons

Elementary Fields Strong Sector

gρ , mρ

yL , yR

g , g′

G/H

Figure 1: Pictorial representation of our scenario.

composite inert Higgs. The last section is devoted to conclusions.

2 Two Composite Higgs Doublets as PNGBs

2.1 General Structure

The basic structure of our composite-Higgs scenario is as follows. As depicted in figure 1, there exists a

new sector, that we denote as “strong”, or “strongly-interacting” sector, which is endowed with a global

group G of symmetry, spontaneously broken to H ⊂ G. As such, the strong sector delivers a set of massless

Nambu-Goldstone bosons (NGB). The only constraints on the choice of the G/H coset that characterizes

the strong sector are of phenomenological nature and they are rather mild, a priori. The main requirement,

needed to avoid generic large contributions to the T -parameter, is that the unbroken group must contain

a “custodial” SO(4) ∼= SU(2) × SU(2) symmetry, H ⊃ SO(4), and at least one Higgs 4-plet (i.e., a 4 of

SO(4)) must be present. Compatibly with these basic requirements, several cosets exist. The smallest ones,

chosen so that H is a maximal subgroup of G, are present in table 1. Other cosets, with non-maximal

G H NG NGBs rep.[H] = rep.[SU(2)× SU(2)]
SO(5) SO(4) 4 4 = (2,2)
SO(6) SO(5) 5 5 = (1,1) + (2,2)
SO(6) SO(4) × SO(2) 8 4+2 + 4̄−2 = 2× (2,2)
SO(7) SO(6) 6 6 = 2× (1,1) + (2,2)
SO(7) G2 7 7 = (1,3) + (2,2)
SO(7) SO(5) × SO(2) 10 100 = (3,1) + (1,3) + (2,2)
SO(7) [SO(3)]3 12 (2,2,3) = 3× (2,2)
Sp(6) Sp(4) × SU(2) 8 (4,2) = 2× (2,2), (2,2) + 2× (2,1)
SU(5) SU(4) × U(1) 8 4−5 + 4̄+5 = 2× (2,2)
SU(5) SO(5) 14 14 = (3,3) + (2,2) + (1,1)

Table 1: Cosets G/H from simple Lie groups, with H maximal subgroup of G. For each coset, its dimension NG and the
NGBs representation under H and SO(4) ! SU(2)L × SU(2)R are reported. For Sp(6)/SU(2) × Sp(4), two embeddings are
possible, we will be interested only in the first one, which leads to two Higgs 4-plets.

subgroups, can be obtained from table 1 in a stepwise fashion G → H → H ′ etc.. The coset SO(6)/SO(4),

for instance, arises from the breaking SO(6) → SO(5) → SO(4). Besides two (2,2) Higgs 4-plets, this coset
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Goldberger-Wise mechanism

Veff =

∫ z1

z0

dz
√

g[−(∂φ)2 − m2φ2]

Λ5 = −24M
3
k

2L =

∫
dx4dz

√
−g[2M3R− Λ5]Start with the bulk 5d theory

and the orbifold extends from z=z0=L (Planck brane) to z=z1 (TeV brane)

ds2 = (kz)−2(ηµνdxµdxν + dz2)The metric for RS1 is  where                   is the AdS curvaturek = L
−1

z = k
−1

e
ky= e−2kyηµνdxµdxν

+ dy2

Which mechanism naturally selects z1  >> z0 ? simply a bulk scalar field φ can do the job:
∫

d4xdz
(√

g[−(∂φ)2 − m2φ2] + δ(z − z0)
√

g0L0(φ(z)) + δ(z − z1)
√

g1L1(φ(z))
)

φ = Az4+ε
+ Bz−ε

φ has a bulk profile satisfying the 5d Klein-Gordon equation

ε =
√

4 + m2L2
− 2 ≈ m2L2/4where

Plug this solution into 

VGW = z−4

1

[

(4 + 2ε)

(

v1 − v0

(

z0

z1

)

ε
)2

− εv2
1

]

+ O(z4
0/z8

1)

z1 ≈ z0

(

v0

v1

)1/ε
~ scale invariant fn modulated by a slow 

evolution through the z-ε term

= z
−4

1
P (z−ε)1

similar to Coleman-Weinberg mechanism



Goldberger-Wise potential for the radion is of the form

a temperature when

S3/T ≈ log
T 4

H4
≈ 140. (6)

In order to realize several e-folds of inflation, the onset of the phase transition and bubble
nucleation should happen at a temperature that is several orders smaller than the critical
temperature when the symmetric and broken phase are degenerate. Since S3 is of electroweak
scale and well-behaved as a function of T , its derivative ∂T S3/T is likewise of electroweak
scale ρ such that

β/H = T
d

dT

S3

T

∣

∣

∣

∣

Tn

≈
Tn

ρ
, (7)

what is small for Tn " ρ. The parameter β quantifies the inverse duration of the phase
transition and this implies that in average there is at most one bubble nucleated per Hubble
volume and percolation never happens.

In the following we will discuss how the conformal phase transition in a five-dimensional
brane setup can indeed lead to several e-folds of inflation. In the 5D picture the radion is
stabilized by a bulk scalar with a relatively small mass. In the 4D picture this corresponds
to a balance between a marginal and a slightly irrelevant deformation of the gluon sector of
the CFT. The resulting effective potential of the radion is of the form

V (µ) = µ4P ((µ/µ0)
ε). (8)

The field µ is a reparametrization of the brane separation r

µ = l−1e−r/l (9)

with a standard kinetic term and l is related to the 5D curvature and is of Planck scale.
The function P is roughly polynomial and parametrizes the extrema of the potential. The
position of the extrema µ± of V depend on the specific parameters but are given by

µε
+ ! µε

− ! 1. (10)

The smallness of ε (of O(1/10)) is then used to generate the hierarchy between the Planck
and the electroweak scale, µ− " l−1, but also implies µ+ " µ− and the potential is nearly
conformal between those widely spread values.

This construction leads to a tunnel action that is rather well-behaved as a function of µε

and not of µ. This way it is possible to achieve a small nucleation temperature in combination
with percolation and a rather small duration of the phase transition

β/H = T
d

dT

S3

T

∣

∣

∣

∣

Tn

" 1. (11)

An example is given in Fig. 1 where the tunnel action is plotted for a specific Goldberger-
Wise potential (taken from ref. [32]) in comparison with an action as it e.g. occurs in the
electroweak phase transition in supersymmetric extensions of the SM.

Let us be a little bit more quantitative. The tunnel action can be calculated by deter-
mining the bounce solution [43, 44] in the potential (8). An accurate approximation can be
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tunneling point is of the same order as the value of the field at the minimum of the potential.
For a nearly conformal potential, the two extrema are widely separated and as we will show,
the release point can be as low as µr !

√
µ+µ− " µ−. Since the nucleation temperature

Tn ∝ µr, we can get a very small Tn compared to the vacuum expectation value of the scalar
field µ− and therefore several efolds of inflation.

