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Lectures on String Inflation

The Hot Big Bang model of cosmology has recently been tested with urgeetsz redun-
dancy and precision, and has emerged all the stronger for havingsdoit@e redundancy of these
tests gives confidence that the basic picture — the expansion of an initiptimrdial soup —
is basically right. Their precision allows a detailed inference of the modelanpeters, including
the first-ever survey of the energy content of the Universe as a whole

Although the Big Bang works well, it does so only provided that the Un&éssstarted off
in a particular way. The theory of Cosmic Inflation [1] was invented in otdery to explain
these initial conditions, by postulating a much earlier epoch during which tineetde expanded
increasingly rapidly with time. Remarkably, this proposal turns out also ®a@iyood explanation
for the properties of the temperature fluctuations that were later seen inodmi€Microwave
Background Radiation (CMBR) — the residual radiation left over fromfitst epoch when the
universe became transparent to photons, due to its cooling enough tocatlovary matter to
become dominated by neutral atoms.

Because inflation likely takes place at temperatures much higher than angemrein the
lab on Earth, its study necessarily involves making assumptions about wlatdf physics are
involved at such high energies. This, together with the observationeésses, has stimulated a
variety of attempts to try to find inflationary configurations within string theoryiclv remains
our best candidate for the physics relevant to such high energiese Tioges are meant as a brief
introduction to inflationary cosmology and its potential stringy realizations, amhed audience
of graduate students in particle physics.

1. Hot Big Bang Cosmology

We start with a description of the geometry of spacetime on which all of theegubst sec-
tions rely, together with a telegraphic summary of the essentials of the Hot BigRadel. (More
details can be found in one of the following excellent books [2, 3].) Tlyaikelerlying assumption
in this section is that the universe is homogeneous and isotropic whenrs¢em largest distance
scales. Until relatively recently this assertion about the homogeneity aindpgmf the universe
was an assumption, often called tBesmological PrincipleMore recently it has become possible
to put this assertion on an observational footing, based on large-secaéy's of the distribution of
matter and radiation within the universe we see around us. Most notableydhese is the incred-
ible uniformity of the observed temperature of the CMBR, for which temperdluctiations are
observed to be of ord&T /T ~ 107°.

1.1 Friedman-Robertson-Walker Cosmology

In General Relativity the geometry of spacetime is specified by its metric tevisich defines
the differential distance, & = g,,, dx* dx’, associated with infinitesimal coordinate displacements,
dx4. The most general 4D geometry which is consistent with isotropy and hamitgeof its
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spatial slices is described by the Robertson-Walker metric:
dr?

1—kr2

= —dt®+a2(t) [df®+r3(¢)d6% +r3(¢) sir? 6de?] (1.1)

ds? = —dt? +&(t) +r2d6? +r?sir? 6 dg?

where 0< 8 < mand 0< @ < 2mrare the usual angular coordinates on a two-sphere, and we choose
ourselves to lie at the origim,= 0, of the radial coordinate.

Homogeneity and isotropy dictate that the 3-dimensional spatial slices thtbisgheometry
at fixedt are maximally symmetric, and so are described by the three-valued quantify,1, —1.
If k =1 then the spatial slices are three-spheres ardrO< 1; if kK = —1 they are hyperbolic
surfaces and & r < «; and if k = 0 they are flat and againranges from zero to infinity. The
metric of eq. (1.1) follows the standard convention, wherein the freedawdi&finer — Ar has
been used to absorb the radius of curvature of the spatial metric into tredl ®oale factora(t).

The second form given for the metric in eq. (1.1) instead uses the pdggiance/, (at fixed
t) as the radial coordinate, wheré-¢ dr/(1— kr?)%2, and so

sind if kK=+1
r(¢) = !/ if k=0 . (1.2)
sinhd if k=-1

Exercise 1: Find the rate of chang&/j; = dD/dt, of the proper distancd) = aA/l,
from us to another co-moving observer located on a galaxy at fixed pos§tié, @).
Show that this is given by the Hubble Lawy = H D, whereH = &/a defines the
instantaneous Hubble parameter.

Detailed observations of many, many galaxies broadly confirm that galdgiescede from
us in a way that is consistent with the Hubble law defined in Exercise 1, withsept-day Hub-
ble parameter oHy ~ 75 km/sec/Mpc. Strictly speaking, however, the Hubble law only applies
once the peculiar motion due to the gravitational influence of local matter is mnd@ut since
the Hubble law implies that the apparent recession due to the universai®ap becomes more
important for more distant galaxies, in practice peculiar velocities are an iamaomplication
only for the nearest galaxies.

Exercise 2: For the Robertson-Walker geometry show that if a photon having wave-
lengthAem is emitted at a timéem, Whena(tem) = aem, and is received with a wave-
length Agps at a later timeops for which a(tops) = aops, then it experiences a redshift
z= (apps/@em) — 1, where redshift is defined B= (Aopbs— Aem)/Aem. Notice that this
implies that universal expansiond, aps> aem) impliesz > 0, making the observed
wavelength longer (more red) than the emitted one.

How the scale factor evolves with time depends on what kind of matter thersaiventains,
in a way which is dictated by the field equations for gravity. Assuming thesgieea by Ein-
stein’s General Theory of Relativity implies that this connection betweetesipge geometry and
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universal energy content is given by

R,,V—%ng =8nGTyy, (1.3)
whereG is Newton’s constant, arfd= gVR,,, whereR,,, denotes the Ricci tensor — a particular
measure of the curvature of spacetime.

The tensoiT,, on the right-hand-side of eq. (1.3) is the energy-momentum stress tertber of
universe’s matter content, which is locally conserved in the senseltfiagt, = 0. The most general
form for Ty, consistent with the homogeneity and isotropy of spacetime has the periddbfin:

p O
T = : (1.4)
. <0 991>

wherep is the local energy density armithe local pressure. The indiceg = 1, 2,3 run over the
spatial coordinates (as opposed to the spacetime ingdices- 0,1,2,3).

Once eq. (1.3) is specialized to the Robertson-Walker metric, eq. (1dljodh.4), it reduces
to two independent equations governing the time-evolution of the scale,fag@torthe Friedmann
equation,

-\ 2
a K _ P .
<a> + 2z 3Mr2J (Friedmann) (1.5)
whereMlg2 = 811G, and the Raychaudhuri equation,
a 1 ,
T (p+3p) (Raychaudhuri) (1.6)
It is often useful to trade eq. (1.6) for the equivalent first-ordeiadiqn which expresses conserva-
tion of energy:

% (p a3) = p% (a3) (energy conservation) (1.7)

since eqs. (1.5) and (1.7) together imply eq. (1.6).

1.2 Universal energy content

At present, the universe appears to be well-described by a fluid whrdiaias four indepen-
dent contributions to its stress energy,

4 .
20

Furthermore, each component of this fluid appears to exchange ear@gyomentum negligibly
with the others, sdﬂ“T‘iV =0, for eachi. In terms of the corresponding energy densit@sand
pressuresp;, — defined forT,, as in eq. (1.4) — this implies that each component separately
satisfies eq. (1.7).

For the purposes of cosmology, several important things are knowrt titmuniversal stress-
energy content.
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Total Energy Density:

The best current measurements of the present-day Hubble bigate(a/a)o, together with the
measured overall curvature of spagga3, taken with the Friedmann equation, eq. (1.5), tell us
the present value of the total energy dengity; = 5 oi, of the universe. The curvature of space,
Kk /a3, can be inferred from the properties of the measured temperature flootiaf the CMBR
together with the measured valueld§, and impIyK/a(Z) is presently consistent with zerod, a
spatially flat universe). Using this, and the measured valuklfoin eq. (1.5) then implies

Prot ~ Pe = 3MFHG ~ 10 P glent. (1.9)
The Friedmann equation, eq. (1.5), can then be rewritten as

yQi=1, (1.10)

where Q; = pi/p. denotes the present-day fraction of energy density contributed byfledh
component, and the sum runs over all components.

At present there is good evidence for there being the following four omats to the cosmic
fluid:

Radiation:

We see the universe around us is filled with photons, whose energitydisndominated by the
photons of the CMBR. The pressure and energy density of a gas ¢drzhare related by the
eqguation of state

1
Prad = 3 Prad- (1.11)

These photons are observed to have a thermal distribution, with tempezatiiteK.

On particle-physics grounds it is also believed that there are also an aqadty large num-
ber of Cosmic Relic Neutrinos (CRNs), whose masses are small enoughetdéan relativistic
at least up to very recent epochs of the universe. Furthermore, tieesrinos are calculated to be
thermally distributed, with temperatufg ~ 1.9 K. Since any gas of weakly-interacting relativistic
particles satisfies the equation of state, eq. (1.11), these neutrinosrarallgdumped together
with the photons into the energy density and pressure of cosmic radiation.

The observed total energy density of radiation is a small fraction of theeptdotal energy
density,

Qrag = <%‘> ~8x10°5, (1.12)
p now

of which roughly 3x 10~° comes from the neutrinos.
Baryons:

The universe also contains ordinary matter (electrons, nuclei, atomsy@rambers, whose num-
ber density is normally counted as a contribution to the conserved densignairbonumber (for
which neutrons and protons caryl unit while electrons carry none). (Although this technically
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does not count the electrons, the overall electrical neutrality of therseuells us that the number
of electrons is the same as the number of protons.)

Since this kind of matter is non-relativistic, its average kinetic energye—s pressure — is
smaller than the energy tied up in its rest mass by an amount of @rde%; and so its equation of
state is

Ps ~ 0. (1.13)

Even though the number density of baryons is numerically much less numirausgphotons,
ng/ny ~ 5 x 1010, their relatively large rest mass implies they make up a larger component of the
present day energy density than does the radiation:

Qg — <@> ~ 4%. (1.14)
p now

The number o¥isiblebaryons is much smaller than this, but the total amount of baryons present ca
nonetheless be determined because of its influence both on the obsempedatire fluctuations

of the CMBR and on the relative abundance of light nuclei which wenmméarin the very early
universe.

Dark Matter:

Observations of how stars move within galaxies, how galaxies move within idwstd of how the
gravity of matter as a whole influences galaxy formation and the temperatatreaflions in the
CMBR provide good, consistent evidence for the existence of a largerned non-relativistic
matter which gravitates just like ordinary baryons do, also with an equatiagtaté for non-
relativistic matter:

pom ~ 0. (1.15)

Agreement with observations requires the overall abundance of thisNDeter to be
Qo = (pD—M) ~ 26%. (1.16)
p now

Since both baryons and Dark Matter share the same equation of state,rtrsocoto lump
them together into an overall energy density of non-relativistic matter,

Qum = Qs + Qpm ~ 30%. (1.17)

Dark Energy:

For the past decade evidence has been accumulating for the existgret@wdther kind of invisi-
ble matter, in addition to the Dark Matter just described. The existence of thisrisdttéerred in
two different ways.

First, it is clear that the sum of the energy density of the above-mentiondccimponents
does not yet add up to the observed total energy dermity(Fig. 1 shows the accuracy of this
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Figure 1: Current constraints on the relative abundance of Dark Matid Dark Energy, as inferred using
properties of the CMBR and measurements of large-scaletgsteu The diagonal line corresponds to a
universe having total densitg, = p, as discussed in the text [4].

determination obtained using CMBR and large-scale structure measurenigrissijidicates the
need for a missing component — called ‘Dark Energy’ — satisfying

Qp = (%> ~ 70%. (1.18)
p now

Second, detailed tests of the Hubble expansion rate using supernavaehst the overall
expansion rate of the universd,= &/a, appears to bancreasingat present. As eq. (1.6) shows,
this can only happen for positive energy dengity; 0O, if the total pressure is sufficiently negative,
p< —%p. Since this is not true for any of the fluid components entertained to this poingthing
else must exist whose pressure is negative and at present dominates ttie other forms of
matter.

Indeed, present-day understanding of the microscopic laws of Nabuaaiv pressure to be
negative, and the simplest candidate is the vacuum itself for which Lorergdance implies its
stress energy must satisfy,v) 0 g,v, and so is predicted to have the equation of state

PbE ~ —PDE - (1.19)

This equation of state is assumed in what follows for Dark Energy, areeagwith the present
observational bounds, which implypoe/ppe < —0.8. Crucially, the amount of matter having
this equation of state which reproduces the observed acceleration in itlezsah expansion is
consistent with the energy density required to engu@; = 1, as required by measurementd-gf
andk /a3.
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1.3 Domination by radiation, matter and Dark Energy

The different equations of state satisfied by radiation, non-relativistic n{aebaryons and
Dark Matter) and Dark Energy implies that their relative abundancegiffim the past universe
because their energy densities vary differently as the universe @xpan

Dependence op on a

Notice that each of the above equations of state implies that thewatiop; /p; is time-
independent, with

1

and using this allows eq. (1.7) to be integrated to give
_ (20
Pi = Pio ( a) ; (1.21)
wherea; = 3(1+w;), and so
Orad = 4, adm=3 and ape =0. (1.22)

Combining these results shows how the total energy density evolves with tiere gmnitial
density,po, which is divided into an initial fractionf; = pio/po, of radiation (rad), non-relativistic
matter () and Dark EnergypE):

o(a) = oo [fDE+ ()" + frad(%)“] | (1.23)

Because each term in the sum varies so differently with time, the history ohtherse breaks up
into epochs during each of which one term or another dominates, andsolsahe overall change
of p(a), as shown in Fig. (2).

Exercise 3: Given the present-day abundances of radiation and matter, and using the
relationap/a = 1+ z (see Problem 2) between redshift and scale factor, show that
the epoch where the energy density in radiation equals that of non-igiatiwmatter
occurs at redshifteq ~ 3600. Show that if Dark Matter did not exist (so baryons were
the only non-relativistic matter), then the epoch of radiation-matter equalitydwou
have instead occurred much laterzat, ~ 480.

Notice in particular that the contribution to the Friedmann equation, eq. (11 Gurvature
term’, k /@2, falls more quickly than dogspe (which does not fall at all), but more slowly thapg
andpn. Since present-day measurements are consistentyith~ 0, it follows that curvature
becomes less and less important the further back into the past we look.
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Energy Density vs Scale Factor
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Figure 2: The energy density of radiation, non-relativistic mattad &ark Energy as a function of the
universal scale factor, in units for whigh=a =1 at present.

Dependence ofiont

The dependence af ont (and so also oH on a), may be obtained from the Friedmann
equation, eq. (1.5), using the above expressiompfay. Settingk = 0, this implies

(t—to) = \@Mpﬁé\/d%, (1.24)

In general the right-hand side involves elliptic integrals, however it tals#ple form whenever
p(a) is dominated by one component of the cosmic fluid (as it almost always is)islimttance
we havep(a) ~ po(ap/a)?, wherea = 3(1+w), and so eq. (1.24) is easily integrated, leading to

alt) =ag (l)ﬁ andso H™1(t)=—, (1.25)
to B

wheref = 2/a = 5(1+w) ! for w# —1, and sg8 = % whenw = 0 andB = 3 whenw = 1. For

later purposes, two things are worth remarking here. First, noticattiagrows so quickly that it

could have grown from zero size over a finite time interval. Secaftd,grows more slowly than

does the Hubble lengtty ~1(t), so long a3 < 1 (i.e. for w > —%). This is true in particular for

both radiation- and matter-dominated universes.
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For the exceptional case= —1 we havea = 0 and sq = p, is constant, so integration gives
instead

o\ 1/2
a(t):aoexp[H*(t—to)} with Hl(t):H*1:<32/lp> . (1.26)

Herea(t) grows more quickly thaki ~1(t) (which in this case does not grow at all).

1.4 Major Events

The Hot Big Bang model for cosmology assumes the universe was initially sokp of ele-
mentary particles, whose temperature was once at least 10 billion defygréesad brush strokes,
its later evolution describes the cooling of this hot soup as the universméspfor which conser-
vation of entropy implies (for relativistic particles)

T) =To ({;’6) . (1.27)

For the purposes of later observations, there are two main consequ#rsteh a cooling:

e Reduced Reaction RatesReaction rates in dilute systems are generically proportional to
the number of participants per unit volume, because the reactants mudetie fibd one
another before they are able to react. But since these particle dendltes tfee universal
volume grows, reaction rates also fall. This implies that one of the main trerdswfology
is the falling out of equilibrium of various thermal and chemical reactions.

e Formation of Bound States: A corollary of the previous point is the appearance of bound
states of particles as the universe ages. Although the reactions forming btates can al-
ways occur, at the earliest epochs temperatures are high enoughite #va collisions very
efficiently destroy these bound states — leaving very few to survive iititegum conditions.
But inter-particle collisions become less violent as the temperature falls, sevtually
the reactions of formation can dominate to leave a population of primordial baliod
states.

At very early epochs phase transitions are also expected to play an impatain the cosmic
evolution, but as yet there is no direct evidence that such transitionptacé.

Most of the observational consequences of the Hot Big Bang revbleeatdhe detection of
such relics, together with the detailed measuring of their properties. A cesgatdnistory of the
Hot Big Bang era then becomes a summary of which relics have been etisand when they
formed.

Big Bang Nucleosynthesiss the earliest cosmic event — occurring at a redshik ~ 10'° — for
which we have direct observational evidence. At this time the temperatstredisled below about
1 MeV, at which point light nuclei (isotopes of Hydrogen, Helium, Lithiundd@eryllium) first
began to accumulate from their constituent protons and neutrons. @tieeal evidence for this
epoch comes from measuring the relative abundance of these primdednedrds, and comparing

10
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the results with the predictions of nuclear physics. The success of thegEdsons also provides
a direct measure of the total baryon number density at this epoch, leettasislensity strongly
affects the various nuclear reaction rates.