Typically, an extended phase of inflation (at least several efolds) cannot be ended by a
first-order phase transition. This is the well-known graceful exit problem of old inflation
which results from the following argument: for a generic free energy V (φ, T ) the tunnel
action S3/T is a “well-behaved” (meaning roughly polynomial) function of the temperature
T . The first nucleated bubbles appear when the temperature satisfies, in terms of the Hubble
constant H ,

S3/T ≈ log
T 4

H4
. (2)

At the weak scale, this corresponds to S3/T ≈ 140. In order to realize several efolds of infla-
tion, the onset of the phase transition and bubble nucleation should happen at a temperature
Tn that is several orders of magnitude smaller than the critical temperature Tc defined as
the temperature at which the symmetric and broken phase are degenerate.

If S3 is a well-behaved function of T , characterized by the energy scale µ0 ∼ Tc, its
derivative ∂T (S3/T ) is likewise and the parameter β which quantifies the inverse duration of
the phase transition satisfies

β/H = T
d

dT

S3
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∣

∣

∣

∣

Tn

∼
Tn

µ0

S3

T

∣
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∣

∣

Tn

. (3)

An extended phase of inflation (for example, Nefolds ∼ log Tc/Tn ∼ 10 → Tn/Tc ∼ 10−4)
corresponds to Tn " µ0 then β/H " 1, which implies that bubbles never percolate and the
phase transition cannot complete and reheating never occurs.

In contrast, the potential (1) leads to a tunneling action that is well-behaved as a function
of µε rather than µ. This way it is possible to achieve a small nucleation temperature together
with bubble percolation and a rather long but finite duration of the phase transition for
ε ∼ O(1/10)

β/H = T
d

dT

S3

T

∣

∣

∣

∣

Tn

∼ ε
S3

T

∣

∣

∣

∣

Tn

! 1. (4)

An example is given in Fig. 2 where the tunneling action is plotted for a specific Goldberger-
Wise potential [15] (taken from Ref. [11]) in comparison with an action occurring e.g. in the
electroweak phase transition in supersymmetric extensions of the SM.

Let us explain this more quantitatively. The conformal phase transition can be studied
by working in a five-dimensional Anti de Sitter (AdS) space in which the radion is stabilized
by a bulk scalar with a relatively small mass [8–11]. In the 4D picture, this corresponds to a
balance between a marginal and a slightly irrelevant deformation of the gluon sector of the
CFT. At high temperature, the system is in an AdS-Schwarzschild (AdS-S) phase involving
a single ultraviolet (Planck) brane, providing the UV cutoff of the theory. The free energy
of the AdS-S phase is given by

FAdS−S = −4π4(Ml)3T 4, (5)
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For a nearly conformal potential, the two extrema are widely separated and as we will show,
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Tn ∝ µr, we can get a very small Tn compared to the vacuum expectation value of the scalar
field µ− and therefore several efolds of inflation.

Typically, an extended phase of inflation (at least several efolds) cannot be ended by a
first-order phase transition. This is the well-known graceful exit problem of old inflation
which results from the following argument: for a generic free energy V (φ, T ) the tunnel
action S3/T is a “well-behaved” (meaning roughly polynomial) function of the temperature
T . The first nucleated bubbles appear when the temperature satisfies, in terms of the Hubble
constant H ,

S3/T ≈ log
T 4

H4
. (2)

At the weak scale, this corresponds to S3/T ≈ 140. In order to realize several efolds of infla-
tion, the onset of the phase transition and bubble nucleation should happen at a temperature
Tn that is several orders of magnitude smaller than the critical temperature Tc defined as
the temperature at which the symmetric and broken phase are degenerate.

If S3 is a well-behaved function of T , characterized by the energy scale µ0 ∼ Tc, its
derivative ∂T (S3/T ) is likewise and the parameter β which quantifies the inverse duration of
the phase transition satisfies

β/H = T
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An extended phase of inflation (for example, Nefolds ∼ log Tc/Tn ∼ 10 → Tn/Tc ∼ 10−4)
corresponds to Tn " µ0 then β/H " 1, which implies that bubbles never percolate and the
phase transition cannot complete and reheating never occurs.

In contrast, the potential (1) leads to a tunneling action that is well-behaved as a function
of µε rather than µ. This way it is possible to achieve a small nucleation temperature together
with bubble percolation and a rather long but finite duration of the phase transition for
ε ∼ O(1/10)
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An example is given in Fig. 2 where the tunneling action is plotted for a specific Goldberger-
Wise potential [15] (taken from Ref. [11]) in comparison with an action occurring e.g. in the
electroweak phase transition in supersymmetric extensions of the SM.

Let us explain this more quantitatively. The conformal phase transition can be studied
by working in a five-dimensional Anti de Sitter (AdS) space in which the radion is stabilized
by a bulk scalar with a relatively small mass [8–11]. In the 4D picture, this corresponds to a
balance between a marginal and a slightly irrelevant deformation of the gluon sector of the
CFT. At high temperature, the system is in an AdS-Schwarzschild (AdS-S) phase involving
a single ultraviolet (Planck) brane, providing the UV cutoff of the theory. The free energy
of the AdS-S phase is given by

FAdS−S = −4π4(Ml)3T 4, (5)
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T 4

H4
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In order to realize several e-folds of inflation, the onset of the phase transition and bubble
nucleation should happen at a temperature that is several orders smaller than the critical
temperature when the symmetric and broken phase are degenerate. Since S3 is of electroweak
scale and well-behaved as a function of T , its derivative ∂T S3/T is likewise of electroweak
scale ρ such that
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ρ
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what is small for Tn " ρ. The parameter β quantifies the inverse duration of the phase
transition and this implies that in average there is at most one bubble nucleated per Hubble
volume and percolation never happens.

In the following we will discuss how the conformal phase transition in a five-dimensional
brane setup can indeed lead to several e-folds of inflation. In the 5D picture the radion is
stabilized by a bulk scalar with a relatively small mass. In the 4D picture this corresponds
to a balance between a marginal and a slightly irrelevant deformation of the gluon sector of
the CFT. The resulting effective potential of the radion is of the form

V (µ) = µ4P ((µ/µ0)
ε). (8)

The field µ is a reparametrization of the brane separation r

µ = l−1e−r/l (9)

with a standard kinetic term and l is related to the 5D curvature and is of Planck scale.
The function P is roughly polynomial and parametrizes the extrema of the potential. The
position of the extrema µ± of V depend on the specific parameters but are given by

µε
+ ! µε

− ! 1. (10)

The smallness of ε (of O(1/10)) is then used to generate the hierarchy between the Planck
and the electroweak scale, µ− " l−1, but also implies µ+ " µ− and the potential is nearly
conformal between those widely spread values.

This construction leads to a tunnel action that is rather well-behaved as a function of µε

and not of µ. This way it is possible to achieve a small nucleation temperature in combination
with percolation and a rather small duration of the phase transition
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An example is given in Fig. 1 where the tunnel action is plotted for a specific Goldberger-
Wise potential (taken from ref. [32]) in comparison with an action as it e.g. occurs in the
electroweak phase transition in supersymmetric extensions of the SM.

Let us be a little bit more quantitative. The tunnel action can be calculated by deter-
mining the bounce solution [43, 44] in the potential (8). An accurate approximation can be
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Figure 1: Comparison of a typical polynomial potential given here by λ(µ2 − µ2
0)

2 + 1
Λ2 (µ2 − µ2

0)
3

with a nearly conformal potential of the type of eq. (1). Both have a minimum at µmin ∼ 1.2 TeV.
For the usual polynomial potential µmax/µmin ∼ O(1), unless coefficients are fine-tuned while for
the potential (1) with |ε| < 1, one can easily get a shallow potential with widely separated extrema.
In this particular example |ε| = 0.2. The • indicates the position of the maxima.

that the scalar effective potential describing symmetry breaking is a scale invariant function
modulated by a slow evolution:

V (µ) = µ4P

[ (

µ

µ0

)ε ]

, (1)

similarly to the Coleman-Weinberg potential where a slow RG evolution of the potential
parameters can generate very separated scales. P is a polynomial function reflecting some
explicit breaking of conformal invariance by turning on some coupling of dimension −ε. This
potential generically has a minimum at µ− #= 0. We are interested in the case where |ε| is
small so that we have an almost marginal deformation of the CFT. If ε > 0 symmetry
breaking results from a balance between two operators unlike in QCD where it is driven by
the blow-up of the gauge coupling [5, 6]. For |ε| $ 1, a large hierarchy is generated.

2.1 Cosmological properties of a nearly conformal scalar potential

This class of potentials leads to some unique cosmological properties. In particular, it leads
to a strongly first-order phase transition. What makes the nearly conformal potentials special
is the fact that the positions of the maximum µ+ and of the minimum µ− can be very far
apart in contrast with standard polynomial potentials where they are of the same order,
as illustrated in Fig. 1. This makes the temperature dependence of the tunneling action
behave very differently from the case of standard polynomial potentials. The nucleation
temperature Tn is determined by the tunneling point µr (also called release point), which
is located behind the barrier, somewhere between the maximum and the minimum of the
potential. For a standard polynomial potential, µ+ and µ− are of the same order and the

3
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the potential (1) with |ε| < 1, one can easily get a shallow potential with widely separated extrema.
In this particular example |ε| = 0.2. The • indicates the position of the maxima.

that the scalar effective potential describing symmetry breaking is a scale invariant function
modulated by a slow evolution:

V (µ) = µ4P

[ (
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)ε ]

, (1)

similarly to the Coleman-Weinberg potential where a slow RG evolution of the potential
parameters can generate very separated scales. P is a polynomial function reflecting some
explicit breaking of conformal invariance by turning on some coupling of dimension −ε. This
potential generically has a minimum at µ− #= 0. We are interested in the case where |ε| is
small so that we have an almost marginal deformation of the CFT. If ε > 0 symmetry
breaking results from a balance between two operators unlike in QCD where it is driven by
the blow-up of the gauge coupling [5, 6]. For |ε| $ 1, a large hierarchy is generated.

2.1 Cosmological properties of a nearly conformal scalar potential

This class of potentials leads to some unique cosmological properties. In particular, it leads
to a strongly first-order phase transition. What makes the nearly conformal potentials special
is the fact that the positions of the maximum µ+ and of the minimum µ− can be very far
apart in contrast with standard polynomial potentials where they are of the same order,
as illustrated in Fig. 1. This makes the temperature dependence of the tunneling action
behave very differently from the case of standard polynomial potentials. The nucleation
temperature Tn is determined by the tunneling point µr (also called release point), which
is located behind the barrier, somewhere between the maximum and the minimum of the
potential. For a standard polynomial potential, µ+ and µ− are of the same order and the
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tunneling point is of the same order as the value of the field at the minimum of the potential.
For a nearly conformal potential, the two extrema are widely separated and as we will show,
the release point can be as low as µr !

√
µ+µ− " µ−. Since the nucleation temperature

Tn ∝ µr, we can get a very small Tn compared to the vacuum expectation value of the scalar
field µ− and therefore several efolds of inflation.

Typically, an extended phase of inflation (at least several efolds) cannot be ended by a
first-order phase transition. This is the well-known graceful exit problem of old inflation
which results from the following argument: for a generic free energy V (φ, T ) the tunnel
action S3/T is a “well-behaved” (meaning roughly polynomial) function of the temperature
T . The first nucleated bubbles appear when the temperature satisfies, in terms of the Hubble
constant H ,

S3/T ≈ log
T 4

H4
. (2)

At the weak scale, this corresponds to S3/T ≈ 140. In order to realize several efolds of infla-
tion, the onset of the phase transition and bubble nucleation should happen at a temperature
Tn that is several orders of magnitude smaller than the critical temperature Tc defined as
the temperature at which the symmetric and broken phase are degenerate.

If S3 is a well-behaved function of T , characterized by the energy scale µ0 ∼ Tc, its
derivative ∂T (S3/T ) is likewise and the parameter β which quantifies the inverse duration of
the phase transition satisfies

β/H = T
d

dT

S3

T
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∣

∣

∣

Tn

∼
Tn

µ0

S3

T

∣
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. (3)

An extended phase of inflation (for example, Nefolds ∼ log Tc/Tn ∼ 10 → Tn/Tc ∼ 10−4)
corresponds to Tn " µ0 then β/H " 1, which implies that bubbles never percolate and the
phase transition cannot complete and reheating never occurs.

In contrast, the potential (1) leads to a tunneling action that is well-behaved as a function
of µε rather than µ. This way it is possible to achieve a small nucleation temperature together
with bubble percolation and a rather long but finite duration of the phase transition for
ε ∼ O(1/10)
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An example is given in Fig. 2 where the tunneling action is plotted for a specific Goldberger-
Wise potential [15] (taken from Ref. [11]) in comparison with an action occurring e.g. in the
electroweak phase transition in supersymmetric extensions of the SM.

Let us explain this more quantitatively. The conformal phase transition can be studied
by working in a five-dimensional Anti de Sitter (AdS) space in which the radion is stabilized
by a bulk scalar with a relatively small mass [8–11]. In the 4D picture, this corresponds to a
balance between a marginal and a slightly irrelevant deformation of the gluon sector of the
CFT. At high temperature, the system is in an AdS-Schwarzschild (AdS-S) phase involving
a single ultraviolet (Planck) brane, providing the UV cutoff of the theory. The free energy
of the AdS-S phase is given by

FAdS−S = −4π4(Ml)3T 4, (5)
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Figure 1: The tunnel action S3/T as a function of T/Tc for a typical near-conformal potential

(solid line) (we used the Goldberger-Wise potential for illustration) and for a usual polynomial
Higgs potential (dashed line). The horizontal blue line indicates the tunneling value S3/T ∼
4 log(MP l/MEW ) ∼ 140. For a standard potential, the nucleation temperature is always close to

the critical one, unless some fine-tuning is involved. For a near-conformal potential, supercooling is
a general feature and the nucleation temperature can easily be several orders of magnitude below

the critical temperature.

obtained by exploiting the near-conformal behavior of the system1. For a certain bounce
solution with release point µr, the potential is approximated by

V (µ) ≈ µ4P ((µr/µ0)
ε) ≡ −µ4κ. (12)

The conformal invariance of the potential then allows to determine the action and the corre-
sponding nucleation temperature Tn as (we only consider the O(3) symmetric tunnel action
here)

S3/T % 290κ−3/4(Ml)3, Tn % 0.1κ1/4µr, (13)

where M denotes the 5D Planck mass and l is related to the 5D curvature of the system.
If the release point approaches either the minimum or the maximum of the potential, P

(and hence κ) becomes small according to the potential of the form (8) with small ε. This
is reasonable, since for µr → µ− the action becomes large (and Tn → Tc), while for µr → µ+

the temperature drops significantly and hence a large S3/T results.