Radiation - Matter Crossover is defined as the epoch when relativistic particles (radiation) stop
being the dominant contribution to the cosmic energy density, passing thistbaton-relativistic
Dark Matter (and baryons). As seen in Problem 3, this occurs atifedgjr 3600. An important
consequence of this crossover is in the speed with which gravity camesiiae growth of any
initial density inhomogeneities. These can grow proportionaldaring matter domination, while
they only grow logarithmically witta during radiation domination.

Recombinationis the epoch where free nuclei and electrons first combine into neutrabatd
which point the universe first becomes transparent to photons haigifdevand near-UV wave-
lengths. For Hydrogen, which dominates the cosmic baryon abundaimcecturs over a com-
paratively short epoch (spread over a redshift interval of a femdred) around;ec ~ 1100. The
CMBR has its origin as the light which is liberated by the universe’s newddtansparency at this
epoch, and so measurements of its temperature fluctuadang, ~ 1075, provide direct infor-
mation about the size of primordial density fluctuations in the cosmic enviroraéms time.

Galaxy Formation occurs once primordial density fluctuations have been amplified to the point
that their evolution is no longer well-described as linear perturbations.pittisre describes well

the observed distribution of galaxies in the universe, but only givenriémepce of non-relativistic
Dark Matter. Dark Matter is required since the amplitude of density fluctuattoksown to be
very small at the epoch of recombination, and does not grow stronglyafter radiation-matter
crossover (which occurs much later in the absence of Dark Matter).

1.5 Special Initial Conditions

In a nutshell, the previous section describes a simple and consistent mittheerelatively
recent universe, described by Hot Big Bang cosmology, which is abéetount for the many
observations of the overall structure and evolution of the universehwdnie now being made.
This success comes with some cost, however. Besides having to postulatdstieace of two
new forms of matter — Dark Matter and Dark Energy — for which we have thercevidence
outside of cosmology — it is also necessary to start the universe off wipleaiad kind of initial
conditions. This section describes these initial conditions, together with eetied framework
for their explanation in terms of the still-earlier history of the nascent usezer

It is common to couch the discussion of the special initial conditions requyrétetBig Bang
model in terms of initial-condition ‘problems’, of which there are at least tkypes.

The Flatness Problem

The first problem concerns the spatial flathess of the present-degrs@j which is suggested by
observations of the temperature fluctuations in the CMBR. These obses/atidicate that the
quantity k /a® of the Friedmann equation, eq. (1.5), is at present consistent with recoder to

11
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see why this constitutes a problematic initial condition it is useful to divide thiatemubyH (t)
to give

kK__ 8O0 _ ¢ ). (1.28)

T aH)? T 32
Since the produ@H decreases with time (during both matter and radiation domination), this shows
that the curvature term becomes more and more important as time passes.
The problem arises because observations indicate that at pfeserfdg is unity to within
about 10%. But during the matter-dominated era which is just ending theqir@H)2 0 a ! so,
using the result of Problem 3, at the point of radiation-matter equality we awsthad

_ A _
Q(zeq) ~ 1= (Qo—1) (L+7eq) ' = 5o~ 28x 10°°. (1.29)

So if Qg is now within 10% of unity, then it was within a few tens of a millionth at the time of
radiation-matter equality.

Earlier than this the universe was radiation-dominated, aridl4g’ O a~2. Sincezggy ~ 10°
at the epoch of Big Bang Nucleosynthesis we have

2 2
Q(zegn) — 1= [Q(zeq)—l} ( 1+ Zq ) _ ol (3600> ~36x1018 (1.30)

14+zsgy,/ 3600\ 10t0

requiringQ to be unity with an accuracy of roughly a part in*80The further back one goes, the
more fantastic the accuracy with which we must s€amear 1 in order to properly describe the
universe as we now see it. One’s discomfort of having the succesthebgey hinge so sensitively
on the precise value of an initial condition in this way is known as the Big Bdflglsiess Problem

The Horizon Problem

The Big Bang'sHorizon Problermasks why the initial universe is so very homogeneous. In par-
ticular, the temperature fluctuations of the CMBR only arise at the level ofrtlipa 0°, and

the question is why this temperature should be so incredibly uniform acroskyh&Vhy is this
regarded as a problem? After all, gasses on earth often have a unifopergture, and this is
usually understood as a consequence of thermal equilibrium becausigaly inhomogeneous
temperature distribution equilibrates by having heat flow between the hatadah@dreas, until the
gas is eventually all at the same temperature.

What makes it odd to see the same temperature in all directions of the sky in tH&idHo
Bang model is that the universe generically expands so quicklf; eq. (1.25) — that there has not
been enough time for light to travel across the entire sky to bring the netesrdsat the common
temperature is supposed to be. For instance, in a radiation-dominatedseit¢ = ag(t /ty)*/?
andH(t) = 1/(2t) so the maximum proper distance that a light signal can travel by the time of
recombinationt,ec, iS

Lo e [ g L L (2 VUL AN s
e o al®) T T Hee Ho \ @ ~ Ho \ 1100/ '

which usesH 0 a~%/2 during matter domination (as is appropriate between recombination and
now), andag/arec = 1+ Zec ~ 1100.

12
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Evaluating this usingdg = 75 km/sec/Mpc — or (keeping in mind our units for whichk- 1),
Ho ' ~ 13 Gyr=~ 4 Gpc — givedrec =~ 0.2 Mpc. Now the surface of last scattering for the CMBR
at present is at a distance of order

o df 2/3,.1/3 2 { ( o ) Ho } 2 (a(ec> 12
Dg = — =3ty -3t e =— [1-| — | —|=— |1 — , 1.32
0= % trec A(1) 0 o e Ho arec/ Hrec Ho apg ( )

(usinga 01?2 andH 0 a~%/?) and saDg ~ 2/Ho ~ 8 Gpc. But due to the intervening expansion of
the universe, the angle subtended by placed at this distance away (in a spatially-flat geometry) is
really 0 ~ Lec/Drec WhereDyec = (arec/@0)Do ~ 7 Mpc is its distancat the time of last scattering
leading tof ~ 1°. Any two directions separated by more than this angle (about twice the angula
size of the Moon, seen from Earth) are so far apart that light hadetdiad time to reach one from
the other since the universe’s beginning. How could all the directiong®e¢hen have known they
were all to equilibrate to the same temperature? Itis very much as if we werd @\vary uniform
temperature distributiommmediatelyafter the explosion of a very powerful bomb.

A Defect Problem?

A third problem called theDefect Problerh can arise if one extrapolates the Big Bang back to
times much earlier than the epoch of Big Bang Nucleosynthesis. Unlike thepsdwo problems,
whether this problem really arises or not depends on the kind of physscsiling these very short
distances and high energies.

The potential problem arises if the physics of these scales implies the smpassed through
the kind of phase transition during an earlier epoch, which produces tipalaefects. These
defects can take the form of very massive particles (possibly carryinpnetia charges, and so
called magnetic monopolgslong thin cosmic stringswhich could now be stretched across the
visible universe; or two-dimensiondbmain wallsor sheets which cross the universe.

These kinds of objects can be fatal to successful late-time cosmologgndieg on how many
of them survive down to the present epoch. For instance if the defectm@nopoles, then they
typically are extremely massive and so behave like non-relativistic matterthBsé can cause
problems, depending on how abundantly they are produced — typically es ome per Hubble
volume: n ~ H3. For instance, since the energy density of such particles falls more sloary th
does radiation as the universe expands, it can easily come to dominatevitrseimvell before the
nucleosynthesis epoch. This could cause the universe to expansioandl) too quickly as nuclei
were forming, and so give the wrong abundances of light nuclei. Evest ufficiently abundant
during BBN, the energy density in relict defects can be inconsistent witlsumes of the current
energy density.

This is clearly a much more hypothetical problem than are the other two, wydasse com-
mitted to a particular theory for the high-energy physics of the very eailyetse which produces
these types of defects.

1Sometimes also known as tiMonopole Problem
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2. Cosmic Inflation

Cosmic Inflation was initially motivated as a way to understand how these spétiaicon-
ditions of the Hot Big Bang model might be understood as naturally arisimg fh@ dynamics of
a much earlier epoch. Quite compellingly, it has been found more recentlfogtsovide a simple
explanation for the origin of the primordial density fluctuations whose pieEsseeds both the ob-
served temperature fluctuations of the CMBR and the formation of galaxmsgtinigravitational
collapse. (For textbook treatments of inflation, see ref. [6, 7, 3], anck&®nt reviews see ref. [8].)

2.1 The Inflationary Paradigm

The idea ofCosmic Inflatioris that all three of the above problems can be solved if the history
of the universe were to have undergone a period of acceleratedst@paat some point in its very
distant past. For example, suppose the universe were to temporarilthpasgh an epoch during
which the dominant component of the cosmic fluid were to have an approxincaietyant energy
density,0 = M#, which would require the equation of stgte= —p. This is the equation of state
used above for the vacuum, but now the value of the energy density isdbadsen to be much
larger, such aM, ~ 10'° GeV.

During any such an epoch we have seen that the Hubble scale remasitesntdh ~ MF/Mp,
and the scale factor grows exponentially, or inflates, according to &§)(h(t) = ap expH, (t —
to)]. This expansion law implies that the combinatiad now growsexponentially with time,
rather than falling as it did for matter- or radiation-domination. This last elsien shows why
this kind of expansion can solve the flatness, horizon and defect prepés we now see.

Flatness Problem: SinceaH grows exponentially it does not take long for any initial curvature,
k/(aH), to be diluted to extremely small values. Precisely how much dilution is required? F
example, suppose the universe were radiation dominated all the way baoketdremely high
temperature likély ~ M, ~ 10'° GeV. SinceT [0 1/a — and since light nuclei form at roughly
Teen ~ 1 MeV — the universe expands by a factggn/am = Tu/Teen ~ 108 while cooling from

Tu to nucleosynthesis. SinedH O 1/a (radiation domination) during this time it also follows that
(aH)m/(aH)geN ~ 10*8, Comparing with eq. (1.30) shows that the universe must have been very
flat indeed at this early epoch:

(aH)gen]?
Q(zv) —1 ~ (Qo(zsen) — 1) {m}
2
~ 3.6x 107> (ﬁ%’) . (2.1)

Since (aH);/(aH)o = a(t) /ap = expH, (t — tg)] during exponential expansion, even such a
small initial condition would very easily be explained if the radiation-dominatextiepvere pre-
ceded by exponential expansion for a period of tifite satisfying

Ne = H At > %In (3x10°%) ~62. (2.2)
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Thatis, under these circumstances generic initial conditions get suckadiovery flat geometries
by inflation, with sufficient flathess arising even in extreme circumstangea gbout 6@-foldings
of inflation.

Horizon Problem: This type of accelerated expansion can also solve the horizon probtamdse
onceaH is increasing physical distance scale$;) = a(t)¢, grow more quickly than does the
Hubble lengthH(t). Modes which were initially shorter than the Hubble length eventually can
be stretched to be larger than the Hubble scale. The larger the co-mosleg/sthat is involved,
the earlier it grows larger than the Hubble length during inflation. This makesskible to have
ordinary causal processes be stretched during inflationary times taragplate times as if they
were too far apart to be causally related.

How much inflation is required to make this work? The largest proper scedsenly visible
to us are of ordeHO‘1 ~ 4 Gpc, and so we focus our attention to scales that are presently this size,
L(tg) = apl ~ Hg'1, or ¢ ~ 1/(aH)o. Becaus@H decreases during radiation- and matter-dominated
epochs, such scales satisfled) > H~1(t) at earlier times, with for example

) v [ [G] - (3 (2) " ~2aer o

at the epoch of nucleosynthesis.

During exponential expansion, howeveyH ! grows and so we ask how much exponential
expansion is required in order to ensure that this scale also salisfi¢$~* at some earlier time,
the, called the time othorizon exit For times earlier than this (during or before inflation) causal
processes can be at work to explain things like the present-day uniforitlity €MB temperature
over these scales. (See Figure 5 for a sketch of the relative sizearafH 1, during and after
inflation.)

For simplicity we assume that inflation ends whes teg and the universe then makes an
immediate transition from an inflationary epoch, where p, = M* is approximately constant, to a
radiation-dominated epoch whose inittaheat temperatuie alsoT ~ M (i.e. reheats with perfect
efficiency). In this case at the epoch of horizon exit we have (byragBan) L (the) = fape = Hh;:L
and sof = (aH),* = (aH),2. Consequently,

1= apHo _ <aeno"|end> ( AegHeq ) < aoHo > (2.4)
aheHhe aheHhe AendHend AggHeq ’
which we solve forgng/ane = eNe = e (teni—te)  assuming a constant energy density during infla-

Aend/8eq = Teq/ Tm With Teq~ 3 €V leads to

3 TM ~ TM
Ne ~ In[(3x 10%%) x 60] +In <W/> ~58+In <—1015<3ev> : (2.5)

Again we see that roughly 68foldings of exponential expansion can provide a framework
for explaining how causal physics might provide the observed corretatiat are observed in the
CMBR over the largest scales. We shall see below that life is even bettethisa because in

15



Lectures on String Inflation

addition to providing &ameworkin which a causal understanding of correlations could be solved,
inflation itself can provide thenechanismor explaining these correlations (given an inflationary
scale of the right size).

Defect Problem: Inflation can also solve the defect problem — within thearies for which thegge
solving — for similar reasons. Consider for example monopoles, which pieatly predicted to

be produced one per Hubble volumé,‘e’, at the epoch where they are formed. Consequently
their number density at that time would be~ H$. The number density at later times is therefore
n = H}(ar/a)® and so the number of defects per Hubble volume at later timiigejs= nH 3 =
[(aH)/(aH)]3. As such it is clear that this number gets enormously dilitéde monopoles are
produced before inflation, because of the enormous exponentiaksgmm which is then possible
for (aH)¢/(aH).

2.2 Single-Field Models

So far so good, but the devil is in the details. Obtaining the benefits of suely@onential
expansion requires two thing§:) some sort of physics which can hang the universe up for a rela-
tively long period with a vacuum-dominated equation of stpte, —p; and(ii) some mechanism
for ending this epoch to allow the later appearance of the radiation-domiepteth within which
the usual Big Bang cosmology starts. Although a number of models existddirtds of physics
which might do this, none of these models yet seems completely compelling. Ttitmsdescribes
some of the very simplest such models, in order to see some of their suxaagddemitations, and
to see what their implications can be for the large-scale structure seen ingherlaverse.

No way is known to obtain inflation simply using the known particles and interagtiand
so inflationary models are characterized by what kind of new physics éntied to describe the
inflationary dynamics. For the vast majority of models this new physics comestire dynamics
of a scalar fieldg (x), (called theinflator) which can be thought to be an order parameter character-
izing the nature of the vacuum in the theory which describes the very higylgyphysics relevant
to inflationary cosmology. Although the fielfl can in principle depend on both position and time,
inflation turns out rapidly to smooth out spatial variations, and so it suffccesidy¢ = ¢ (t).

The simplest such a relativistic order parameter has a dynamics which isndetdrby a
potential energyy (¢ ), and satisfies the following field equation,

¢+3Hp+V' =0, (2.6)

whereV’ =dV /d¢. Its gravitational influence is described by the usual Friedmann anteaaiien
equations, but including alsoga-dependent contribution to the energy and pressare: prad+
Pm+py andp = %Prad+ Py, Whereprag and pm describe the energy density of relativistic and
non-relativistic matter, and

pp=502HV(9) and  py=24°-V(9). @7)

We imagine the Dark Energy of the modern epoch to correspond to thegededmy small constant
term inV, which is assumed to presently dominate.
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As is easy to check, with these choices energy conservation forfielel — py +3(a/a) (py +
py) = O follows from the field equation, eq. (2.6), and gcexchanges energy with the rest of
the cosmic ingredients purely through their mutual gravitational interactiohs.¢Tield is not
imagined to be in thermal equilibrium with itself or with the other kinds of matter, andglsislf-
consistent because it couples to the other matter only gravitationally (whiahigetak to establish
equilibrium).

Slow-Roll Inflation

We seek a solution to these equationsddr) for which the Hubble parameté, is approx-
imately constant. This is ensured if the total energy density is dominatgzp bwith py also
approximately constant. Energy conservation then requires the peesssatisfypy ~ —py. It
does not matter here thétis not in equilibrium, since fop we ask that this relation betwegg
andpy to follow as a consequence of the field equations and not as an equasi@teofinspection
of egs. (2.7) shows that the regime of interest is whenpttk@etic energy is negligible compared
with its kinetic energy:%cb2 < V(¢) since thenpy ~ -V (¢) ~ —py. So long as/(¢) is also
much larger than any other energy densities, it would dominate-léndV/(BMS) would then be
approximately constant.

What properties mudt(¢) satisfy in order to allow such an extended period of slow rolling?
Clearly the field equation (2.6) only permits precisely time-independent sadytica ¢o, at points
where the potential is stational,(¢o) = 0. As we now quantify, a sufficient condition for having
a long period of time withp very slowly moving requiredoth ¢ and ¢ to remain small for the
entire inflationary period, and so requires bgtrandV” to be close to zero for a sufficiently broad
range of¢.