1We follow the notation and analysis of [32].
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known as cold baryogenesis [18–28] and show that it is theoretically well-motivated and only
relies on the existence of a nearly conformal sector at the TeV scale, something which will
be tested at the LHC. Our conclusions will be very general and model-independent. One
major advantage of cold baryogenesis is that it does not depend on the details of the new
sources of CP violation, which can be described by dimension-six effective operators which
are totally unconstrained by EDMs.

The cold baryogenesis mechanism is interesting in that it also only invokes Standard
Model baryon number violation and beautifully makes use of the global texture of the SU(2)
electroweak theory. Nevertheless, so far, it has not received too much acclaim because it
relies on a somewhat unnatural assumption: a period of low-scale (EW scale) hybrid inflation
with the Higgs as the waterfall field. The end of inflation is triggered when the Higgs mass
turns negative and a spinodal instability gives rise to an exponential growth of soft Higgs
modes. At this stage, all particles present before low scale inflation have been inflated
away and the universe is cold and empty. Subsequently, the vacuum energy stored in the
Higgs and inflaton fields reheats the plasma. This energy transfer happens far away from
equilibrium, which makes baryogenesis during this period feasible. One of the weaknesses of
this scenario is that low scale inflation requires a significant amount of tuning in the inflaton
sector [20, 25, 28]. Besides, like for the Higgs, a fundamental light scalar inflaton implies a
hierarchy problem.

The purpose of the present paper is to demonstrate that the conformal phase transition in
some models of strongly coupled electroweak symmetry breaking can lead quite generically to
a situation in which cold electroweak baryogenesis is feasible. We want to keep the discussion
as model-independent as possible. The underlying scalar potential is of the general type

V (µ,φ) = µ4 ×
(

P ((µ/µ0)
ε) + V(φ)/µ4

0

)

, (1)

where µ is the radion (dilaton) field which acquires a vev µ0 ∼ O(1 TeV). At the confining
scale µ0, an approximate conformal symmetry governs the dynamics. |ε| parametrizes the
explicit breaking of conformal invariance and we are working in the limit |ε| # 1 leading
to a very shallow potential P ((µ/µ0)ε) with widely separate extrema. As well-known from
lattice studies, confining phase transitions are first-order for the rank of the SU(N) gauge
group N ! 3 (the exact bound depends on the matter content) and growing more strongly
first-order as N increases. For our discussion, we do not need to specify the form of the
Higgs potential V(φ), which can be Standard-Model like. The cosmological properties of the
potential (1) are reviewed in a companion article [29]. The radion acts in this context similar
to an inflaton and the conformal symmetry protects the Higgs as well as the radion mass thus
solving the hierarchy problem. The conformal phase transition is strongly first-order and
proceeds by bubble nucleation. This modifies significantly the standard picture of reheating.

The Randall–Sundrum model [30] with Goldberger–Wise stabilization [31] is an explicit
realization where the stabilization of a warped extra dimension solves the hierarchy problem.
It is dual, via the AdS/CFT correspondence, to a 4D theory where confinement is induced
by an interplay of weakly coupled operators perturbing a CFT [32, 33].

In the next section, we review the microscopic picture of cold electroweak baryogenesis.
In Section 3 we discuss preheating after a stage of supercooling ended by a strongly first-order
phase transition and argue that models with nearly conformal dynamics offer all the required
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which depending on the size of the coefficient chg can
significantly modify the properties of a light Higgs bo-
son [13].

The dilaton couplings to massless gauge bosons can be
simply obtained by making the replacement

2m2
i

v2
H†H −→

m2
i

f2
χ2,

in Eq. (17). Again, one can split the sum over all colored
particles into sums over light and heavy states, where the
dividing scale is given by the dilaton mass. Note that if
one assumes that QCD is fully embedded in the con-
formal sector, one can make UV insensitive predictions,
since by conformal invariance

∑

light

b0 +
∑

heavy

b0 = 0.

Thus the effective coupling is

Lχgg = −
αs

8π
blight
0

χ̄

f
(Ga

µν)2, (20)

where blight
0 = −11 + 2

3nlight. The number of light
fermions, nlight, is either nlight = 5 if the dilaton is lighter
than the top quark, or nlight = 6 otherwise. Eq. (20) has
a non-perturbative generalization

Lχgg = −
β(g)

2g

χ̄

f
(Ga

µν)2, (21)

where β(g) is the beta function including particles lighter
than the dilaton mass. For collider applications Eq. (20)
is sufficient, however. It indicates about a tenfold in-
crease of the coupling strength compared to that of the
SM Higgs, which could have profound consequences at
the LHC. Unlike the Higgs case, corrections to this re-
sult from higher dimension operators are negligible. For
example, one might consider operators such as

Lχgg ⊃ g2
s

cχg

(4πχ)2
DαGa

µνDαGµνa. (22)

However, such operators are suppressed by powers of
m2/f2 $ 1 relative to the terms coming from the con-
formal anomaly.

II. COLLIDER PHYSICS

The couplings of the dilaton at energies below the scale
4πf are given by

Lχ =
1

2
∂µχ̄∂µχ̄ −

1

2
m2χ̄2 +

λ

3!

m2

f
χ̄3 +

χ̄

f

∑

ψ

mψψ̄ψ

+

(

2χ̄

f
+

χ̄2

f2

) [

m2
W W+

µ W−µ
+

1

2
m2

ZZµZµ

]

+
αEM

8πf
cEM χ̄(Fµν)2 +

αs

8πf
cGχ̄(Ga

µν)2, (23)

where the coefficients cEM , cG were discussed in the pre-
vious section. For example, if electromagnetic and strong
interactions are embedded in the conformal sector at high
scales,

cEM =







−17/9 when mW < m < mt,

−11/3 when m > mt,
(24)

while cG = 11 − 2nlight/3, where nlight is the number of
quarks lighter than the dilaton.

Given the similarity to minimal Higgs physics, it is
possible to use existing studies of Higgs properties at
colliders to understand the physics of a light dilaton as a
function of the model parameters m, f , and the couplings
λ, cEM , cG.

A. LEP bounds

At LEP, the main production channel for dilaton pro-
duction is, as for the Higgs, associated production with
a virtual Z boson, e+e− → HZ∗. The cross section for
dilaton production is suppressed by a factor (v/f)2 rela-
tive to the corresponding Higgs cross section at the same
mass. The LEP collaborations have combined their data
to search for the Higgs, including a search for Higgs par-
ticles with an anomalous (non-SM) HZZ coupling [14].
This result is immediately applicable to the bounds on
the dilaton mass and coupling.

Figure 10 in Ref. [14] summarizes the bound on the
dilaton mass and decay constant, where in our case
ξ2 = (v/f)2. Roughly, the dilaton with mass 90 GeV <
m < 110 GeV is excluded if (v/f)2 > 0.1 and with mass
12 GeV < m < 90 GeV it is excluded for (v/f)2 > 0.01.
These limits predominantly come from the bb̄ decay chan-
nel, which is kinematically suppressed below 12 GeV.
Other available decay channels have been employed for
very light masses [15]. Values m < 12 GeV are excluded
if (v/f)2 > 0.1; see Figure 5 in Ref. [15].

The dilaton decay width into quarks and leptons is also
suppressed by the factor (v/f)2. However, this discrep-
ancy is not relevant for the LEP search as the branching
ratios to fermions remain unchanged. For (v/f)2 < 10−2,
LEP is not able to detect the dilaton irrespective of its
mass, while for (v/f)2 > 10−2 the suppression of the
width is not observable. In this latter case the dilaton
decays very promptly and does not have displaced decay
vertex. Therefore its signatures are identical to Higgs
signatures.

B. LHC

There are four important production channels for the
dilaton at hadron colliders: gluon fusion gg → χ, asso-
ciated production with vector bosons qq̄ → W/Z + χ,
vector boson fusion qq → qq + χ, and associated pro-
duction with the top quark gg, qq̄ → tt̄ + χ. The first
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Gravitational Waves interact very weakly and are not absorbed

direct probe of physical process of the very early universe

Gravitational Waves: A way to probe astrophysics
... and high energy particle physics.

Small perturbations in FRW metric:

ds2 = a2(η)(dη2 − (δij + 2hij)dxidxj) Gµν = 8πG Tµν

ḧij(k, η) +
2
η
ḣij(k, η) + k2hij(k, η) = 8πGa2(η)Πij(k, η)

anisotropic stress
Source of GW:

possible cosmological sources: 
inflation, vibrations of topological defects, excitations of xdim modes, 1st order phase transitions...
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〈ḣij ḣij〉
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Why should we be excited about mHZ freq.?

complementary to collider informations
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key quantities controlling the GW spectrum

 β : (duration of the phase transition)-1

α : vacuum energy density/radiation energy density

set by the tunneling probability

 α and β : entirely determined by the effective
 scalar potential at high temperature
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anisotropic stress
Source of GW:

To evaluate the GWs emitted by turbulent motion in the primordial fluid and by a
magnetic field we need to determine the tensor-type anisotropic stresses of these sources.
They source the evolution equation for the GW perturbations,

ḧij + 2Hḣij + k2hij = 8πGa2T (TT )
ij (k, t) . (5)

In this section we consider in all generality a relativistic source, and we solve the wave
equation in two cases: a long lasting source (i.e. many Hubble times), and a short lasting
one (i.e. significantly less than one Hubble time). We introduce the transverse traceless
tensor part of the energy momentum tensor of the source as

T (TT )
ij (k, t) = (ρ + p)Π̃ij(k, t) so that 8πGa2T (TT )

ij (k, t) = 4H2Π̃ij(k, t) , (6)

where we denote the dimensionless energy momentum tensor with a tilde: Π̃ij(k, t) =
(PilPjm−1/2PijPlm)T̃lm(k, t). The projection tensor PilPjm−1/2PijPlm, with Pij = δij−k̂ik̂j,
projects onto the transverse traceless part of the stress tensor. Π̃ includes any time depen-
dence other than the basic radiation-like evolution. We assume that the source is active only
during the radiation-dominated era, where p = ρ/3. During adiabatic expansion g(Ta)3 =
constant so that

ρ(t) =
ρrad,0

a4(t)

(
g0

g(t)

)1/3

and a(t) ≈ H0 Ω1/2
rad,0

(
g0

g(t)

)1/6

t (7)

where g(t) is the number of relativistic degrees of freedom at time t.

2.1 Long-lasting source

Let us first concentrate on the more general case of a long lasting source. To solve Eq. (5)
we set H = 1/t, neglecting changes in the number of effective relativistic degrees of freedom.
In terms of the dimensionless variable x = kt Eq. (5) then becomes

h′′
ij + 2

h′
ij

x
+ hij =

4

x2
Π̃ij . (8)

We consider a source that is active from time tin to time tfin, which in the long lasting case
can span a period of many Hubble times. For t > tfin, we match the solution of the above
equation to the homogeneous solution, Π̃ij = 0. Assuming further that we are only interested
in modes well inside the horizon today, x # 1, the resulting GW energy power spectrum
becomes

|h′(k, x > xfin)|2 =
8

x2

∫ xfin

xin

dx1

x1

∫ xfin

xin

dx2

x2
cos(x2 − x1)Π̃(k, x1, x2) x # 1 , (9)

x1 = kt1, x2 = kt2, and Π̃(k, x1, x2) denotes the unequal time correlator of the source,

〈Π̃ij(k, t1)Π̃
∗
ij(q, t2)〉 = (2π)3δ(k− q)Π̃(k, kt1, kt2) . (10)
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Discussion applies trivially to any other 1st order phase transition 
(only shift peak frequency, amplitude and shape of signal do not 

depend on the absolute energy scale of the transition)
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Figure 16: Sensitivities of LISA, AGIS, BBO and Advanced LIGO (orange) compared with two
GW spectra (black) generated by MHD turbulence from a phase transition at respectively T∗ = 100
GeV with β/H∗ = 100, and T∗ = 5.106 GeV with β/H∗ = 50; ΩS∗/Ωrad∗ = 2/9, vb = 0.87, γ = 2/7,
and xc = 1. The Advanced LIGO sensitivity is optimized by making use of correlations between
two ground-based detectors [69].

A Analytical expressions for Section 2.3

Here we give the full expression for Eqs. (19) and (22).
• Incoherent constant source

F (tin, tfin, ∆t) =






(
g0

gfin

) 1
3 8

[
1− tfin

∆t log
(

tfin
tfin−∆t/2

)
− tin

∆t log
( tin+∆t/2

tin

)]

"
(

g0

gfin

) 1
3 ∆t

tin
long-lasting,

(
g0

g∗

) 1
3 (2π)2

3

(
∆t
tin

)2
short-lasting.

(97)
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broken phase 

<Φ>≠0
Baryon number

 is frozen

2)  CP violation at phase interface
 responsible for mechanism  

of charge separation

3)  In symmetric phase,<Φ>=0,
very active sphalerons convert chiral 
asymmetry into baryon asymmetry

Chirality Flux 
in front of the wall

Baryon asymmetry and & EW scale

Electroweak baryogenesis mechanism relies on 
a first-order phase transition

1)  nucleation  and expansion of 
bubbles of broken phase

wall velocity is a crucial quantity,
we need strong 1st order phase transition, however if too strong->

  bubble expand too fast -> no time to build up the baryon asymmetry 



ΩGW ∼ κ2(α, vb)
(

H

β

)2 (
α

α + 1

)2

  

Efficiency coefficient

bulk flow and 
hydrodynamics

Espinosa, TK, No, Servant 'xx

1st order EW phase transition

-> all boils down to calculating the fluid velocity 
profile in the vicinity of the bubble wall

higgs vaccuum energy is converted into :

- heating
-bulk motion 
-kinetic energy of the higgs, 

fraction that goes 
into kinetic energy 

In general, c2
s depends on the EoS for the plasma, being c2

s = 1/3 in the bag case. In the
general case, c2

s will be ξ-dependent, although in many cases of interest deviations from 1/3
will be small.