More specifically, in order to have a prolonged slow roll we must dengard H¢, which
allows eq. (2.6) to be approximately written in the followisigw-roll approximation

V/
b~ — <3H) . (2.8)

Using this in the conditio $2 <V showsV must satisfy(V')2/(9H?V) < 1, or

1/ MpV'\?
=z 1, 2.9
¢ 2( Y, > < (2.9)

A self-consistency condition for using eq. (2.8) throughout inflation isréogiirement tha$ re-
mains small. Differentiating eq. (2.8) with respecttiand using the approximate constancy of
H gives$ ~ —V"¢ /(3H). Demanding this remain small (in absolute value) compared vtit$h,3
then givegV”/(3H)?| < 1, or|n| < 1 where
M,%V” '
V
As we shall see, all of the important predictions of single-field slow-rolatidh for density fluc-
tuations can be expressed in terms of these two small parameterdy), together with the value
of the Hubble parametét|, during inflation.

n= (2.10)
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We have seen that the success of inflation relies on obtaining sufficieahson, and so it is
convenient to relate the amount of expansion directly to the disthnverses in field space. To
this end, rewriting eq. (2.8) in terms ¢f = d¢ /da, leads to

dp _¢_ VvV MV

T ZaHZ  av (211)

which when integrated between the initial valge, and final value geng, implies the universal
expansion during inflation is given tagnq/a = exp(N; ), with

N aendda_ oi \Vj B 1 réi de
N = [T 0 (W)‘m—ﬁﬁ 212)

Sincedeng can be defined by the point where the slow-roll parameters are no lengl; this last
equation can be read as definigdN, ), as a function of the desired numberesfoldings. This
is most usefully applied to finding the numberesfoldings, Ne, between the the epoch of horizon
exit — as defined below eq. (2.4) — and the end of inflatida= N, (¢ne), Since it is this quantity
which is constrained to be large by the horizon and flatness problems. Midicéhat ife were
approximately constant during inflation, then eq. (2.12) implies Kha¥ (¢i — Pend)/ (V26 Mp).

In such a cas¢ must traverse a range larger thagV,) betweenp; and¢enqin order to obtain 60
or moree-foldings, unlesg < 104,

da  a

Large- and Small-Field Examples
Consider, for example, the special case where
1.2 1,54
V:A+§B¢ +Z)\ o, (2.13)

and so for which

V' =B¢p+A%2¢3 and V' =B+3A%¢p2. (2.14)
There are two examples of slow rolls which arise in this case and whichl{§areational purposes)
are representative of two of the main classes of inflationary models.
Large-Field Inflation:

For very largep we haveV ~ 21294, V' ~ A2¢3 andV” ~ 3A2¢2 and so

2 12M2
£~ % (%) and n~ ¢2p. (2.15)

while the scale for inflation i81 =V ~ 212¢* and soH; ~ A $2/(2v/3Mp). [More generally,
for M =V ~ 2A2¢", V' ~ A2¢™ ! andV” ~ (n— 1)A2¢"2 and soe ~ 3 (NMp/¢)? andn ~
n(n—1)M3/¢2, and the Hubble scale for inflationli§ ~ A $2/(v/3nMp).]

In this casen ~ %s > 0 and both are small providepl > M, (which is consistent with the
large¢ approximation being used). In this regimig§and so als& andH) remains approximately
constant despite there being no stationary poinvfat large¢ because Hubble friction keegs
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from sliding down the potential very quickly. Singeevolves towards smaller values, eventually
slow roll ends once) ande becomeO(1). Sincen > &, it is convenient to defing@enq by n = %,
which impliesgeng = 4Mp,.

The number ot-foldings between horizon exit aniknq = 4M,, is given by eq. (2.12), which

becomes
Ne=Nu(ne) = [ g () = S o (2.16)
end 4M|§ 8M§

This shows that obtaininye > 60 e-foldings requires choosinghe > 22M,,.
Small-Field Inflation:

Alternatively, imagine again using the potential of eq. (2.13), but instesuhaiagB = —u? < 0
and soV has a local maximum & = 0. Sufficiently near this maximum,

_(2A 2u?
$? < min (F’Tll?) , (2.17)

we haveV ~ A= M} V' ~ —p2 ¢ andV” =~ —p?. If so, the slow-roll parameters become

(M9 ? (Mg
R 3 ( A and n= A . (2.18)

In this casen < 0 ande = 3(n¢/Mp)%. |n| is small providedu?MZ < A and since we have
assumed to be small we see that generically in this case |n|. Again the slow-roll regime is
consistent with the smafp- approximation with which we start. The inflationary scal¥is: A =
M}, and soH = MZ/(v/3Mp).

Physically, the scalar potential in this case can dominate the energy dertatyskehere is
always an unstable solution to the equations of motion corresponding to siitmg \precisely at
rest at the local maximum, whex€ = 0. Solutions near this static solution can therefore be very
slow if they start sufficiently close to the maximum, or if the maximum is sufficientlji@aAs
we see below, only the second of these two options provides a bona fatéimdry model.

Sincen is constant, the end of inflation occurs once eitheecome$(1) or once the small-
¢ conditions, eq. (2.17), break down. Since- O(1) requiresp = O(Mp/[n|), it is well outside
of the assumed small-field regime and so it is the failure of eq. (2.17) whick kidkrst: ¢2 4~
min(2A/u?,2u?/A?). The total number oé-foldings afterg = ¢ne, becomes in this case

conio- [0 (i) e (52) - (%) e

Since this only depends logarithmically @anq/ ¢ne, ObtainingNe = 60 generically requiresy| S
1/60= 0.017. Taking, for instancey = M;* with M, = 10'* GeV, then impliesu S M?/M, = 10'°
GeV.

Another way to maké\. large would be to takéne — 0, since in this limitNe — oo cor-
responding to the solution which sits at the top of the maximum for an indefinitety peniod.
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At first sight this choice seems attractive because it appears alwayspgodsible, regardless of
how steeply the potential falls away from this maximum. However, in reality thetanflaeld is
subject to fluctuations, such as due to quantum vacuum fluctuations whsetbacause the scalar-
field Hamiltonian — for which the vacuum is an eigenstate — does not commute wiffelthe
@, itself. ¢ is only a classical approximation t@), but in an exponentially-expanding universe
the fluctuations about this value turn out to be of ord¢r~ H,. Generically, then, we can only
choosepne = 0 to within an accuracy¢ ~ H;, and so should restridgi,e = H,. For the potential
of current interest this implieghe > Hi ~ M2/Mp and so sinc@end~ min(MZ/u, 11/A), we have

Pend/ Phe S Mp/ U OF Pend/ Phe S UMp/(AM?) ~ 1/|n|/A, showing that large values foi really
do requireln| to be small.

Consistency of the Approximations

It is important for any inflationary model to ask whether the choices madmfiation are
consistent with approximations which are made when writing down a scalantjgdteThere are
three important criteria which must be satisfied.

1. Perturbation theory: Analyzing the dynamics op as a classical field (rather than a quan-
tum one) assumes the semi-classical approximation. For instance, the valitlify
justified in the case studied above whers 1 and¢? < |B|/A2.

2. Quantum Gravity: Neglect of the complications of quantum gravity require that no energy
densities should ever be allowed to be greater than Planck density. T@%s« Ml‘o‘
andV « Mg. In the example above this implies choosifigg M;‘, ¢ /Mp < Mp/u and
/My < A~1/2. Note this can permit the larggregime,¢ > My, providedA and /My
are sufficiently small.

3. High-Energy Corrections toV: Typically the integrating out of higher-energy physics gen-
erates corrections to the shapevgfwith the contributions due to physics at mass sdéle
generically contributing terms of ordélv ~ ¢k /M4 for all possible choices fdk. If the
success of the inflationary model depends on the particular forid fbis therefore nec-
essary to understand why these corrections are not present or intdartae example of
interest. For small-field inflation it is the absence of terms With 4 which require expla-
nation, since these are not automatically suppressed by powgydbfSinceM is typically
smaller tharM, large-field inflation is sensitive to a potentially enormous randespfvhich
is to say that it must be understood why these corrections do not chanegb-field form
of the potential.

2.3 Primordial Density Fluctuations

One of the successes of the Hot Big Bang is its description of the originalakigs, which
are understood as the final result of the gravitational amplification of wiea¢ initially very
small density inhomogeneities. This picture of structure formation very safidly describes the
observed distribution of galaxies, as well as how this distribution correldtlshe observed small
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temperature fluctuations of the CMBR. The structure-formation pictureressthe existence of
initially small primordial fluctuations about the homogeneous universe, asddtsess depends on
assumptions made about their detailed properties. These are simply takeimiéislecondition of
the Big Bang Model, with no attempt made to understand their origin.

Although originally motivated as a solution to the horizon and flatness problersnas
for inflationary models is their subsequent success in predicting the niespef the primordial
fluctuations which the Hot Big Bang requires. This prediction describefiubtiations as being
due to ordinary microscopic quantum fluctuations of the inflaton fiéd, and the metricdgy,y,
which become stretched up to cosmologically interesting scales by the inflgtiexaainsion of
the universe. This section provides a heuristic description of thesedtiatg before quoting the
final results which follow from more sophisticated calculations.

Fluctuation Phenomenology

Before describing what inflation can say about the properties of prialdidctuations, first
recall how these fluctuations are characterized. Since the univases e be spatially flat, it is
convenient for these purposes to use: 0 for the background geometry, and to Fourier transform
fluctuating quantities. For instance, writing the fluctuating energy densityrifrglativistic matter
asp(r,t) = pm(t)[1+ o(r,t)], we have

3 3

5(r,t) = /%@(t) explik -x] = /(zd—nl;?’d((t) expli(k/a)-r] , (2.20)

where homogeneity and isotropy of the background cosmology implig¢$ depends only on
k = |k| andt. x here denotes the co-moving coordinate, corresponding to physicalabsta: ax,
so the physical wavelength associated with co-moving wave-nukiber = 2ma/k.

A useful statistic for quantifying the galaxy distribution is the density-densitgaorrelation
function, &,(r,t), defined by

/ , ak .
E(r) = (5(r'+1)3(r")) = /W P, (k) expli(k/a)-r], (2.21)

where the average is over all. This measures how likely it is to find a density excursion at a
physical distance from a given density excursion. The integrand in the second equalityedefi
the power spectrum of density fluctuatioRs(k), which can be related t& by P, (k) O |&]. A
dimensionless measure of the power spectrum is obtained by performinggihl@@integration in

eg. (2.21), leading to
~edk 5, sin(kr/a)
&)= [ 800 Tt (2.22)
whereA? = k3P, (k) / (211).

Theoretically, the evolution of linear perturbations within the Hot Big Bang allByk,t) to
be computed in terms of the primordial spectrtﬁ,ﬁ(k), of initial density distributions, according
to
Pp<k7 tnow) = Pf?(k) ﬂ(k, tOytnow) ) (2-23)
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Figure 3: A sketch of the linear density power spectrupp(k).

where 7 (k,t,t') is a calculable transfer function has the property that it is approximately
independent dk for smallk, and is proportional t&—* for largek, with the transition between these
regimes occurring for co-moving wave-numbers satisfjing (aH)eq at the epoch of radiation-
matter equality.

Physically, this form fot7 arises because those modes satisfiingeq= (aH)eqre-enter the
Hubble scaldeforeradiation-matter equality, while those wikh< keq do so afterwards. However,
density fluctuations only grow logarithmically witlnduring radiation domination, but can grow
proportional toa during matter domination. All other things being equal, one therefore expects
modes withk < keqto have &-dependent amplitude, because they grow ovekitiependent time
interval during which the universe expands by a faetgia, 0 k?, whereay is defined as the scale
factor at the epoch whesH = k, and we use thatH 0 a~/2 during matter domination to conclude
ax 0 k2. By contrast, modes witk > keq all start growing at radiation-matter equality, and so are
amplified by ak-independent factorag/aeq. This implies modes withk > keq are stunted by an
amount proportional tkeq/K)? relative to what one would get by extrapolating from the amplitude
of modes withk < keg, SO their contribution to the power spectrum is suppressed hy1/k*.

ObservationallyP, (k) can be related to the galaxy-galaxy correlation function, which can be
measured from surveys of galaxy distributions. It can also be usedtipute the temperature
fluctuations observed in the CMBR. These measure the correlations Inetvesiemperature devi-
ations seen in two directions,andn’, as a function of their relative direction, a®s= n-n’, with
the result averaged over all possible orientations of these two veotorfix@d relative direction,

0) in the sky. The result is conventionally expressed by expanding in erldzg series,
1 ®

<5_I_—T(n)5_|_—T(n’)> — Eﬁ;}(z' +1)CRA(cosh), (2.24)
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Figure 4: Legendre coefficients for the CMBR temperature correlati@s measured by the WMAP col-
laboration [5].

and quoting the measured values@r (See Fig. 4 for recent measurements of these coefficients.)

Perturbations to the Dark Matter densidpn, are related t&dT /T because the temperature
fluctuations arise due to the redshift of CMBR photons as they climb out ajrtngtational po-
tential wells that are generated y,, — a phenomenon called th®achs-Wolfeeffect. (In a
matter-dominated universe, the quantity- 5T /T turns out to be a constant along a photon tra-
jectory [3]). Measurements agree well with what is expected theoretipatlyjded the primordial
power spectrum has a simple power-law fd?ﬁnjk) = AK, with ng ~ 1.

The choicens = 1 is called theHarrison-Zel'dovich(HZ) spectrum, and is special because it
corresponds to the case where the dependent}% if approximately scale invariant for modes
which re-enter the horizon during the recent radiation-dominated Lmivef, 0 KO for k > keg
(and soAf, O k* for k < keg). It also corresponds to scale-invariant fluctuations for the Newtonian
gravitational potentialp (defined in more detail for the relativistic case below), wkenkeq. To
see why, notice thab is related tap by the Poisson equation +e. [02® = 4n1Gp — and so the
power spectra fof® and p should be related by (k) O P, (k) /k* Consequently, iP, (k) O k™
for smallk, thenPy(k) 0 k™~* and the corresponding dimensionless power spectru, (&)
k3Pp (k) O k™~1, which is independent df whenns = 1.

Evolution of Primordial Fluctuations

Since inflation provides the past from which the Hot Big Bang later evoivés natural to
try to compute quantities Iik@g(k), assuming they arise from this earlier epoch. To this end it is
necessary to follow the evolution of small fluctuations in the inflat, as well as the metric,
dgyuv, during and after the inflationary epoéh.

2The discussion here follows the excellent treatment in [3].
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The perturbations of the metriég,, come in three kindsscalar vectorand tensorfluctu-
ations, which differ in how they transform under rotations (and so evioldependently of one
another at linear order in the fluctuations). After transforming to confbtime, /; = [ dt/a, the
scalar perturbations may be written

20 0%
—a? J 2.25

while the vector and tensor ones become

0 Y 00
a/guv:az (7/' 0}7/14:317/') and 5Tguv:a2 (0 hij> . (2.26)

The freedom to perform infinitesimal coordinate transformations allowe thetions to be
changed, so it is useful to define the following coordinate-invariant doetibns:

/ /
o =p-_laz-6), w=y+i@-&) (2.27)
ox =00 —¢'(B-¢&"), Vi=¥%—-# and hj,
in terms of which all physical inferences can be drawn. Here primestéeliiferentiation with
respect to conformal timej. Notice that®d, W andV; reduce top, ¢ and¥; in the gauge choice
where# = & = #; = 0, and sad is the relativistic generalization of the Newtonian potential.

Exercise 4: Show that the combinations given in eqgs. (2.27) are invariant under in-
finitesimal coordinate transformationd¢ = £#d, ¢ anddgyy = &2 9y guv +dué day +
dvf)\g)\u-

These functions are evolved forward in time by linearizing the relevantdiglgtions:

T
O¢—V'(¢)=0 and R,N—%ng:ﬁ, (2.28)

TN

and provided we use the invariant stress-energy perturbations,
57% = 8T%— [t%] (% - &),
1
57% = 3T% [t% - §tkk] a(B— &, (2.29)
87 = 8T~ [t']] (B~ &"),
(wheret#, denotes the background stress-energy), the results can be exppessly in terms of
the gauge-invariant quantities, egs. (2.27).
The equations which result show that in the absence of vector streggyererturbations, the
vector perturbatiol; is not sourced, and decays very rapidly in an expanding univdlsejray it

to be henceforth ignored. Similarly, in the absence of off-diagonalsserergy perturbations it is
also generic tha¥ = ®.
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Evolution of Scales
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Figure 5: A sketch of the relative growth of physical scaleg,), (in black) and the Hubble length,~2, (in
blue) during and after inflation.

The equations which govern the evolution of tensor modes then becomeHafiiéer trans-

forming)
2

N : %
hij+3Hhij+?hij =0, (2.30)
while the scalar fluctuations similarly reduce to

y 'S .
OX +3Hox + ¥6x+v”(¢)6x—4¢¢+zv’(¢)d> =0

: _ ¢
and ¢+HCD_N%6)(, (2.31)

which shows that it is the time-dependence of the background configusatioich force x and
@ to mix with one another. The homogeneous background fields in thesessire themselves
satisfy the equations

¢+3Hp+V'(¢)=0 and CMSH2:%¢2+V(¢). (2.32)

Exercise 5:Derive eq. (2.30). (Hint: use conformal timg= [dt/a.)