Eq. (27) can then be solved (with the appropriate boundary conditions) to yield the
velocity profile v(ξ) of the plasma. Subsequently, eqs. (26) can be integrated to yield

w(ξ) = w0 exp

[

∫ v(ξ)

v0

(

1 +
1

c2
s

)

γ2 µ dv

]

. (29)

In the calculation of the gravitational radiation produced in the phase transition one
needs to compute the kinetic energy in the bulk motion of the plasma. We have now all
ingredients necessary to perform such calculation. The ratio of that bulk kinetic energy over
the vacuum energy gives the efficiency factor κ as

κ =
3

εξ3
w

∫

w(ξ)v2γ2 ξ2 dξ , (30)

where ξw is the velocity of the bubble wall. Notice that this definition coincides with the
expression used in the gravitational wave literature, that is given by κ = 3

εR3
w

∫

w v2γ2 R2dR,

but differs from the definition used in ref. [5] by a factor ξ3
w.

We also numerically check energy conservation: Integration of T00 over a region larger
than the bubble (including the shock front) is constant in time, giving

∫
[

(γ2 −
1

4
)w −

3

4
wN

]

ξ2dξ =
ε

3
ξ3
w, (31)

where wN denotes the enthalpy at nucleation temperature far in front of the wall. This
implies that the energy which is not transformed into kinetic bulk motion, but is used
instead to increase the thermal energy, is

1 − κ =
3

εξ3
w

∫

3

4
(w − wN)ξ2dξ =

3

εξ3
w

∫

(e − eN)ξ2dξ. (32)

3 Detonations, deflagrations and hybrids

We can now use the previous fluid equations to describe the different kinds of solutions for
the motion of the plasma disturbed by the moving phase transition wall. In the discussion
below, the sound velocity in the plasma plays a very relevant role. This velocity will in general
depend on ξ and it is convenient to distinguish its asymptotic values in the symmetric and
broken phases. We denote those two velocities by c±s . In many cases, we expect the bag EoS
to hold in the symmetric phase and therefore c+

s = 1/
√

3.
Before embarking in the discussion of the different types of velocity profiles, it proves use-

ful to study first in more detail the profile eq. (27) without worrying about physical boundary
conditions. The different curves in Fig. 2 are obtained by solving for ξ as a function of v
[instead of the more physically meaningful v(ξ), the plasma velocity profile] using arbitrary
boundary conditions and setting cs = 1/

√
3. This procedure has the advantage that ξ(v) is

8

fluid velocity

wall velocity

fraction κ of vacuum energy density ε 
converted into kinetic energy

α =
ε

ρrad

β

H
=

1
T

dS

dT



3.1 Detonations

A pictorial representation of a typical detonation is depicted in Fig. 3, right plot. The
corresponding velocity profile is as in Fig. 4, lower left plot. More precisely, in detonations
the phase transition wall moves at supersonic speed ξw (ξw > c+

s ) hitting fluid that is at rest
in front of the wall. In the wall frame, the symmetric-phase fluid is moving into the wall at
v+ = ξw and entering the broken phase behind the wall where it slows down so that v− < v+.
In the rest frame of the bubble center, the fluid velocity right after the wall passes jumps to
v(ξw) = µ(v+, v−) (the Lorentz transformation (28) from the frame of the wall to the rest
frame of the center of the bubble) and then slows down until it comes to a stop, at some
ξ < ξw, forming a rarefaction wave behind the wall. From the previous discussion we know
that v will go to zero smoothly at ξ = c−s .

deflagration

!
w

 < c
s

!
w

 > c
s

!
w

 > c
s

hybrid detonation

Figure 3: Pictorial representation of expanding bubbles of different types. The black circle is the
phase interface (bubble wall). In green we show the region of non-zero fluid velocity.

In order to obtain a consistent solution in the region c−s < ξ < ξw, one needs 0 < ∂ξv < ∞
which, using eq. (27), requires µ(ξ) > µ(ξw) ≥ c−s behind the wall. Consequently, detonation
solutions are confined to the lower right corner of fig. 2, as indicated. Boosting to the wall
frame this implies v− ≥ c−s , since v− = µ(ξw, v(ξw)). Therefore, detonations can be divided
into Jouguet detonations (v− = c−s ) and weak detonations (v− > c−s ); strong detonations
(v− < c−s ) are not consistent solutions of the fluid equations, see fig. 1.2

Fig. 4 shows also the enthalpy profile (bottom right) for a detonation. Concerning this
profile, remember that the matching conditions across the wall give

wN = w+ = w−

(

1 − ξ2
w

ξw

) (

v−
1 − v2

−

)

, (34)

where the subscript N denotes the plasma at the temperature of nucleation far in front of

2As c−
s

can be different from 1/
√

3 in the most general case, the forbidden region v
−

< c−
s

, shaded in
Fig. 1, will be shifted in those cases.
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Figure 4: Examples of the fluid velocity (in the plasma rest frame), enthalpy and entropy profiles
for a subsonic deflagration, a deflagration with rarefaction wave (hybrid) and a detonation, for
a−/a+ = 0.85. The bubble of broken phase is in gray. For detonations, the fluid kinetic energy
and thermal energy are concentrated near the wall but behind it i.e. inside the bubble, while they
are located outside (mostly outside) of the bubble for deflagrations (hybrids).

the wall. Then, eq. (29) transforms into

w(ξ) = wN

(

ξw

1 − ξ2
w

)(

1 − v2
−

v−

)

exp

[

−
∫ v(ξw)

v(ξ)

(

1 +
1

c2
s

)

γ2 µ dv

]

. (35)
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Depending on the boundary conditions at the bubble front, there are three possible solutions:
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The velocity of the bubble wall can be determined by solving:

friction 
coefficient

!φ +
∂F
∂φ

− TN η̃ uµ∂µφ = 0

driving force. There is however a resistance to this expansion from the surrounding plasma,
which exerts a friction force that grows with the velocity of the moving wall. Eventually, an
equilibrium between these two forces is reached after a short time of expansion and, since
then on, the bubble wall keeps expanding in a steady state at a constant terminal velocity.
As explained in the last sections, hydrodynamics alone cannot be used to determine this
terminal wall velocity and one has to analyze the mechanism of entropy production and
friction in the wall.

5.1 EoM for the Higgs field and the friction parameter η

We take into account entropy production and friction through the equation of motion of the
Higgs field

!φ +
∂V0

∂φ
+

∑

i

dm2
i

dφ

∫

d3p

(2π)32Ei
fi(p) = 0 . (43)

By decomposing
fi(p) = f eq

i (p) + δfi(p) , (44)

where f eq
i = 1/[exp (Ei/T ) ∓ 1] is the equilibrium distribution function of particle species

i with E2
i = p2 + m2

i , eq. (43) takes the simple form (see also ref. [16] and more recently
ref. [26])

!φ +
∂F
∂φ

−K(φ) = 0 , (45)

where the second term gives the force driving the wall and K(φ) stands for the friction term

K(φ) = −
∑

i

dm2
i

dφ

∫

d3p

(2π)32Ei
δfi(p) . (46)

Friction is therefore due to deviations of particle distributions from equilibrium. In prin-
ciple, calculation of K(φ) requires solving a coupled system involving Boltzmann equations
for particle species with a large coupling to the Higgs field. This intricate calculation has
been performed in the Standard Model [15] and in the MSSM [20] and under the assumption
that the deviation from thermal equilibrium is small, i.e. δfi(p) # fi(p), which is only true
for weakly first-order phase transitions.