Scalar Perturbations

The character of the solutions of these equations depends strongly sizetafk/a relative
to H, since this dictates the extent to which the frictional terms can compete with tied siggiva-
tives. For instance, an approximate form for the two independent sadutiosrd x that applies
whenk/a > H is given by damped oscillations

Sxic 0 ﬁexp [iik/t %] . (2.33)
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A similar expression in the limit/a < H is also obtainable during inflation by using the slow-roll
approximation, for which we negledty, ¢ and ®. In this case the approximate non-decaying
solution to

3HOX +V"(9)0x+2V'(¢9)®~0 and MiHP~ oy, (2.34)
is given (after Fourier transformation) by
V'(9) Cx <v'<¢>>2
O xk ~ Cy and oy~ —— ) 2.35
W=CVig) <=2 (Vip) (2:39)

whereCy is a (potentiallyk-dependent) constant of integration.
Exercise 6:Verify that egs. (2.35) satisfy egs. (2.34).

The transition between these two qualitatively different kinds of behawioturs wherk/a ~
H. When the producaH is shrinking (such as during radiation and matter domination) the condi-
tion k/a= H is satisfied for successively smaller value& ¢fonger wavelengths) as time goes on.
Conversely, whemH grows (as during inflation) it is the larger valueskofshorter wavelengths)
which satisfyk/a = H at later times. A typical mode with wavelength= 2rma/k smaller than
the Hubble lengthH 1, during inflation is therefore stretched until it eventually becomes larger
thanH 1, at the epoch of horizon exit. It continues to grow compared with the Higatalke until
inflation ends, after which it isl ~* which grows faster thaa (see Fig. 5).

During inflation, the modes of interest initially start off wikkfa > H,, and any initial os-
cillations are efficiently damped by the exponential factéa @ e Mt in eq. (2.33), removing all
memory of the initial configuration. However, eventudi}ja falls far enough that the mode ‘leaves
the horizon’ to satisfik/a < H,. At this point the growing solution, eq. (2.35), starts to dominate.
During inflation the growth of this solution is slow, becadsg 0 /€ and®, O £, where the slow-
roll parameterg, of eq. (2.9), is necessarily small. This evolution need no longer remain small
once inflation ends, but at this point the slow-roll assumption used toediigvsolution, eq. (2.35)
breaks down.

Source of Fluctuations

The primordial fluctuation amplitude derived in this way depends on the integreonstants
Ck, which are themselves set by the initial conditions for the fluctuation at hoexd, during
inflation. But why should this amplitude be nonzero given that all previootugen is strongly
damped, as in eq. (2.33)? The result remains nonzero (and largelyeimdk of the details of
earlier evolution) because quantum fluctuationd jncontinually replenish the perturbations long
after any initial classical configurations have damped away.

The starting point for the calculation of the amplitude of scalar perturbatidhe iEbservation
that the inflaton and metric fields whose dynamics we are following are qudigtialsy not classical
ones. For instance, for spatially-flat spacetimes the linearized inflatondie)ds described by the
operator

ok . .
BX(X) = / 3 [ocu(t) €47/ 4 gutye /2] (2.36)
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where we expand in a basis of eigenmodes of the scalar field equation iadkgrbund metric,
ug(t) €4, labelled by the co-moving momentuka For constanH the time-dependent mode

functions are H . "
. [
ug(t) O a2 <| + a_H> exp(a—H> , (2.37)

which reduces to the standard flat-space form (up to a slowly-varyiagghi(t) Oa 1k 1/2e k/a,
whenk/a>> H. The quantitiex, and their adjointss; are annihilationand creation operators
which define the adiabatic vacuum state}, through the condition| Q) = O (for all k).

The d x auto-correlation function in this vacuurfdx (x)d x (X)), describes the quantum fluc-
tuations of the field amplitude in the quantum ground state. Assuming these guilunttuations
get decohered sometime during or after inflation in an as-yet poorly stogerway (for prelimi-
nary discussions see ref. [9]), sometime between horizon exit andhagzentry these quantum
fluctuations eventually become converted into classical statistical fluctuatidims classical field,
¢, about its spatial mean, by an amount of or¢@xy| ~ [(Sxkdx_k)]¥? O |u(t)|. Although
the details of this decoherence remain unclear, for observational gag@dl that matters is that
the classical variance of these statistical fluctuations is well-describectmptresponding quan-
tum auto-correlations — a property that is expected to be a good approxingatén the kinds of
‘squeezed’ quantum states which are generated during inflation [11, 3]

Evaluatingd xx ~ Uk atthe (Wherek = aH) and equating the result to the fluctuation of eq. (2.35)
allows the integration constant in this equation to be determined

Ck = Uk(the) (%) o (2.38)

where botttne and¢ne = ¢ (the) implicitly depend ork. Using this to comput@y in eq. (2.35) then
gives, near the end of inflation

ot =St (). ()] = eton (20)

Notice that the factors depending taq are genericallyO(1) if taken at the end of inflation, and
do not affect th&k-dependence of the result.

(2.39)

the

Post-Inflationary Evolution

For the case of single-field inflation discussed here, the subsequstfibfiationary evolution
of the fluctuatiord® — which is what governs bothpy, anddT /T — can be solved quite generally
(in single-field slow-roll models), so long &ga < H. This is because it can be shown that when
k <« aH the quantity

o 2(®4d/H 1 20
z_q>+§< o >_3(1+W) [(5+3w)d>+ﬁ], (2.40)

is conserved{ ~ 0, wherew = p/p is not assumed to be constant. This is a very powerful
result because it can be used to evolve fluctuations ugftiy= {(t), assuming only that they
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involve a single scalar field, and that the modes in question are well outsitlertzen:k/a < H.
Furthermore, aIthougﬂD in general becomes nonzero at places whevaries strongly with time,
this time dependence quickly damps due to Hubble friction for modes outsideuthlgldiscale.
We may therefore neglect the dependencé oh ® provided we restrict; andt; to epochs during
whichw is roughly constant. This allows the express{gh) = {(t¢) to be simplified to

_ 1+ws / 5+ 3w _
®r = 14w <5+3wf> i (2.41)

wherew; = w(tj) andws = w(ts), implying in particular®; = ®; whenevemw; = ws.

Exercise 7: Use the conservation df to show that (wherk/a — 0), @y, = %d)rad
for modes evaluated well before and well after the transition from raditbiomatter
domination.

Exercise 8:Show that 1w~ ¢p2/V ~ %s during single-field slow-roll inflation, and
use this with eq. (2.41) to provide an alternate derivation of eq. (2.39t ifhshow

that (wherk/a— 0), ®; /®; = ¢ /& for timest; andts both well within the inflationary
epoch.

To infer the value ofb in the later Hot Big Bang era we choadsg@ust after horizon exit (where
Wi~ —1+ %ehe— see Exercise 8)t; is then chosen in the radiation dominated universe (where
Wi = %), either just before horizon re-entry for the mode of interest, or justrbehe transition to
matter domination, whichever comes first. Egs. (2.41) and (2.39) then imply

®f ~ <6¢> o [3V2u) (2.42)
€ he \/EMp he
Using this in the definition of the dimensionless power spectrunbiof? = k3Py/(271%), then
leads to
K32 (the) |2 H? %
D% (K) ~ K| (t) [ ~ ~ ~l= ] (2.43)
£(¢hE)M% SM% Phe gMg Phe
Once the order-unity factors are included from a more detailed calculatiofirtds
k3Py (K) H2 \%
2 _ e\R) _ —
Bo(k) = 2m <8n2M§£ ~ \24mMie | (2:44)
he he

We see that because it\&/ & which controls the amplitude of density fluctuations, measure-
ments of this amplitude provide information about the energy scale which domithat@niverse
during inflation. For the purposes of comparison it is convenient to defjriee quantitydy (k) by
8% = (4/25) A% (k), since the observed amplitude of large-angle temperature fluctuatioriesequ

Su(k) =1.91x 1075, (2.45)
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when evaluated &= k ~ 7.5a9Hp. In terms ofV this implies

v ¥4
<E> = 6.6 x 10*° GeV. (2.46)

The smalle becomes, the smaller a potential energy is required, areHd.01 we have/ ~ 2 x
10'° GeV. This is remarkably close to the scale where the couplings of the thoeekinteractions
appear to unify, and may indicate a connection between inflation and maie pkgsics like the
physics of Grand Unificatiof.

Spectra

We now compute in more detail what eq. (2.44) implies forkiteependence of the primordial
fluctuation spectrum. Notice to this end that to first approximation the siz€ (& is set byH
ande and does not depend explicitly d&rat all. This observation underlies the approximate scale-
invariance of the primordial power spectrum which inflation predicts fofater universe.

However, inflation does predict a wekldependence for the right-hand-side because it must
be evaluated fop = ¢pe, defined as the value taken Igyt) at the epochne = the(k) when the
co-moving wavelengthk of interest is just exiting the Hubble lengkh= a(the)H (the). It is thisk-
dependence of the horizon-exit time which introduces small deviationsdoahe invariance into
the predicted power spectrum.

To quantify this more precisely, recall that in earlier sections a sucdggsfnomenological
parametrization of the density power spectrum was giveRJitl) [ k™, and that this choice im-
plies the primordial gravitational power spectrum satisfiégs= AK™~1. Deviations from scale
invariance may be computed by evaluating

_ dinAZ

Ns—1= ik

, (2.47)
he

and using the conditiok = aH (and the constancy dfi during inflation) to write dik = Hdit.
Since the right-hand side of eq. (2.44) dependg pihis convenient to use the slow-roll equations,
eq. (2.8) to further change variables froro ¢: dt = —(3H /V')d¢, and so

d >(V'\ d
—dmk——Mp <V> @ (2.48)
These expressions allow the derivation of the following relation betweamd the slow-roll pa-
rametersg andn:

ns—1=-6£+2n, (2.49)

where the right-hand side is evaluatedat ¢ne.
Notice that this prediction for the spectral index makes< 1 for both the large- and small-
field inflation models considered above. Recall that for large-field modéts ¥V = %/\2([)”) we

30f courseV can be much smaller & is smaller as well, or if primordial fluctuations come from another source.
For instance generating primordial fluctuations from TeV scale inflatiahvibuld requires ~ 1055,
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hade = 3n?(Mp/¢)? > 0 andn = 2(1—1/n)e and so—6¢ +2n = —(2+4/n)e < 0. On the other
hand, for small-field models (wheke = M — u?¢? +---, we hadn < 0 because we work near
¢ = 0, which is a maximum o¥. Since in this casg < 0 ande > 0, they necessarily both make
negative contributions te-6¢ + 2.

Observational inferences of from the detailed shape of the CMBR temperature fluctuation
spectrum now give a central valuemf= 0.951+4+0.016, withns = 1 beginning to be disfavoured
[5] (assuming no tensor fluctuations — see Fig. 6 below).

Tensor Fluctuations

A very similar story goes through for the tensor fluctuations that are g@teby quantum
fluctuations, although in this case these fluctuations have not yet beenvethsJust like for scalar
fluctuations, for each propagating mode these are generated with amplifi{@e), but unlike
for scalar modes it is not necessary for the inflaton to mix with a gravitationdenm obtain an
observable effect, and so the power spectrum for tensor perturbatmss not share the singular
factor of 1/¢.

Similar arguments to those given above then lead to the following dimensionless pawer

spectrum
8 /(H\? 2v
MK =— ] =25—. 2.50
(K M2 <2n> 3eME (2:50)
As expected, this differs from the scalar power spectrum by deperutilygon the value oV
and not also on the slow-roll parameterConsequently, should both scalar and tensor modes be
measured, a comparison of their amplitudes provides a direct measuresbéuheoll parameter
€. A more precise version of this comparison can be phrased in terms ohmetarr, which is
defined as a ratio of the scalar and tensor power spectra

AZ
r=— =16¢. (2.51)
AQJ

The failure to detect these perturbations to date places a relatively wpaklimpit: r < 0.30 (95%
CL) [5], or € < 0.02.
Once tensor modes are detected, more information can be found from is ppectrum as a
function ofk. In particular, the tensor spectral indesx, is defined by
daz r

where the last equality evaluates the derivative by changing variablekfro ¢. Again the result
is to be evaluated at the epoch when observable modes leave the horirgninilation, ¢ = ¢pe.
Implications for the CMBR

In summary, quantum fluctuations generated during slow-roll inflationigeeavnatural source
for the small temperature variations visible in the CMBR, which also appeavtodeeded galaxy
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Figure 6: Best fits to the ratio of tensor to scalar fluctuations and tspeindex from WMAP, compared
with the predictions of various inflationary models [5].

formation. Furthermore, single-field slow-roll inflation makes the followintatied, yet success-
ful, predictions for the form of the primordial fluctuation spectrum whicé imferred from the
large-angle properties of temperature fluctuations for the CMB photons.

Gaussian Fluctuations:Because inflation requires such a slow roll, the fluctuations in the inflaton
field are very weakly coupled to one another. This turns out to imply that thdifae density
fluctuations are predicted obey Gaussian statistics. To date no noni@eemselations have been
seen in the CMBR (more about this below).

In-Phase Perturbations: The process whereby fluctuations freeze while they are outside of the
Hubble scale, and then begin to evolve again once liberated by re-entegiktybble scale during

our much-later epoch, implies these fluctuations all enter the horizon in .plEeseg in phase
allows for the coherent peaks and valleys of @s which are seen in Fig. 4, and it predicted

by many of the alternative theories of the primordial density fluctuationd(@si¢heir production

by cosmic strings or other defects).

Adiabatic Perturbations: The process of re-entry of fluctuations, after their having beenffroze
over long periods while outside the Hubble scale implies the fluctuations enteoitizen at rest.
This is crucial for determining thevalue for the position of the first peak in the CMB spectrum,
and is verified by the observations that this peak occurs=200. This prediction need no longer
hold if more than one scalar field is involved in inflation.

Almost Scale Invariant Spectrum: Inflation predicts a spectrum of fluctuations which is close to,
but not exactly, scale invariant. For instancélif~ 60 impliese ~ |n| ~ 1/60, then the deviation
ns— 1 should be a few percent. Current measurements prefer such a deweitio an accuracy
that is on the verge of excluding an interesting part of the parameter epadtionary models.

Scalar to Tensor Ratio: The same parameters which determine the scalar fluctuation spectrum
also predict the tensor fluctuation properties. A good test of the theompisded once tensor
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modes are observed, because the tensor and scalar fluctuationar@aarized by 4 observable
quantities (amplitude and spectral index for both scalar and tensor madesje theory predicts
these in terms of three parameteks; € andn. The present status of these observational tests is
given in Fig. 4 [13, 5, 14].

2.4 Problems With Inflation?

The general idea of there being an epoch of accelerated expansicolkasion for the horizon
and flatness problems is very simple and attractive, and the additionalefélaatit also accounts
for the primordial spectrum of temperature fluctuations is quite compelling efifesless some
conceptual problems remain with inflation, and are mostly associated with araigre about the
physics which governs the enormously high energies which inflation cealiep Many of these
potential problems can be phrased in terms of naturalness issues thairexésspecific models
having an inflationary dynamics are made (such as the single-field slomodlkls examined in
earlier sections).

Some of the main concerns of this sort are now listed, with an eye to seeinghkomext
section’s contact with string theory might help.

Initial Conditions: As was seen in the models studied above, inflation tends to arise only for
particular kinds of initial conditions for the fields. For instance, small-fielcatidh requires the
initial value of ¢ to be very close to a maximum of the potential, and it is not clear why the
universe should start off in this region. (By contrast, large-field inflatocurs over a broader
range of initial conditions, but relies on having reliably-calculable poterfialirge field values,

¢ > M,.) Relying on special initial conditions is uncomfortable because inflation wasied to
provide a physical explanation for the origin of the unnatural initial conati@hich are required

for the success of the Hot Big Bang. If we are happy to choose speitial conditions to obtain
inflation, why not instead simply choose the special conditions requirededithBang?

Special Potentials: The success of the inflationary models studied above relies on the potential
energy being quite flat, sind€ /V andV"” /V must be suppressed to make the slow-roll parameters
€ andn sufficiently small. But it is difficult to make such choices for a scalar potestetble
against quantum corrections, since they are very sensitive to the ndpiogarticle content of the
theory which underlies the inflationary model. It remains to be seen if this reragiroblem once

the best theories we have for the relevant microscopic physics (like steiogy) are used to try to
produce inflation.

Reheating: Since inflation ruthlessly ‘inflates away’ any previously existing particlesemergy,
it can only precede the Hot Big Bang epoch if it comes with a mechanism fusfaaing energy
into the heating of the contents of the observable post-inflationary uaivétew is this energy
transfer accomplished? [15]

Predicting in the Multiverse: In general causality forbids a completly homogeneous field evo-
lution, with fields in causally-disconnected regions of spacetime evolvingamtent of one an-
other. This means that we should only imagine the above inflationary pictugedescribing one
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of these regions, with other regions being described by slightly differgil conditions (and
possibly also different scalar potentials, if the couplings of the inflatoriasa@ to the values taken
of other fields). But since each region evolves dramatically differentbedding on whether it
inflates or not, how does one make predictions in such a diverse wfv€re might expect that
inflation exponentially rewards those parts of the universe that choesaittal conditions lead-
ing to inflation, even if these conditions are comparatively improbable, beazithe exponential
growth of the volume of the region which does so. Does this contain the séedgsrobabilistic
understanding of the properties of the later universe[16, 17]?

It remains to be seen how serious each of these problems really is, beiigshmmsiderable
motivation to understand them in some detail given the simplicity of the inflatiomadgrstanding
of the large-scale features of the observed CMBR temperature fluctsiation

3. Towards String Inflation

The last section closed with a list of potential problems for inflation, whas@ugon requires
an understanding of the physics at the potentially enormous energiessiblpas large aM, <
10'° GeV — at which inflation can take place. What guidance can particle physiegde as to
what this physics might be?