In this paper, we want to follow a more phenomenological and model-independent ap-
proach. In refs. [16, 26] a particularly simple choice for K(φ) was used:

K(φ) = TN η̃ uµ∂µφ , (47)

(where TN is inserted just to make η̃ dimensionless). This Lorentz invariant choice is mo-
tivated by similar approaches in the inflationary context but, as we will see in the next
section, it does not lead to the correct behavior for highly relativistic bubble wall velocities:
this friction force could increase without bounds, due to the γ factor appearing through
uµ∂µφ, but we know from ref. [27] that at large wall velocities the friction term approaches
a constant (see next section).

Friction comes from out-of-equilibrium effects and the assumption that it depends lo-
cally only on the plasma four-vector uµ and a Lorentz scalar η is too simplistic. In our
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phenomenological approach we ensure that the friction force grows with v and not γv. Such
behavior could arise from a friction term in the Higgs equation of motion of the form

K(φ) = TN η̃
uµ∂µφ

√

1 + (λµuµ)2
, (48)

where the Higgs background is parametrized by a four-vector λµ [such that φ(λµxµ) and λµ

is (0, 0, 0, 1) in the wall frame]. One can show that the entropy production from such a term
is always positive, as it should be.

Assuming then that in the steady state the bubble is large enough so that we can use
the planar limit, using (48) in eq. (45) we get, in the wall frame,

∂2
zφ −

∂F
∂φ

= −TN η̃v∂zφ , (49)

where z is the direction of the wall velocity. Note that the right-hand side would be multiplied
by γ if we use (47) instead of (48). If we multiply this differential equation by ∂zφ on both
sides and integrate across the wall, we get

∫

dz ∂zφ
∂F
∂φ

= TN η̃

∫

dz v (∂zφ)2 . (50)

The integration of the force term could be simply performed if the free energy F did not have
an implicit dependence on z via the change in the temperature, T (z), with T (±∞) = T±.
Using dF/dz = (∂F/∂φ)∂zφ+(∂F/∂T )∂zT , one can rewrite the driving force of the bubble
expansion as:

Fdr ≡
∫

dz ∂zφ
∂F
∂φ

= F|+
−
−

∫

dz ∂zT
∂F
∂T

, (51)

and, using ε± and a(z) as defined in eqs. (16) and (17), one gets, without making assumptions
on the plasma equation of state:

Fdr = ε+ − ε− −
1

3

∫

da T 4 . (52)

By making further use of the definition of a(z) and assuming that the distribution functions
for particle species are the equilibrium ones one can rewrite eq. (52) as

Fdr = ∆V0 +
∑

i

|Ni|
∫

dz
dm2

i

dz

∫

d3p

(2π)3

f eq
i

2Ei
, (53)

where ∆V0 is the T = 0 part of ε+ − ε−, that is, the difference in (T = 0) potential energy
between the symmetric and broken minima (ε, for the bag equation of state). This expression
for the driving force will be useful in sect. 6.

Notice that this force does not coincide with the latent heat Λ, given by

Λ ≡ e+ − e− =
(

ε + a T 4
)
∣

∣

+

−
. (54)

nor with the free energy (pressure) difference

∆F ≡ p− − p+ =
(

ε −
a

3
T 4

)
∣

∣

∣

+

−

. (55)
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our parameter η can be written as

η ∼
η̂

10 a+

1

TN lw

(

φN

TN

)4

(66)

The coefficient η̂ was determined in the SM [15] (η̂ ≈ 3) and in the MSSM [20] (η̂ ! 100 with
a sizable dependence on tanβ). A particularly interesting case is given by the parameter
region of the MSSM that allows for viable electroweak baryogenesis. The bound on sphaleron
wash-out implies φN/TN " 1 and using TN lw ≈ 10, η̂ ≈ 100 one finds η ≈ 1/30. Due to a
small difference in free energies, this leads to subsonic wall velocities 〈v〉 = 0.05 ÷ 0.1 [20]
as required for the diffusion of CP-violating particle densities into the symmetric phase in
front of the wall. This corresponds to a very weak phase transition with a value of αN just
slightly above its lower bound (that depends on a−/a+). Note that for models with a similar
particle content the friction η is not expected to change much, while the strength of the
phase transition can increase significantly. This is for example the case in singlet extensions
of the SM and MSSM which can easily lead to detonations or runaway solutions.

In this section we have assumed that the bubble wall reaches at some (not too late) stage
of the expansion a constant velocity. In this case the fraction of energy transformed into
kinetic energy of the Higgs field becomes negligible, since it only scales with the surface of
the bubble, while the similarity solutions of bulk motion scale with the volume. This can
change in cases in which the wall keeps accelerating without reaching a terminal velocity, as
discussed in the next section.

6 Runaway walls

It was recently argued [27] that the friction exerted on the Higgs wall by the plasma might
be too small and the wall might continuously accelerate. In this case a constant fraction of
the free vacuum energy is transformed into kinetic and gradient energies of the wall. In this
section we analyze the energy balance and the efficiency coefficient in this situation.

Let us first quickly present the main result of [27] that is based on the analysis of refs. [29–
31]. The passing phase-transition wall disturbs the distribution functions of particles in the
plasma. As discussed in the previous section, if we knew such non-equilibrium distributions,
fi(p, z), for each particle species, we could write, for the total force acting on the wall per
unit area and including friction:

Ftot = Fdr − Ffr = ∆V0 +
∑

i

|Ni|
∫

dz
dm2

i

dz

∫

d3p

(2π)3

fi

2Ei
. (67)

This has the same form as eq. (53) for the driving force Fdr but with the replacement f eq
i → fi.

Now, the ultra-relativistic case is particularly simple: to leading order in 1/γw, the wall
induces a sudden change in particle masses, m2

i,+ → m2
i,−, but leaves particle distribution

functions as they were in the symmetric phase fi = f eq
i,+ (which are not the equilibrium ones

in the broken phase). This allows the z-integral in (67) to be performed and one obtains

Ftot = ∆V0 −
∑

i

|Ni|∆m2
i

∫

d3p

(2π)3

f eq
i,+

2Ei,+
, (68)
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driving force:

Ftot > 0 : runaway

the wall velocity grows until the friction force equilibrates and a steady state is reached

[Bodecker-Moore ’09]
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Figure 10: Contour plots of κ and ξw as functions of η and αN (for a−/a+ = 0.85). The blue lines
mark the transition to regions without solutions. The green lines mark the boundaries between
stationary and runaway solutions. The red lines mark the transition from subsonic to supersonic
deflagrations (hybrids). We superimposed the detonation region in the lower plots as a gray band.

plasma velocity, which in general is a very good approximation. For η̃ fixed, the boundary
conditions (say at z = −∞) for T (z) and v(z) cannot be chosen freely: e.g. if one fixes
T (+∞) = T+ (in general different from TN) only one particular v(+∞) = v+ is selected
and then all profiles φ(z), T (z), v(z) can be determined. Detonation solutions will have
v(+∞) = v+ = ξw > v(−∞) = v− and one should choose T (+∞) = TN . Deflagrations
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Energy budget of the phase transition

0.1 1 10
!
N

0

0.2

0.4

0.6

0.8

1

" = 0.2

0.1 1 10
!
N

0

0.2

0.4

0.6

0.8

1

" = 1.0

deflagration run-awaydetonation deflagration detonation run-away

thermal

bulk

Higgs

Higgs

bulk

thermal

Figure 12: The energy budget for η = 0.2 and η = 1.0. The different contributions (from top
to bottom) are thermal energy, bulk fluid motion and energy in the Higgs field. The last two
components can potentially produce anisotropic stress in the plasma and subsequently gravity
waves.

Hence, in the runaway case, with αN > α∞ the solutions for the fluid motion are identical
to the ones with αN = α∞, according to the distribution functions determined close to the
wall. At the same time the Higgs field cannot be time-independent anymore and energy
momentum conservation implies that the remaining energy is used to accelerate the wall.

We observed in section 4 that, in the limit of large wall velocities, the efficiency factor
does not depend on the wall velocity but is given by (42). This means that, in the runaway
case,

κ∞ !
α∞

0.73 + 0.083
√

α∞ + α∞

(runaway). (94)

In summary, in the runaway regime and for given αN , a portion α∞ of the initial αN produces
bulk motion with efficiency κ∞, as given by eq. (94), while the remaining portion, αN −α∞,
is transformed directly into kinetic/gradient energy of the Higgs field with efficiency κ =
1. These two components can potentially produce anisotropic stress in the plasma and
subsequently gravity waves while the thermal energy in the plasma can not. Figure 12
shows the energy budget of the phase transition for two choices of the friction coefficient η
as a function of αN in different regimes of bubble expansion.

8 Summary

The bubble wall velocity ξw in first-order phase transitions is a key quantity entering the
calculation of the baryon asymmetry in electroweak baryogenesis and its derivation has been
discussed extensively in the literature. However, it has been treated in detail only in specific
models (corresponding to weak first-order phase transitions) and a general account of the
problem was lacking. In this work, we attempted to gather all the important information
in a self-consistent manner and in a model-independent approach. We presented a unified
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In summary, in the runaway regime and for given αN , a portion α∞ of the initial αN produces
bulk motion with efficiency κ∞, as given by eq. (94), while the remaining portion, αN −α∞,
is transformed directly into kinetic/gradient energy of the Higgs field with efficiency κ =
1. These two components can potentially produce anisotropic stress in the plasma and
subsequently gravity waves while the thermal energy in the plasma can not. Figure 12
shows the energy budget of the phase transition for two choices of the friction coefficient η
as a function of αN in different regimes of bubble expansion.

8 Summary

The bubble wall velocity ξw in first-order phase transitions is a key quantity entering the
calculation of the baryon asymmetry in electroweak baryogenesis and its derivation has been
discussed extensively in the literature. However, it has been treated in detail only in specific
models (corresponding to weak first-order phase transitions) and a general account of the
problem was lacking. In this work, we attempted to gather all the important information
in a self-consistent manner and in a model-independent approach. We presented a unified
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Summary

The nature of the EW phase transition is unknown & it will take time before we can 
determine whether  EW symmetry breaking is purely SM-like or there are large 

deviations in the Higgs sector which could have led to a first-order PT 

Cosmic connections of  electroweak symmetry breaking:
A multi-form and  integrated approach
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Annexes



Cold Baryogenesis 
An alternative to 0andard EW baryo(nes%

2) Local  (B and CP violation occur together in space and time 
              i.e. the mechanism does not rely on charge transport)

1) Cold (the universe never reheats above the EW scale)

3) In its present realization, does not rely on 1st order PT but on 
inflationary phase instead



conditions for successful cold baryogenesis. We estimate the resulting baryon asymmetry in
Section 4 and conclude in Section 5.

2 Cold electroweak baryogenesis

The main idea of cold baryogenesis relies on the evolution of winding number and Chern-
Simons number in a fast tachyonic electroweak transition. In the ‘standard’ picture (see
e.g. [19]), the EW phase transition is triggered by a rapid change in the Higgs mass (“quench-
ing”) in a nearly empty Universe. This can be arranged for instance in a low-scale inverted
hybrid inflation scenario where the inflaton is coupled to the Higgs [35, 36, 22–24]. The
resulting tachyonic instability leads to strongly out-of-equilibrium conditions with an expo-
nential growth of occupation numbers in the Higgs fields and after a short while the system
becomes classical. The SU(2) orientation of the Higgs field is inhomogeneous in space such
that different regions approach different minima in the Higgs potential, similar to a spin-
odal decomposition. The dynamics of the system can lead to substantial changes in the
Chern-Simons number of the SU(2) gauge fields

NCS = −
1

16π2

∫

d3x εijk Tr

[

Ai

(

Fjk +
2i

3
AjAk

)]

, (2)

and can therefore induce baryon number violation via the quantum anomaly that relates a
change in baryon number B to a change in Chern-Simons number NCS

∆B = 3∆NCS. (3)

The key point is that the dynamics of the Chern-Simons number is linked to the dynamics
of the Higgs field via the Higgs winding number

NH =
1

24π2

∫

d3x εijk Tr
[

∂iΩΩ
−1∂jΩΩ

−1∂kΩΩ
−1
]

, (4)

where Ω is given by the elements of the usual SU(2) Higgs doublet φ of the SM :

ρ√
2
Ω = (εφ∗,φ) =

(

φ∗
2 φ1

−φ∗
1 φ2

)

, ρ2 = 2(φ∗
1φ1 + φ∗

2φ2). (5)

Both the winding number and the Chern-Simons number change under large gauge trans-
formations. However, the variations ∆NCS, ∆NH and the difference

δN ≡ NCS −NH , (6)

are gauge invariant. In the vacuum, δN = 0. A texture is a configuration which has δN $= 0,
with a Higgs length ρ that is equal to its vacuum value everywhere and which only carries
gradient energy. In the absence of gauge fields, textures are not stable configurations but
shrink quickly [37] and the vacuum configuration is the constant Higgs field with vanishing
winding number.

Cold electroweak baryogenesis is based on gauged textures of the electroweak gauge sector
of the SM [38]. A gauged texture is also unstable and its evolution depends on its length

3

A texture is a configuration which has δN≠ 0. It is unstable and decays.

During the EWPT & preheating, configurations with ΔNH ≠ 0 are 
produced. They relax to 0 by either changing  NH  or NCS . 

In the latter case, there is anomalous fermion number production.

CP violation affects how textures unwind !

 δN<0 configurations prefer to unwind by relaxing NH while 
δN>0 configurations prefer to unwind by relaxing NCS 

---> Baryogenesis
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Dynamics of textures In vacuum: δN=0

instead of using thermal fluctuations to go over 
the barrier and produce NCS, use scalar field 
energy in winding configurations carrying NH 

which then produce NCS  when decaying