Since the energies involved could be not much lower than the Planck Mate(8nG) /2 ~
10'8 GeyV, it is not unreasonable to look to theories including quantum gravitynsbarching for
this guidance. At present, the theory which provides the best-devetopEest-motivated frame-
work of quantum gravity is string theory, making this a natural laboratargéeking inflationary
dynamics. This section describes some recent progress along theseniiheseveral possible
inflationary mechanisms being identified. Since the target audience is ngt thieiorists, the de-
scription will be in broad brush-strokes rather than fine detail, with an eyarts the broader
inflationary lessons that are being learned.

What One Might Hope to Learn

Before launching into a lengthy technical preamble to building inflationargagéas within
string theory, it is worth first stating why one might be interested in doing sceifirtét place. (See
ref. [18] for reviews of string-based inflation.) After all, presentervations can just barely differ-
entiate amongst the simplest single-field slow-roll models, so one might daga@sk why bother
building the inevitably more baroque string models. The thinking is that stringythmxentially
can provide new insight into several issues in inflationary cosmology.

Robustness of InferencesMuch of the observational evidence for inflation rests on it being the
source of the primordial fluctuations, but its success in doing so is largshbon the predictions
of very simple single-field models. But is the single-field approximation too simpémghe many
fields which typically arise in fundamental theories? Even if not, if microscppisics is being
stretched by inflation up to cosmological distances, can the physics of mailesscales be sim-
ilarly stretched [19], and so influence inflationary predictions in unebgaeways? If so, then the
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observational evidence for inflation would be undermined by this introductfian uncontrollable
theoretical error into its predictions [20]. Such questions can be test&thig theory, with current
evidence supporting the robustness of the predictions of simple inflatiomaohgls [21].

Validity of Approximations: Single field models often rely for their validity on approximations
whose validity cannot be properly established without better understatigirhigh-energy limit of
the theory. For instance, for large-field inflationary models succeisgfation relies on fields tak-
ing large values¢ >> M, and this is also typically required to obtain observably large primordial
tensor fluctuations [22]. But whether such large fields make sensediepa properly under-
standing the shape of the scalar potential for such large field valuegy Bteiory can shed light on
this by providing a physical interpretation for the inflaton (such as beindigiance between two
branes [23]), and so can identify upper limits in its range (such as it riog berger than the size
of the extra dimensions in which the branes move [24]). Detailed arguments dike tave led to
the conjecture that observable primordial tensor fluctuations may be unitkely obtained from
string theoretic inflation [26].

Initial Conditions and Naturalness: How unusual is inflation? Inflationary models can require
comparatively flat potentials and special initial conditions, but an undetistg of how special
these are requires a broader understanding of the shape of thesutalatial, and of the likely
initial conditions before inflation, which only a fundamental theory like striregtly can ultimately
provide.

Reheating: As noted above, the energy density which drives inflation must ultimately get-tra
formed to heat for the later Hot Big Bang. Just as having a warm house iwititer requires
both a good furnace and good insulation, successful reheating dftgioim requires two things:

(i) a sufficiently strong coupling between the inflaton and the ordinary Stdridadel particles

we now see around ourselves; aiijlthe absence of too strong couplings between the inflaton and
any other, currently unobserved, degrees of freedom. It is clethihaecond part of this question
cannot be properly addressed without knowing the full theory dasgrédl the degrees of freedom
which are relevant at the energies available after inflation.

Mind Broadening: Simple inflationary models make simplifying assumptions which need not
be true, but which tend to guide our search for models. Embedding inflatiorsiring theory
has already exposed some of these assumptions, and may yet exposeFoomestance, it is
often assumed that the inflaton field remains around after inflation endsilirapbgears in the
low-energy theory describing the later Hot Big Bang epoch. Howeverefitiflaton were the
separation between a brane and antibrane which mutually annihilate at irdlagimh[24, 25],
then the inflaton does not even make sense as a field in the later univenséarl although
inflation now seems compelling to us in the context of field theory, perhapg $itr@ory provides
novel alternative ways [27] to solve the initial condition problems which infteti@s originally
invented to solve.
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3.1 General Framework

String theory is much more complicated than the simple inflaton models discusses] abo
involving a potentially infinite number of particle types (string modes), moving inentban 4
dimensions. The space of vacua which is allowed is only partially underdbobdthat part which
is already well explored shows that it is incredibly vast and diverse elving many possible
vacuum values for many possible low-energy fields. (See ref. [28jefdbook descriptions of
string theory, and [29] for useful reviews.)

Part of this complexity can be traced to there being a large number of scalemmtheory,
and for inflationary purposes there are at least three which are vegrtamp: the string scale,
Ms; the compactification — or Kaluza-Klein (KK) — scale(8)¢; and the inflationary scaléyi,
(and so alsdH, ~ MF/Mp). For strings moving in 10D Minkowski spackls characterizes the
mass splitting among generic string modede describes the mass splitting within each string
mode when it is placed in a non-trivial background, such as when a#f bfithe dimensions are
compactified. For simple geometries characterized by a single length écédey. a curvature
radius, or a volumeyy, = ("), the compactification scale is of orddg ~ 1/¢. The 4D Planck mass
is not an independent scale because it is calculable in terms of the others.

Much of what is known in string theory is restricted to the chke<x Mg, since in this case
the effective theory describing energles« Mg is given by a higher-dimensional (usually 10 or 11
dimensional) supergravity. If all but 4 of the dimensions are compactifisidréiar scales, then the
physics of energieB < M. is described by some sort of 4D effective theory. The 4D Planck scale
is typically of orderMp ~ g5 tMs(Ms/Mc)® > Ms, Wheregs < 1 is the string coupling (which in
string theory is related to the value of one of the background scalar fiditig) field content and
symmetries (like supersymmetry) of this low-energy 4D theory depend orethégof the kind of
higher-dimensional supergravity, and of its compactification, that is urmesideration. In what
follows it is always assumed thift; < Ms.

The complexity of an inflationary model in string theory depends cruciallyomlarge is the
inflationary Hubble scale, ~ MZ/Mp, compared with botivls andM.

e If Ms < H, then inflation is an intrinsically stringy phenomenon. It is stringy because the
time-dependence of the background geometry is sufficient to produiegmhaving masses
up toO(H,), and this includes nontrivial string modes by assumption. In this case inflation
can only be convincingly demonstrated by working with all of the complexitytriri the-
ory.

e If M; < H; < Mg, then inflation can be described within the effective higher-dimensional
field theory, without requiring all the stringy bells and whistles. However is tbgime
all of the extra-dimensional physics is important, and one is seeking solutiahe full
higher-dimensional supergravity equations.

e If Hl <« M; <« Mg, then inflation can be intrinsically 4-dimensional, since the energies avail-
able to be pair-produced by the time-dependent geometry are generigatigh enough to
excite any of the KK modes associated with the existence of the extra dimensions
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Most of the inflationary models proposed to dadee formulated within the last of these cate-
gories, withH; <« M¢ < Mg, since in this case the problem reduces to searching for time-dependent
inflating solutions to the effective 4D field equations. Because these maddigiag constructed
in an explicitly 4D limit, we should not be surprised to find them to share manyriesitnf 4D
inflationary models, and this is indeed what is found. Of more interest is {jrtiiose ways in
which inflation differs when the field theory in which it is found arises as adoergy 4D effective
theory in string theory, and a few of the known examples of this will be desmiis

3.2 Multiple Scalars

Although inflation asks only for one scalar field to be the inflaton, it is a dgerieature of
string vacua that their low-energy limit contains more than one scalar field.opens up the pos-
sibility that more than one of these fields plays an inflationary role, and sgestgyre-examining
slow-roll inflation in multi-field models.

Hybrid Inflation

A useful starting point for multi-scalar inflationary models is Hybrid Inflati@i][ In its
simplest form this corresponds to the following action for two scalar figidmdy,

2

M2 1
S:—/d”'x\/_—g PR+ 5019 049 + O X 0ux +V(9,X) | (3.1)

with scalar potential
m2 )\2 2 h2
V(8 X) =507+ 500+ T 03P+ D, 3.2)

HereA, g andh are dimensionless, real coupling constants and an additive constéd@drashosen
to ensure that = 0 when evaluated at the potential’s global minimum, which is situatéd-a0
andy =v.

For inflationary purposes our interest is in the case where the dimenisgamistants satisfy
0 < m<« gv, and wherep starts out very large. The derivatives of the potential are

2 2
Vo= |2t x?and V=X |GOC @) 507 @)

and so both vanish at the global minimuigh £ 0 and x = v) as well as at a saddle point at
¢ = x = 0.V, vanishes along the entire ling= 0, along which the curvature of the potential is

given by
Vg Vigx | _ (mP+3A%92 0 o
Vixo Vixx a 0 %hch? — )’ :

showing that this line is a trough (local minimum in tgedirection) if ¢ > ¢, = v/2gv/h (~ vif
g ~ h), which gets steeper and steeper the lagyés. Otherwise, fop < ¢,, the linex =0 is a

4Here an inflationary model means one having both an acceleratedséxpanda mechanism for it to end, and so
excludes in particular higher-dimensional configurations having ordglarated 4D expansion [30].
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Figure 7: A sketch of the scalar potential for Hybrid Inflation.

ridge (local maximum in thg direction), which is steepest at the saddle poiri at 0. (See Fig. 7
for a sketch of this potential.)

If ¢ starts off initially much bigger thag,, with x = 0, then the potential keepsat zero but
allows ¢ to roll towards smaller values. Furthermoreg@?v* > 1n?¢? + 112¢* (as is generically
true for¢ ~vif A < gandm< gv) thenV(¢,x =0) = %gzv“ is approximately constant during
this roll. Inflation can occur provided the kinetic energy is much smaller tharctimistant, which
the discussion of earlier sections shows occurs if the slow roll parantssesibing the motion in
the ¢ direction,

o _ [Mod(m? +229?) 2 and n— AM3(P + 34 292)
gevt gV ’
are both small. This provides an inflationary epoch, which lasts either unsldkeroll parame-
ters become too large, or untl falls below ¢, and sox becomes destabilized away from zero,
provoking a fast roll towards the absolute minimunyat v. The conditiong > ¢, would be the
first to fail if € andn are small for¢ ~ v, which is true ifm/gvandA /g are both much smaller
thanv/M,.

This provides an intrinsically two-field inflationary model, where the secald &ian play a
crucial role in bringing inflation to an end. The additional parameters avaitbo allow a wide
range for the slow roll parameters at horizon exit, and so allow examptasalit ns > 1 (unlike
the previous single-field models) as well as with< 1. For an example withs > 1, consider the
case wheré\ ~ 0, andh ~ g, so that$, ~ v. Taking alsov/M, = O(8) andm/gv ~ O(5?) for
somed < 1, the number oé-foldings after horizon exit becomes

Neo he dp gV In<%>
© MpJp v2e T V2mMg ’

(3.5)

N (3.6)

which is O(572) even whengy, is also of ordew. But for ¢pe ~ v we haven = O(8%) > ¢ =
0O(5°) > 0, which impliesns > 1 when used in eq. (2.49).
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General Multi-scalar Models

Although hybrid inflation shows that multi-field inflationary models can haveéstarg prop-
erties in their own right, the form of the action, eq. (3.1), is not genexalghnto capture the generic
kinds of scalar dynamics which emerge in the low-energy limit of string theory.

The most general action describing the low-energy evolutidd afal scalar fieldsp?, is

M2 1
S= —/d“x\/—g [2p R+§Gab(¢)du§0aaufpb+v(§0) ; (3.7)

whereV is the scalar potential, ar®,, = Gy, is a positive definite symmetric matrix of functions.
Notice that there is no loss in not having a functiongdfin front of the Ricci curvature scalar,
such asZ U ,/—gA(¢)R, because any such term can be removed by performing an appropriate
@-dependent Weyl re-scaling of the metrig;, — A~1(9) guv. This choice of metric which makes
the Einstein-Hilbert actio?-independent is called theinstein Frame

One way the action for Hybrid inflation, eq. (3.1), differs from eq. (&8y havingGap = dap,
and one might ask whether this can always be arranged by performimgpaopriate redefinition
among the scalar fields. Although this can be done quite generally when woalgaalar field is
present, for more than one field it can be done (as well as ensi@y@g = 0) only when evaluated
at a specific pointp? = ¢, but not simultaneously for a§®. To see why this is true, notice thagy,
transforms as a rank two tensor under field redefinitigs;> f2(@) (see Exercise 9). Sin€&,, is
also positive definite, it therefore has a geometrical interpretation of laemetric on the ‘target’
space M, in which the? take their values. As a result, we know that a change of coordinates
can only ensur&,, = d4p everywhere if its Riemann tensd®®,.q, vanishes everywhere. On the
other hand, the freedom to arran@g,(¢) = ap at any specific poingg corresponds to choosing
Gaussian normal coordinates at this point.

Exercise 9: Show that under a field redefinitiodg? = £2(¢@), the action of eq. (3.7)
returns to the same form with — V + £20,V andGg, — Gap+ E€0:Gap + Gacthé® +
Gcpda€C. This shows thaV transforms as a scalar field, a@j, transforms like a
rank-two tensor.

The scalar field equations for the action (3.7) are
G+ T3 @) 9°9° + 3H G+ GV, =0, (3.8)

whereV, = .V = dV /d¢?, G is the inverse metric foBap and 3, = $G3[0,Geq + cGpg —
04Gn] is the Christoffel symbol built from the target-space met@g,. These are to be supple-
mented by the standard Friedmann (eq. (1.5)) and RaychaudhuriL(6}). équations (or energy
conservation, eq. (1.7)), whepeandp are given by

1 . 1 o
p= EGab(fp)(pawMV(fp) and p= EGab((p)(Pa(Pb*V((p)~ (3.9)

As before a sufficient condition for inflation is to have> %Gabcba(bb and approximately
constant, and this is ensured if we may drop both}iﬁandrgc(bb(bc terms of egs. (3.8), leading to
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the slow-roll equations,l%krha = —GaNb. These slow-roll conditions remain good approximations
for an appreciable time provided the multi-scalar generalizations of the slbwarameters are
small over a broad enough region. As the Hybrid inflation example shougsintportant when
defining these to be sure that they measure the derivatives of the poteiyialong the steepest
direction down the potential, since this is also the direction of motion if the field startdose to
rest.

Since the gradienY (@), of the scalar potential automatically points in the direction of steep-
est ascent for the potential, its negative naturally provides the direction ddich an initially-
static configuration starts to roll from any poig#, in the target space. Consequently, the gener-
alization ofe which measures the first derivative of the potential in this direction cankes tiz
be,

MGV aV,
€=——Fm -
Notice that because this transforms as a scalar under field redefinitiomesy ibe evaluated using
any choice of fields and (unlike the formulae given earlier for single-fidldtion) its use doesot
assume the choidB,p(@) = dap. Furthermore, it agrees with standard multi-field definitions [7]
for €, since it reduces to these in normal coordinates (for wligfig) = dap).

A multi-scalar generalization af is given by the smallest of the eigenvalues of the matrix of
second derivatives of the potentisllan(¢b), since this defines the most unstable direction (at least
in a slow-roll region wher¥ , is negligible). (Notice that if this eigenvalue is negative then we are
looking for the negative eigenvalue having the largest absolute valuajdér to ensure a slow
enough evolution fop? nearg?® = ¢ it is important to evaluate this second derivative matrix only
after transforming to (Gaussian normal) coordinates to ensureGhdtm) = dap. Alternatively,
this definition can be written in a way which is equally good when evaluated asiraybitrary
choice of coordinates on the target space, as follows. First definggdnevaluesA, of the matrix
N3, (@), defined by

(3.10)

MgGa‘\/;cb
Y, )
whereV.ep =V — 2 V4 is the covariant derivative &f,, using the target-space connectigh(¢).
Then in an arbitrary coordinate franme= minA, minimized over all of the possible eigenvalues
of N&,. This is the appropriate generalization because as delineda scalar under scalar-field
redefinitions, and because it agrees with standard definitions [7] wizdtiaged in the canonical

Gaussian normal frame.

N3P =Ae?, with N3, = (3.11)

The special case of Kahler metrics

An important special case of the above discussion is the case which ahisesthe scalar
fields can be grouped in to complex fieldg?} = {(p‘,q_o'}, whereg' denotes the complex con-
jugate of@'. In this case, if the nonzero components of the metig, locally can be written

Gi; = d K, for some functiorK = K(¢, @), then the metric is called &&hler metric, with K
being its Kéhler potential.
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In this case the definition far becomes [66]

M3GV;V;
€= —vz (3.12)
andn is defined in terms of the smallest eigenvalue of the matrix
Ni. Ni*
< ! j) , (3.13)
N'j N5
where ~
_ MZGikv__ ) MZGTk
N'j = kaJ and N'j = S/ [V’kj —GImKijmVJ , (3.14)

while N'; andN‘J— are the complex conjugates of these.

Exercise 10: Derive egs. (3.14), by first showing that the only nonzero Chridtoffe
symbols for a Kahler metric arléjk = GimKka, and its complex conjugatEJ';R.

Primordial Fluctuations

The presence of many scalars also changes the kinds of primordialatiocisi which are
possible, because with several scalars there can be perturb&ighdgor which the total energy
density remains unchangeslp = 0. Any such a fluctuation is called an ‘isocurvature’ fluctuation,
in contrast to the ‘adiabatic’ fluctuations involving nonzémm considered previously.

There are strong observational constraints against the existencehoissgurvature fluctua-
tions re-entering the Hubble scale during the Hot Big Bang era. Constexiistsbecause isocur-
vature perturbations at this scale correspond to metric perturbations etmelge into the sub-
Hubble world with a zero initial amplitudeh; = 0, but nonzero velocity; = 0 (in contrast with
adiabatic modes, which emerge with nonzero initial amplituties~ 0, and initially vanishing
speed®; = 0). This phase difference is measurable in the CMBR because it chéregeslue of
| for which the maximum peak occurs in Fig. 4. Current observations argistent with purely
adiabatic oscillations at horizon re-entry.

Multi-field inflationary models must therefore either not generate primordalisature per-
turbations at all at horizon exit, or any such primordial perturbations disappear sometime after
horizon exit but before horizon re-entry. The absence of suctufitions must be checked in any
specific model [32].

Primordial isocurvature modes need not be a problem for an inflationadglnewen should
they be generated at horizon exit, however, provided they are sudisihy erased before hori-
zon re-entry. This possibility exists because in the multi-field case no simpgeca@tion law
like eq. (2.40) ensures the model-independent survival of pertugbadtities. In particular, all
isocurvature modes are erased if a period of thermal equilibrium ocetingebn Hubble exit and
re-entry, because in this case all perturbations are encoded into teanpdhactuations, whose
presence necessarily also perturbs the energy (and so also thetgnaaitpotential).
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3.3 Moduli and their Stabilization

We now return to the main development: the description of explicit inflationaryetadtiat
are grounded in stringy vacua. By restricting attention to the Wgse&. Mg, the discussion can be
framed within higher-dimensional field theory.

10D Supergravity

The string solutions about which most is known are those which preseme sf the super-
symmetries of the theory, and the higher-dimensional field theories whichiloeesheir properties
below Mg are supergravities, of which there are several in 10 dimensions. It #wnic fields of
these supergravities that are relevant to their classical dynamics, aedallaays include the met-
ric, gun, together with its bosonic partners under supersymmetry: a scalar didgtand a rank-2
antisymmetric gauge potentidyy. Other bosonic fields can also arise, depending on which su-
pergravity is of interest. These can include gauge poten#d|sfor 10D gauge supermultiplets
(where the indexd’ runs over the generators of the relevant gauge group), as wedlrauig kinds
of nth-rank skew-tensor gauge potenti@g, .,

In addition to these ‘bulk’ fields, the low-energy supergravity can alsludecthe positions,
xM(g®), within 10D spacetime of each of any D-branes that are allowed for trerguavity® Here
o“ are coordinates on the D-brane world sheet, with 0,1,..., p+ 1 running over one time and
p space directions for apbrane.

The action governing the dynamics of these fields comes as the sum ofdm@dubellk terms,
S0 = Sir + Ss, Where the bulk action has the generic form

S = —/dlox\/_—g mé [%RJr :—ZLdM(deq0+ %e“PHMNPHMNp (3.15)

ecan
FM1~~Mn+1
+Z 2(n+1)! JUS Tl

andF = dC is the exterior derivative which corresponds to the field strength apptefo each
of the skew-tensor gauge fields. (These sometimes also contain Cherns3anms, which in the
above action are rolled into the ellipses.) The number of fields summed odetharvalues of
the numerical constants,, depend on the precise supergravity of interest. For instance, for the
Type [IB supergravity of later interest the bulk action has one rankiéntial,C, (i.e. a scalar), no
rank-1 gauge potential€y,, one additional rank-2 potentialy, no rank-3 potential$ynp and
one rank-4 potentialynpg, While the constants a® = 2, ¢, = 1 andcs = 0.

The brane action has a similar form,

Sor:%Tb/zbdprG\/—_yeAbq)(l‘f"”)‘Hlb/ (Qb+...), (3.16)

2y

where the sum is over the branes present, and the integral is ovigy th&)-dimensional world-
volume of each P-brane. Here\, is a known constant, equal t@, — 3) /4 for 10D supergravity,

5In principle, Type IIA supergravity allows DO, D2, D4, D6 and D8 branehile Type 1B supergravity allows D1,
D3, D5, D7 and D9 branes. No D-branes arise at all in heterotic vaetiadimensional surfaces called NS5-branes can
also exist for each of these supergravities.
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and the formQy, appearing in the second integral is either the particular pote@fialw,.,, whose
rank isp+ 1, or the Hodge dual (obtained by contracting one ofGlsewith the 10D Levi-Civita
tensor,ev,..my,) Of @ form of rank 9- p. One such a form exists for each kind of brane allowed
by each of the possible supergravities. The dimensionful constgmaisd L, in these expressions
are proportional P+ (with known numerical coefficients),, has the physical interpretation of
the brane tension, or energy per unit world-volume. Finally, the worldtsheetric’ appearing in
eg. (3.16) is given by

1
Yap(0) :0aXM(73XN gMN+BMN+WFMN ; (3.17)
S

whereFRyn = duAn — OnAw is theU (1) gauge field associated with those open strings both of
whose ends terminate on the brane in question. (A more complicated expraskis whernN
branes sit at the same point in spacetime, since this promotes the gaugéoddgdy.)

Moduli

Of particular interest are those string vacua for which only the 4 dimensfangryday expe-
rience are noncompact, and the other 6 dimensions are compactified withcasesponding to
an energy scalbl.. ForM; <« Mg these correspond to semiclassical solutions to the corresponding
10D supergravity equations. A considerable amount is known abow siodigtions in the case that
the compactification preserves at least one supersymmetry in 4D.

In the absence of branes the supersymmetric solutions have a metric obthueiiorm [33]

ds? = Ny dxH o + gmn(y) dy™dy", (3.18)

wherex* are coordinates for the noncompact 4 dimensigfislabel the compact 6 dimensions
andnyy is the usual 4D Minkowski metric. Among other thindé$,= 1 supersymmetry in 4D
requires the extra-dimensional metrgy,n, to be Calabi-Yau(i.e. Ricci-flat geometries having
SU(3) holonomy). There is generically a many-parameter family of such metrics valflichare
the same (fairly complicated) topologgmn(y) = 9mn(Y; @), wherew, represent the parameters
required to fully describe the geometry.

The parameters required to describe a geometry are knowmodslj and generically arise
when solving the Einstein equations. A simple example of a geometry having niediten by
the 2-dimensional torus, which is defined by the condition that its Riemanmttuevvanishes:
R™pq= 0 in a 2D space with boundary conditiogs~ y! + 1 andy? ~ y? + 1. The general 2D
metric which solves this equation is

ds? = a[(dy1)2+2b dy* dy2+c(dy2)2} , (3.19)

wherea, b andc are arbitrary constants, and so are the three moduli of a 2-torus. Qhesefa,

describes overall re-scalings of the size of the metric (the so-ctkathing mode and is gener-
ically a modulus because of a scale invariance of the supergravity equatibigher dimensions.
The other two moduli describe changes to the geometry at fixed voluméfisglbcchanges to
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what is called its complex structure). A Calabi-Yau geometry can have adsaif similar moduli,
which can be divided into two categories: those describing modifications toriplex structure,
and the rest — including the breathing mode — that are known as Kahler moduli.

Moduli are of particular interest when studying compactifications becthgselassical field
equations guarantee the existence of a massless 4D scalar field for edolusnof the extra-
dimensional metric. To see how this works, first recall how to compactifycauition in a 10D
scalar field,5¢(x,y), whose 10D field equation Sl;06¢ = gMNDyDnO@ = 0. Evaluated for a
product metric like eq. (3.18), this becom@s, + g)d¢ = 0, wherelJg = g™"D; Dy, andy =
nkvo,0,. If we decomposé@(x,y) in terms of eigenfunctionsy(y), of s — i.e. wheregu, =
— 2 ug — we have

6§0(X7 y) = Z ¢k(x) Uk(y) ) (3.20)

and the equations of motion fap imply (Os — uf)‘l’k = 0. The 10D field decomposes as an
infinite number of 4D Kaluza-Klein fields, each of whose 4D mass is givethéyorresponding
eigenvaluep. In particular a massless mode in 4D corresponds to a zero eigenvalue= 0.

A similar analysis also applies for the fluctuatio@gmn(X,y), in the 10D metric about a
specific background geometry such as eq. (3.18). Focussing on m@imjgoaents in the extra
dimensionsdgmn(X,Y), allows an expansion similar to eq. (3.20)

5Gmn(X,Y) = Z B (X) hin(Y) (3.21)

wherehmnp(y) are tensor eigenfunctions for a particular 6D differential operator/(itienerowitz
operatoyobtained by linearizing the Einstein equatiofighX,,= —IJE h¥ .. Again the 10D equation
of motion,A100gmn = 0, implies each 4D mod@y(X), satisfieq [, — uf)dik =0, and so has mass
Hi-

The significance of moduli is that they provide zero eigenfunctiongdgrand so identify
massless 4D scalar fields within the KK reduction of the extra-dimensional metthe zero
eigenfunction is given by the variation of the background metric in the directiche moduli.
Schematically, ifw, are the moduli of the background metrigan(y; w), and ifhg,, = dgmn/ 0 wa,
thenAgh3,, = 0. Physically, these are zero eigenfunctions because varying a modw@ugiven
solution to the Einstein equations gives (by definition) a new solution to the sguaéi@ns, and so
in particular an infinitesimal variation in this direction is a zero mode of the lineheg@ations.

Because the 4D moduli fieldgg(X), are massless they necessarily appear in the low-energy
4D effective action which governs the dynamics at scales below the Kl¢,9da. If we focus
purely on the moduli and the 4D metric (and ignore other fields), then the h@ngg part of this
action must take the general form of eq. (3.7), but with a poteMialvhich is independent of the
moduli, $2(x).

Moduli and inflation

Moduli (and any other classically massless scalars) are a mixed blessinfjddonary mod-
els. The Good News is they provide a large number of candidate scalarificlde 4D effective
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theory, any of which might play the role of the inflaton. Furthermore, a stdvcould be possible
because their potential is often very shallow, being required to be flat txctheacy with which it
is known that configurations likemn(y; w) are solutions for altv,. Typically the field in question
is only approximately a modulus, although some can be exactly massless if tireesafpersym-
metries is unbroken. Even in supersymmetric cases it often happens thdi raotiin massless to
all orders in perturbation theory, but appear in the 4D scalar potential mon-perturbative effects
are considered.

Indeed a number of these scalar fields have been proposed as pudkities [34], however
before the discovery of branes within string theory all of the proposkationary scenarios had
difficulties. One difficulty for the moduli of supersymmetric vacua was thelneeompute non-
perturbative contributions, which made the calculation of the inflaton potetiffedult. Branes
provide a way forward on two fronts: they allow supersymmetry-breakfferts to be more sim-
ply computed, such as with the use of brane-antibrane dynamics; andléyes pentral role in
the geometries arising in the modulus-stabilization programme. The ability to conymliteitky
led to an explosion of inflaton proposals, including metric moduli [35], masstesdes arising
from extra-dimensional gauge fields [36], inter-brane separati@) 2, 25, 37, 38], more stringy
modes, [39] and so on.

On the other hand, the Bad News is that it is usually impossible to know forveueeher
a given light scalar can be the inflaton until the full potential is understobidhngoverns the
dynamics ofall of the low-energy moduli. This is because a slow roll requires the potentim to
shallow in itssteepestiownward direction. If one finds an inflaton potential that is shallow ehoug
to obtain inflation before understanding the corrections which stabilize séhe onoduli, one
must worry that these corrections ruin the inflationary solution by providiegper directions
along which the inflaton could roll without inflating. Unfortunately, progres understanding
modulus stabilization was a long time coming in string theory, and the lack of thisstadding
proved to be a long-standing obstacle to identifying how inflation might arisanaérstringy
context.

Modulus Stabilization: Branes and Fluxes

Major progress on string inflation became possible with the development Ilsffadaunder-
standing how to stabilize most of the moduli for a few kinds of stringy vaché progress started
with the identification of how to generalize [40] the 4D supersymmetric compadidits of the
field equations of Type IIB supergravity in 10 dimensions to include theepiesof parallel D3,
D7 branes (plus 7+1-dimensional surfaces having negative tensikded orientifold planes).

These branes complicate the dynamics of the internal dimensions in seveoalaniays.
First, they do so through the gravitational fields they create, which haedfdat of modifying the
metric of eq. (3.18) into the following form,

ds” = h™Y/2(y) nyy e dx’ + Y/ 2(y) gran(y) dy™dy", (3.22)

with the warp factor h(y), depending on the positions of the various branes. The m@trcy)
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appearing here is a Ricci-flat Calabi-Yau type metric, of the form whickeairothe absence of the
branes.

A second important difference to the dynamics of the internal dimensiongwahises once
branes are present is the presence of nontrivial configurationg eftibus antisymmetric tensor
fields, for which they act as sources. The total flux of these fields girtapologically nontrivial
surfaces in the extra dimensions is quantized, such as

MSZ/F On and MSZ/H Ong, (3.23)
S S

whereSis a 3-cycleF = dC andH = dB are 3-form fluxes, and; andn, are integers that depend
on which 3-surfac&is considered. The presence of such fluxes has two important camsssg
(i) they can (but need not) break the remaining 4D supersymmetryjiquticefy can remove some
of the moduli of the extra-dimensional geometry, such as changes to thefateese surfaces
These are no longer moduli when fluxes are present because flotzgi@n implies the value of
fields likeCyn must grow as the areas of these surfaces shrink, ensuring suadeshame with
an energy cost.

A third potential contribution of branes to extra-dimensional dynamics is theaerof the
branes themselves. In particular, since D7 branes fill 7 spatial dimensioti®nly 3 of these are
the noncompact ones we see, they must also extend into 4 of the compactgidimse Typically
they do so by ‘wrapping’ themselves around a non-contractable suidae-cycle, in these extra
dimensions. But D7 branes have a fixed tensioni] M&, and so such wrappings provide an
energy cost for increasing the moduli describing the volume of the cytlestavhich branes
wrap. Precisely what this energy cost is depends on the relative naindifferent kinds of branes
(positive tensiorD7 branes, or negative tension orientif@d andO3 planes) wrapping any given
cycle, a number which is itself subject to the topological constraint (‘tadpatelition’) that the
netD3 andD7 charges must vanish (much in the same way that Gauss’ Law requirext tlectric
charge in any compact volume to vanish).

In the end one expects such geometries having both branes and fluxasettever moduli
than do those without branes and fluxes, and this is indeed what is foupdrticular, for the su-
persymmetric Type IIB compactifications described here, the fluxes amg®turn out to remove
all of the complex structure moduli that are associated with the Calabi-Yau mgtricappearing
in eq. (3.22). But not all of the moduli @y are lifted in this way, with the K&hler moduli (in-
cluding the breathing mode) remaining at the classical level, even in thenpeesébranes and
fluxes.

Warped Throats

The extra dimensions which result in this way can have a complicated andeahegry,
including the possibility of warped throats along which the warp fattor), varies strongly. The
6D geometry in such a throat is well approximated by the following polareinate-like form

ds? = h~Y/2p,,, dxH dx” + ht/2 [olp2 + pzdé} with he~a+b%/p4, (3.24)
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Figure 8: A cartoon of a Type IIB extra-dimensional configuration.

wherep denotes proper distance along the throat (measured with the iggfyiand d% is a known
metric describing the 5 other ‘angular’ directions. These approximationis well away from the
throat’s ‘base’ (.e. p > b/a, whereh becomes more slowly varying and joins into the bulk of the
internal dimensions). They also apply not too close to its ‘iip~¢ 0, where the conical singularity
generically present in the metrigy,, becomes smoothed out).

Notice that forp < b/awe haveh 0 p~ and so the metric, eq. (3.24), takes the approximate
form

12

2 242
ds? %nwdx" dx"+%+d§

= e2/Pn,, dxH dx” +dE2 4 d<2, (3.25)

where we change variables usipg= po€¢/?, and absorb a factor gf into the 4D coordinates,

xH. The restriction of this metric to the 5 dimensions spanned by the coordipédtes} is the 5D

de Sitter metric, and so eq. (3.25) shows that the 4D warp factor variesentially quickly with
proper distanceé, along the throat. (Once corrections to the geometry near the throat’s tip are
included one findsyj, = h(p — 0) does not diverge.) This is precisely the kind of fast variation
of 4D scale in the extra dimensions which could play a role in the hierarchygm a la Randall

and Sundrum [41].

The 4D Point of View

The Type IIB compactifications to 4 dimensions of ref. [40] generically ladire two prop-
erties: {) they are eitheN = 1 supersymmetric in 4D, or break this supersymmetry by a small
amount compared thblc; and (i) they preserve at least one (but usually many) massless moduli at
the classical level. Consequently they can have an interesting dynamiesrgies well below,
which it should be possible to capture withldr= 1 supersymmetric 4D effective field theory.

The field content of any such a 4D supergravity generically consistgipfchiral matter
multiplets, whose bosonic components are complex scalar figldéj) gauge multiplets, whose
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bosonic components are gauge potentl&%,and (i) the supergravity multiplet, whose bosonic
component is the massless KK mode of the 4D metric itgglf, (If more than one 4D supersym-
metry were to survive to energies beldy then a fourth kind of multiplet, consisting of a gravitino
and a gauge boson, would also be required.) Since the surviving moediDascalars, we expect
these to fall into 4D chiral multiplets, and so be represented by complex §iedds: ¢'.

Once expressed in the 4D Einstein frarhe.(with the metric chosen so that the 4D gravity
lagrangian density i = —%Mg\/—_gg“"Rw) the interactions amongst these fields are described
by 4D N = 1 supergravity [42], which (at low energies, where the lowest diéviess dominate) is
completely characterized by three functions of the chiral scalgrthg holomorphic superpoten-
tial, W(¢); (ii) the holomorphic gauge coupling functiofy,(¢); and (ii) the Kahler potential,
K(¢,9). In particular, the kinetic terms for the gauge potentiafs,are given in terms of,p, by

"j{%‘ = —% (Refan) Fi F&™. (3.26)
and so iffy, = fadap then the gauge coupling is given ngﬁ = Ref,. The scalar-field kinetic
terms and self-interactions are similarly given by

s i .
—— =—Gi;(¢,9)9"¢' 9.9’ -V (9.9), (3.27)
\/_—g 'J( ) H ( )
with target space metric for the scalars givenGgy= K j;, which is a Kahler metric, and we adopt
Planck units for whictM, = (8nG) /2 = 1.
The scalar potential ¥ = Vg +Vp, where
1 . i
\p = EfabDan with Da=K;5¢', (3.28)
fab js the matrix inverse of the gauge coupling matrix, fRg andd.¢' denotes the variation of
the scalar fields under a gauge transformatiorMfsarises only when there are low-energy gauge
multiplets present, coupled to the scalars). The remaining tekiisn

Ve = & |GIDWDW — 3|Wﬂ , (3.29)

where, as usuaG'l is the inverse metric tGj;, and the quantityp;W denotes the Kahler covariant
derivative ofW, defined by

DIW = W; +K;W. (3.30)

It turns out thatD;W is the order parameter for supersymmetry breaking, and so must vanish fo
stationary points of this potential to preserve supersymmetry.

Exercise 11:Show that any solution tB;W = 0 (for all i) is also a stationary point for
Ve. Show also that gauge invariance of the superpoteMigb,¢' = 0, ensures that
DiW = 0 impliesVp = 0.
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The functionK andW can be computed semiclassically for the remaining moduli in the Type
IIB compactifications of ref. [40] by directly dimensionally reducing the leiglimensional action,
and this gives
K = —2|n(|v|§%) and W =W, (3.31)

where ¥ denotes the volume of the internal 6 dimensions, as measured using thegpgtritd
expressed as a function of its complex modgli, Wp, on the other hand, is @'-independent
constant, which can be computed in terms of the extra-dimensional fluxel tdoie been turned
on [43]. If the fluxes involved do not break supersymmetry, tgrvanishes, but\y is typically
nonzero if these fluxes break the remaining 4D supersymmetry.

Example with one modulugor example, one modulus which always survives at the classical level
(due to a classical scale invariance of the higher-dimensional supigygeguations) is the field
corresponding to the overall breathing mode of the extra dimensions. Wtitngpternal metric
asgmn(y) = r’Gmn(y), with, say,M8 [ d®y,/g = 1, then we first seek the complex fielgl, which
contains the 4D modulugx). In principle this can be obtained by examining the supersymmetry
transformation laws, to see which fields transform in the standard foren4&r multiplet [44], but

a shortcut to the result can be found by examining the dependencefdhe gauge kinetic terms

for a gauge field on one of the D7 branes wrapped about some 4Xydlke result obtained by
dimensional reduction is

1
ggkin = _Z/zd4YV _ggHVg/\PFM va—i—'-‘
r4 -
=7 n*n*PF,, va/d“y\/—g h(y) +---, (3.32)

which, when compared with the supersymmetric 4D gauge kinetic functionssthawRef = kr?,
with k O [;d*,/gh. Since 4D supersymmetry requirésto be a holomorphic function of the
complex modulug, it follows that we can defing such thatf = ¢, with Re¢ = kr?.

Given this relation betweegh andr we may compute the Kahler potenti@) using the known
r-dependence of the 6D volumktS ¥ = M8r6 [ dfy,/§ = r®. This shows thatg O (Reg )2, and
SO

K(¢,9) = —2In(M§“//6) - —3|n(¢ +?ﬁ) : (3.33)

up to an irrelevant additive constant. The fact tiadlepends only on R¢ can also be deduced
on symmetry grounds once the supersymmetry transformations are usedttfy iddich fields
appear in Imp. K cannot depend on I at the classical level because the theory turns out to be
invariant under constant shifts of In

Exercise 12: Verify that using the Kéhler potential of eq. (3.33) in eq. (3.27) gives
the correct kinetic terms far(x), by comparing the result with what you obtain by
directly dimensionally reducing the higher-dimensional Einstein-Hilbert actir-
—2M8,/=gR using the metric, eq. (3.22), Withnn = r%(X)Gmn(y). Do not forget to

go to the 4D Einstein frame by also re-scaling the 4D megi¢,— r—f’gw.
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A check on the whole picture comes when the above resuli/fandK are used to compute
the scalar potential fap, using the general expression, eg. (3.29). Consistency requiressthie
must vanishy = 0, sinceg is a modulus and so cannot have a scalar potential (to the accuracy used
to deriveW andK). Notice first thatp does not transform under gauge transformations (so long as
none of the D7 gauge groups are anomalous)sse- 0 andV = Vg. Specializing eq. (3.29) for
VE to a constant superpotentis¥, = Wy, then gives

v =e[GIK K, - 3| Mp[2. (3.34)

Finally, using eq. (3.33) in this expression giwvés= 0 for all ¢, because the Kéhler potential
satisfies the remarkable identity
GKK;=3. (3.35)

Models whose Kahler potential satisfies this identity are knowmoascalemodels [42, 45]. They
play an important role in low-energy string theory because they captuggdperty that the low-
energy 4D potential cannot depend on moduli fields.

SinceV vanishes, any value @f provides an equally good classical vacuum for the low-energy
4D theory. Notice, however, that\ify £ 0 then supersymmetry is typically broken for most of these
values, since the order parameter for supersymmetry breakidgWis= K 4Wo. This ensures the
effective 4D picture agrees with the higher-dimensional point of vieasabsé\p is only nonzero
if the higher-dimensional fluxes break 4D supersymmetry.

Examples with several modulk second example of practical later interest is to compactifications
for which more than one modulus survives at the classical level, camegpg to a collection of
complex moduli¢’. For many of these the Kahler potentiil, of the moduli has been explicitly
computed, with some having the form

K(9,9)=—2In [<r1>3/2 — ; lq(ri)S/Z] , (3.36)
i£1

wheret' = Re¢' andk; are calculable constants for a given Calabi-Yau geometry. In these models
V =VE, and the superpotential is constamt=Wp, so we are again led to eq. (3.34) as the scalar
potential. Remarkably, we again obt&n= 0 in this case, because the Kéhler potential, eq. (3.36),
also satisfies the no-scale iden@y/K ;K ; = 3.

Exercise 13:Explicitly show that the Kéhler potential given in eq. (3.36) satisfies the
no-scale identity, eq. (3.35).

Corrections to the Semi-classical Picture

A consistent low-energy 4D picture for the dynamics of moduli exists fqreTyB string
vacua, but so far the resulting scalar dynamics does not inflate betteusealar potentials are
precisely flat. However the functioné andW used to this point are computed by direct dimen-
sional reduction using the higher-dimensional classical action, and thatj@ can become more
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complicated once corrections are included which introduce an energtoadsanging the value of
the low-energy fieldsp'.

There are two important kinds of corrections of this sort which are knowarise: {) string
loop corrections, involving powers @s ~ €%; and (i) a’ corrections, to do with the higher-
dimensional supergravity equations themselves only being low-energgxampations to the full
string theory. (The notationr’ 0 M3 2 is defined for historical reasons, and controls the second
type of corrections because they are typically suppressed by pofigelsve-energy scale (likélc)
compared with IM2 = a’.)

Some of the effects of these correctionskonW and 5, are known. It is known that the
holomorphic superpotentiali/, does not receive either of these kinds of corrections, to all or-
ders in perturbation theory, a result called the non-renormalization tingfd@. It can, however,
be corrected once non-perturbative contributions are included. HmdeKpotential K, is not
similarly protected, however, with the contribution of higher-curvamfreorrections in the extra-
dimensional action correctirlg to become [47]

K=—2In <M§7/6+ i) , (3.37)
where& = —x(.#)/[2(2m)%] being a calculable coefficient depending on the Euler nunxdes ),

of the extra-dimensional geometry/. Notice that the new term inside the logarithm is suppressed
relative to the first one by powers of %, as is typical fora’ corrections. Notice also that the
corrected Kahler potential no longer satisfies the no-scale identity, 8%)(3

The KKLT Framework

The first approach to fix all of the moduli within the Type IIB framework — Kgchru,
Kallosh, Linde and Trivedi, or KKLT [48] — starts with the assumption thdiyame modulusg,
survives the flux compactification, leading to a constant superpotaftial\p, and the Kéhler po-
tential of eq. (3.33). The remaining modulus is then imagined to be fixed thebngh-perturbative
correction to the superpotential, of the form

W(¢) :V\b+Aexp[—a¢} , (3.38)

whereA anda are both constants. This functional form for the non-perturbativeection tow is
known to arise in two kinds of situations: in the presence of some branedétestantons [49], or
if the low-energy gauge group associated with some of the D7 branesrmataasymptotically-
free non-abelian gauge group, (For instance, since the gauge coupling functiofaiég ) = ¢ dap
for such a gauge group, @ = SU(N) and there are no matter multiplets carry®d(N) quantum
numbers, then condensation of gauginos [50, 51] in the vacuum leadsupeapotential of the
above form, withA nonzero anda = 2r/N. In this case the exponential dependencé\obn
¢ reflects a vacuum energy which depends non-perturbatively on tngegasoupling constant,
g ?0Red.)

KKLT analyze the potential generated using the non-perturbative gotgattial of eq. (3.38)
together with the uncorrected Kéhler potential of eq. (3.33). Is it comgigi@ise non-perturbative
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corrections tdV when not keeping perturbative contributionskt@ It can be, depending on the
size of Wp. To see this imagine thd{ = Ko+ K, andW = Wy 4 Wh,p, WhereK, denotes the
perturbative corrections td andWj, is the (much smaller) non-perturbative contributiono
The corresponding contributions ¥ then have the schematic forvz = Vp + Vp + Vihp Where
Vo = 0 because of the no-scale form of the Kéhler potential, while

Vp = O(KpWb|?) +O(KZWb[?) + -
Vip = OMWhp) + O(KpWoWhp) + O([Whpl?) + -+, (3.39)

and the ellipses contain further subdominant terms. For generic valug thfe perturbative
contributions to/r dominate the non-perturbative ones, bWgfshould be anomalously smadl.g.
Wo ~ Whp, then the terms involving, become subdominant even whéh, cannot be neglected.
Using the leading-order Kahler potential, eq. (3.33), and including thepeoturbative super-
potential, eq. (3.38), gives a potential which depends nontrivially pwith V — 0 as|¢| — oo,
falling to a nontrivial minimum for nonzer¢ = ¢, [48]. Furthermore, although the domain of
validity of the a’ expansion is large R, this domain can extend down to small enough values to
trust the position of this minimum provided we cho®sg~ Whp(@m).
The resulting minimum turns out to be supersymmetric, since

A —afm
DoW| = —apeam SMTACT (3.40)
¢m ¢m+?ﬁm
there, and so
3V t+AeMn?  jaAe )

(dm+0m)°  3(m+ P

V(¢m, 9m) = <0. (3.41)

Uplifting

Although this successfully fixes the last of the moduli, it does so in a way wihd&s not
break supersymmetry, and with the geometry of the noncompact 4 dimensioggiiven by anti-
de Sitter space due to the negative vacuum energy density, eq. (3atlthigreason it is useful
to modify the system slightly, both to break supersymmetry and to raise theraanergy to zero
(or positive) values. The idea is to do so in a way which does not ruin #teesa of the modulus
stabilization just discussed.

KKLT suggested doing so by adding an anti-D3 brane to the system. Tixdeprds that
such aD3 breaks all of the supersymmetries that are preserved by the Calalge¥aetry, and so
need not appear within the effective 4D theory in a way that is capturddhiy = 1 supergravity.
Although this gives much less control over the corrections to the calculdtierdamage can be
kept small if the contribution of the antibrane to the low-energy action can loe parametrically
weak. This can plausibly be done in the case that there is a strongly wianped, because in this
case the antibrane can minimize its energy by moving to the throat’s tip. It can blecause at
the tip the dimensional reduction of the anti-brane tension (starting in the 10iekirrame) is
small, with

Foy=-Ts [ d'x =g = -Ta [ d' e =T [ dx e (342
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Here the second equality usgs, = r*6g]“,, as is required to go to the 4D Einstein frame once we
re-scale the internal metric Wy, = r’gmn, and the third equality uses the connectionpRe kr*.
Since the value of the warp factor at the throat’s tip turns out to depemdike h, = hor 4 =
kho(Reg¢)~1, we see that the antibrane contribution to the potential becomes

Viz =

(Reg 2’ (3.43)
where& ~ k?Tz/hg > 0.

The point of this exercise is that the value of the parambgetan be tuned over an extremely
wide range of values because it is given in Type IIB compactificationsraxponential of the
various integers which label the quantized fluxes within the extra dimensttossequently, it is
possible to adjust these integers to ensure lthas sufficiently large that the contribution of the
antibrane to the low-energy action can be computed perturbativefyy imhich to leading order
means simply adding egs. (3.29) and (3.43). Once this is done, the resudtieigtial can be
adjusted to continue having a local minimumgat- ¢, for whichV vanishes or is positive. The
asymptotic region atp| — o, whereV — 0, is then separated from this minimum by a potential
barrier, making the local minimum unstable to tunnelling. However the barrighve@h easily
be wide enough to make the lifetime of this tunnelling long enough to be stable foraalical
purposes.

An alternative tack on uplifting is to try to do so using physics which does redf iadly break
supersymmetry (unlike the D3-bar) and so which can be described putbly the framework of
4D N = 1 supergravity. One way to do so is to turn on magnetic fluxes on some of theab@s,
since this allows supersymmetry to be broken in a parametrically small waye$uking energy is
positive, and appears within the low-energy supergravity as a contnibigtine positive potential,
Vp, of eq. (3.28) [52]. It can be tricky to realize this mechanism explicitly imbraonstructions,
due to the need to ensure that the low-energy theory does not acquiligiigields, and so modify
the KKLT stabilization argument [53]. (See also [54] for a different dipig proposal.)

3.4 Some Inflationary Models

With this lengthy preamble it is now possible to describe briefly some of the inféatiqro-
posals that have been made to date. The examples presented herenaeamoio be exhaustive,
but instead are chosen to illustrate some of the insights which stand to be @gimedking a
connection between inflation and string theory.

Racetrack Models

The simplest approach is to ask if moduli themselves can play the role of themfgb, 55].
More precisely, do the 4D effective potentials for those vacua havingal silumber of moduli
have regions for which the slow-roll conditions are satisfied? Althoughapjears not to be
possible for the simplest single-modulus example examined by KKLT, it dess &ebe possible
for only marginally more complicated cases having two complex moditilgnd¢? [56].
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Figure 9: A sketch of the scalar potential as a function of the imaginmarts of the two moduli once the
real parts are minimized, for thefﬂl 69 model of ref. [56].

The simplest such an example is based on the Calabi-Yau manifg_ltc’jlgg], which has a
Kahler potential of the form of eq. (3.36) [57], wilta = 1. The non-perturbative superpotential
for this case may also be computed, and is given by

W =Wp+Ae " | BeP* (3.44)

for calculable constant&, B, a andb. Finally, motivated by what would arise in the presence of
a D3, the uplifting potential can be taken toV4g; = 5/7/62. As may be seen from Figure 9, the
scalar potential which results has a complicated form as a function of thedalfields, Re'
and Img'. Although inflation is not generic for this potential, a numerical search stibat it can
occur for specific choices for the various parameters appearing withisugherpotential [56]. It is
not yet known whether the precise values required can plausibly avisesikplicit choices for the
underlying Calabi-Yau geometry.

This example — calledBetter’ Racetrack Inflatior— already teaches us a number of things
about string inflation. First, the inflationary trajectories generically invobreglicated motions in
the 4-dimensional field space, which are not well described by havilygtlom imaginary or real
part of one of the modulp' evolving with all of the others held fixed. However, as Figure 10 shows,
because these fields are typically rolling roughly in a fixed direction ovecdhgparatively short
interval of horizon exit, its observational predictions (such as a scptotial indexns ~ 0.95)
are nonetheless well captured by a single-field estimate. Because inflatiors mear the top of
a saddle point fo¥, the relevant single-field model is in this case of the small-field form. This,
together with the generic decoupling of high-energy modes which is a éeattine effective field
theories during inflation [20, 21], gives confidence that string modifinat@o not undermine the
basic observational evidence that inflation may have taken place.

Another important feature of the Racetrack models is their strong sensitiuti fgarameters
chosen for the superpotential. The very existence of a slow roll caasieoged merely by varying
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Figure 10: A comparison of a single-field calculation of the scalar s@index with the full result for the
P‘[11.1,1,6,9] model of ref. [56].

these parameters by a percent or less [56]. This is similar to what is @ecedin simple single-
field models, where potential parameters must be adjusted with similar acau@der to ensure
bothe andn are small enough to provide sufficient inflation. The slightly more complicatetemo
described in the next section may be more successful on this particutar sco

Kahler Moduli Inflation

Kéhler Moduli Inflation[58, 59] works within a class of Type IIB string vacua that are interest-
ing in their own right, which differ from the KKLT minima by not assumivg to be anomalously
small. In this case the perturbatige corrections td are no longer negligible, and their presence
gives rise to new minima for the potential. In order to trust these new minima withirothtext
of thea’ expansion, it is necessary to work with Calabi-Yau vacua having moreoth@modulus
[60]. Among their attractive phenomenological features are the enormaoge of volumesys,
which are possible for the underlying Calabi-Yau space (due to the eriahdependence of;
on the parameters of the compactification), as well as the fact that sopagetyy is not preserved
at the minimum (even before uplifting byR8 brane) sinc®;W (¢n,) # 0.

The simplest models of this class known to have scalar potentials that inflateeirioee
moduli, ' with i = 1,2,3. Their Kahler potential is as given in eq. (3.36), supplemented by the
perturbative correction of eq. (3.37), and their superpotential is

W=Wp+ Y Ae 2" (3.45)

The full scalar potential is then obtained by combining the resulting supersiioragpression,
Ve, with an uplifting term of the fornvsz 0 1/ 72.

Denotingt' = Re¢', this potential can lead to inflation in the regime whetés much larger
than the others, witk=%"" ~ 0(7/6‘2) < 1. In this case the motion largely involves onify;, with
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V approximated by the expression
V =V —C(r§)4/3exp[—c(r§)4/3] : (3.46)

wheret? denotes the canonically normalized variable alongrtheirection [58]. Slow roll in this
case requires onlyg to be sufficiently large, which lies within the domain of the approximations
used to comput¥. Furthermore, since the roll is towards smaller valuesbfeventually this
condition fails and corrections to eq. (3.46) become important, providingiafr@m inflation.

The attractive new feature of this model is the insensitivity of the slow-raiditamns from
specific choices for the parameters (likandC) that are explicitly given in the potential. Whether
it is similarly independent of other implicit choices of parameters, such ase fhassibly arising
once string loop corrections are incorporated into the potential, is nothyetrk

Inflation due to Brane Motion

Another broad class of inflationary constructions within string theory reliegsing the posi-
tions of various branes as the inflaton [23]. In particular, using theratpa between an antibrane
and a brane (or configuration of other branes) as the inflaton turns thedels into useful tools
for exploring inflationary possibilities in string theory, by allowing supersyrmynereaking to be
incorporated in a calculable way [24].

Within this framework inflaton dynamics is governed by the potential describi@garious
forces acting between the various branes. Finding inflation is difficultlfese models because
although inter-brane forces typically fall off like a power of the interderaeparation, branes can
never get far enough apart from one another within the extra dimengicaitow this falloff to
become shallow enough for a slow roll to occur [24]. This observatiaridthto the proposal of a
variety of mechanisms for achieving sufficiently weak inter-brane foineslving the interactions
of branes oriented at angles to one another [37], dual formulationsaogb at angles [36], D3
branes falling towards D7 branes [61], and so on [62]. These modekslly resemble Hybrid
Inflation in their predictions, because of the appearance of an ogag-&tchyon (expressing their
instability towards annihilation) once the branes approach to within the strigthlehone another.

Since brane positiong, appear in the low-energy effective theory together with other mod-
uli, real progress has become possible once these ideas were embeddeffamework which
stabilizes the various moduli [63]. The simplest proposal starts with the basiecnodulus model
defined with extra dimensions having a strongly warped throat a la KKLlAn&dynamics is then
added by including a mobile D3 brane which is free to move, and is drawn twwhroat by its
attraction towards the anti-D3 which sits at its tip. The trick to make this precise &stdoth the
modulus-stabilizing and inter-brane forces in terms of an effective 4Brgugvity, since this gives
control over the corrections which are possible to the leading semiclaapaiximations.

A D3 brane added to a Type 1IB vacuum in this way changes both the Kabtential and
superpotential of the low-energy 4D supergravity, and each of tHes®ges describes a different
kind of inter-brane force. Modifications making the Kahler function dejpgmthe presence of the
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3-brane position7 , modifies eq. (3.33) to take the form

K(¢,29,2) = —3In ¢—|—?ﬁ—Kk(Z,2)], (3.47)

wherek is a constant ankl(z z) is the Kéhler potential for the Calabi-Yau metrign(y), itself, in
the sense thay;;(zz) = d,d;k for an appropriate choice of coordinates. The correctness of ths for
for the Kahler potential may be inferred by requiring agreement with the diioeally-reduced
kinetic term, eq. (3.16) for the D3-brane [64], and requiring that theymmetric potential for
the modulus vanishes identically whéh= W, (see Exercise 14).

Exercise 14: Show that the Kahler potentiak, of eq. (3.47) satisfies the no-scale
identity, eq. (3.35), and 8¢ = 0 when the superpotential is constaft=W\p.

The potential, eq. (3.47), describes a force on the D3 brane once thdirgetistabilized
because once/ depends omp, Vi acquires nontrivial dependence Bn Physically, the absence
of such a potential whew =W, expresses the absence of a net static force between the D3 and
the other branes present in the extra dimensions. However this absenoetdorce happens due
to the cancelling (due to the supersymmetry of the background geometryyafety of inter-
brane forces having their origin in the exchange of massless bulk state#dgs, dilatons, and
so on). However, if the D3 is moved within the extra dimensions the distributidoroés acting
on the branes adjusts, as they try to maintain their cancellation at the new positi@nD3. This
adjustment in turn causes the volume modufusto change, as the internal geometry responds to
new distribution of forces. The change of the extra-dimensional volurses cm energy so long
as the breathing mode is a modulus. But once this modulus has been stabilizealitog W
depend onp) the energy cost associated with this adjustment induces a force (sggrieg the
interactions betweeg andZ in K) which tends to localize the D3 at a specific position within the
extra dimensions.

Modifications that introduce @ dependence directly ity describe a second kind of force
experienced by the D3. This force arises due to the back-reaction 8f3tomto the background
extra-dimensional geometry, since this changes the volume of the cyclpadray any D7 branes,
and thereby changes the gauge couplings of the interactions on thass sach as those which
generaté\y,). In the low-energy supergravity this effect appears as a calcutadg@endence to
the constan® = A(z) appearing in eq. (3.38) [65].

KKLMMT-type Models

Ref. [63] performed the first search for inflation, using eq. (3.47) with non-perturbative
superpotential, eq. (3.38), together with the uplifting term, eq. (3.43). fidwed that although the
strong warping in the throat tends to favor a slow D3 roll, the coupling bet@emd¢$ embodied
by eq. (3.47) generically steepens this potential sufficiently to preveatiols occurrence.

Inflation within this context requires a more detailed balancing of the forctirsgeon the D3
brane. One way this might occur would arise if the above-mentioned voltebéization force
were to localize the brane at a position removed from the tip of the throat bedathis case the
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Figure 11: A sketch of a D7 descending partially into a warped throatassumed in the inflationary
scenario of ref. [68].

pull of the mobile D3 towards this point can be balanced against its Coulombtattraowards
the anti-D3 which is situated at the throat’s tip. In this case a slow roll canracieen the D3
is close to where these forces balance, and ends if the D3 slowly rolls dffsaccumbs to its
attraction to the anti-D3 brane [66]. As mentioned earlier, the observatppadictions for this
inflation fall into the category of Hybrid Inflation, with the two fields physicalbyresponding to
the interplay between the inter-brane separation and an open-stringmaatimch describes the
instability towards mutual annihilation. As a result models of this form exist fuciwbothng > 1
[66] andng < 1 [67].

However, from the point of view of providing a string embedding of inflatitms kind of
picture suffers from two drawbacks. First, it assumes the forces oD3H@rane stabilize it away
from the throat’s tip, without providing an explicit extra-dimensional cargton which does so.
Secondly, by relying on the brane-antibrane Coulomb force, it step&lewfthe low-energy 4D
supergravity approximation, and so makes difficult the quantification ofdksilple corrections to
the semiclassical approximation which might afise.

A more convincing stringy grounding of this type of inflation in string theoryaas requires a
description of all forces in terms of the low-energy supergravity. Thisrbaently become possible
using thez-dependence of the superpotential [65] which arises when a D7 expamtially down
into a warped throat along particular kinds of cycles (see Figure 11)hidncase, the resulting
z-dependence AV shows that D3 branes in the same throat can experience a balanceeas for
towards the tip and towards the D7 brane, allowing slow-roll inflation to ofmusome choices of
the various parameters describing the underlying vacuum [68].

Brane Annihilation and Reheating

Once the D3 brane and the anti D3-brane come to within the string length cdrmiker,
stringy physics intervenes and the two branes annihilate one anotheartilslation process has
two potentially important observational implications. First, annihilation takes ptaeoagh having

60f course, this objection also applies to most of the other proposed-beael inflationary mechanisms.
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their world sheets fragment into pairs a D1 @bl branes (or, D-strings), which then find one
another and continue to annihilate in a cascade towards the vacuum statehi@4ompetition of
this annihilation rate with the expansion of the universe can be describedanmer very similar to
the Kibble process describing phase transitions, familiar to cosmologistsalldvis a quantitative
estimate of the number of D1 amll that fail to find their anti-branes to annihilate, with the result
that they can be abundant enough to be detectable as cosmic strings irdbetpmiverse [69].
Furthermore (although this depends more on the details of the underlyingi-Gala geometry)
these strings can be stable enough to avoid having decayed during thenimegrepochs [70]. The
observation of such cosmic strings together with inflation would provide ctimgpeircumstantial
evidence for brane-based inflation.

The second implication of annihilation is the mechanism it provides for rehetitntater
universe [24], by liberating the brane tensions which provide the lyidgrinflationary energy
density. Once liberated, one must ask whether this energy can getiéahe#iciently enough into
observable low-energy degrees of freedom to provide sufficidngtaténg. Since the observable
degrees of freedom in these models tend to reside on other, spectat@sba potential danger
here is that the released energy is dumped too efficiently into invisible, bgheee of freedom
rather than into observable modes. However, an important observalipis fhat strong warping
can help with the efficiency of energy transfer into the observed sgrtided that this observed
sector resides at the tip of a strongly warped region (as tends to bee@duany case by particle
physics issues, like the Hierarchy Problem). This low-energy mechanisuported, with some
caveats, by the subsequent more detailed string calculations [72].

DBI Inflation: Beyond Slow Rolls

A related string-based inflationary proposal, again based on brane niffens from all of
the others by not relying on the usual slow-roll approximation, and sdalsa somewhat different
observational signature. In this model — knowr#! Inflation— a D3 brane is again envisioned
to roll down a strongly warped throat, attracted to an anti-D3 at the tip, buhtt®n is taken to
be relativistically rapid rather than slow. Paradoxically, the energy di susystem can produce
accelerated inflationary expansion, despite the motion being the opposistof eoll [73].

The starting point for this proposal is the action for a relativistically movingEhe moving
through a throat, and with a cosmological 4D metric,

d” = hY/2(y) | —ct? + a(t) &2 +h*/2(y) gmaly) cy"dy". (3.48)

Denoting the distance to the brane from the throat’s tigy, the brane action takes the form

S= —/d4xa3 [% (\ /1—h(q)§2/Ts— 1) +V(q)] : (3.49)

whereh(q) ~ b%/g* in the throat. The square-root term in the square brackets represents th
contribution of the first Dirac-Born-Infeld or DBI) term of eq. (3.16), while the second- 1)

term is due to the Chern-Simons coupling( to C of eq. (3.16)). Notice that these cancel
wheng? = 0, showing the above-mentioned absence of a static force on the D3. potéatial,
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V(q) = Vo + 3nPg? — k/q*, Vo describes the tension of other brangs?qg? phenomenologically
describes the forces, discussed above, which act to localize thedirtiveethroat’s tip, anét/q*
describes the Coulomb attraction towards the antibrane, also located at the tip.

Notice that in the limit of a slow roll, wher? is small, the lagrangian density of eq. (3.49)
reduces to a standard non-relativistic point-particle actighy~ a3 [3G°—V]. The full action
provides the relativistic generalization, and takes the form of the actioa fefativistic point
particle, but with a speed?/c®> = h(q)d?/Ts. Some comment is required about the validity of
using the full form of eq. (3.49), including the full structure of the sgueoot, given that this
cannot be regarded as a standard expansion in derivatives adlyypitses at low energies. Is
it consistent to drop all higher derivatives (likg it S while keeping all powers of? all higher
derivatives?

The relativistic particle action is one of the few cases where it can be astemtsapprox-
imation to trust the entire square-root action while neglecting higher time tieesa It is self-
consistent to do so because as the motion becomes more and more relaijisti@symptotes
to 1 and the equations of motion imply the higher derivatives go to zero. \Wieea constant the
same is true for the DBI action, eq. (3.49), since its equations of motion impljthatl higher
derivatives become suppressed in the ultra-relativistic limit. The same shisaltold if the spatial
variation ofh(q) is sufficiently slow.

How can this kind of relativistic motion be consistent with a lengthy period oftinfiaand
the equation of statg < —%p (and so potential-energy domination) which inflation requires? The
answer is in the warping:i)(when passing through a strongly warped regios 1, and sog?
can be small (so inflation last a long time) everhdf /T3 is O(1); and (i) because the kinetic
energy'’s pre-factor of Ah suppresses it relative 1in strongly-warped regions, even if the motion
is relativistic.

Because the motion is not slow, the predictions of DBI inflation cannot beré@deusing
the slow-roll expressions of the previous sections, which are entirgljesged in terms of the
derivatives of the scalar potential. Instead we must generalize to dédimegdal parameters that
rely only on what is important: the approximate constancy efuring inflation. To this end define
the generalized slow-roll parametérandi} by [13]

—% and A iH’
and so on, for successively higher derivatives.

To make contact between these definitions and the action, consider thalgéiuation where

5

me

(3.50)

S= / d*x &p(g, 2), (3.51)
whereZ" = %qz/Tg. The action of interest, eq. (3.49), corresponds to the special case wh
T3 12 T;
 A)=——"1]1-2h(q) 2| +——-V(q). 3.52
6 2) =~ [1-2n@2 |+ % Vi) (3.52)
The energy density computed from this action is then
p(a, 2) =22"pa —p, (3.53)
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and it is useful to define the ‘speed of sound’,

2Pz _ P2 , 3.54
> P2 P2+22para (3.54)
which when specialized to the action, eq. (3.49), becomes

cﬁ:l—Zh%:%, (3.55)

-1/2
where the relativistigy factor is defined, as usual, by= [1— Zh%} > 1, with relativistic

motion characterized by>> 1. Using these expressions in the Friedmann and Raychaudhuri equa-
tions, egs. (1.5) and (1.6), to evalu&teand its derivatives, then gives, for instance
Zpar 3P

£ = =
M3Hz  22°p oy —p’

(3.56)

which reduces in the non-relativistic cagex T3.2" —V, to the usual slow-roll resuft ~ ng/v ~
E.

The expressions for the amplitude of primordial fluctuations then genefaizethe usual
slow-roll results, eqgs. (2.44) and (2.50), to

H?2 2H?
DNy = N2 = 57
® " 8mM2Ecs and At M2 (3.57)
From these the following formula for the spectral index are obtained
Nn—1=-26—-fQ—s, nf=-2¢ and r=-16&c;s, (3.58)

where the new contributions come from the appearance, ahd the parametaris defined by

S

CH

The previous slow-roll formulae are obtained in the limit= 1, and s = 0.
There is an important observational way to distinguish between inflation dfgdésand that

arising from an honest-to-God slow roll [74]. This is because the fltictos predicted by DBI

inflation are not Gaussian when the brane motion is in the ultra-relativistic fmit,1. Although

it goes beyond the scope of these lectures, the deviation from Gaussianitye quantified by

a dimensionless parametéy_, which vanishes for purely Gaussian fluctuations. Observations

of the microwave background are consistent with Gaussian fluctuatinds;uarently constrain

—256< fyL < 332. For comparison, the prediction of DBI inflationfig. ~ 0.32y2, implying the

observational boung < 32.

S

(3.59)

What We've Learned

Recent years have seen some progress in trying to embed inflation int@alstdnetic frame-
work, recently stimulated by strides taken in understanding how moduli @ekfidx Type 11B string
vacua, and rapid progress continues to be made. Although it is still eardy d@ing theory has
already offered some insights into how inflation might work within a fundametatext. Some
of these are, in a nutshell:
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e Single-Field Slow Roll Models:Single-field slow-roll models (and simple multi-field mod-
els, like Hybrid Inflation) capture most of the predictions of the known sthirfigitionary
scenarios. Partly this is because the tools available only allow the explorétibring dy-
namics when it is described by an effective 4D theory. But it is also trugtibae low-energy
field theories typically involve many light scalars during the inflationary epact although
it is necessary to properly follow the dynamics of these extra scalars fivitbng inflation,
their presence often does not crucially alter the observational predidtothe spectrum of
primordial fluctuations. This gives some assurance that we are not ledlifay astray when
analyzing cosmological data using simple single-field models.

e Decoupling and RobustnessEven though there are many heavy fields in addition to the
inflationary sector, all the evidence is that in string theory those with massels gneater
thanH, decouple and so have a negligible effect during horizon exit [21]. Assalt it
suffices to describe inflation purely in terms of the relevant inflaton phgsite inflationary
scale. It can be possible to have decoupling break down, such aving m@minally heavy
particles become light; by having some fields evolve non-adiabatically; caNagpdpinflation
start just before horizon exit. But the current evidence is that wheoeis do, it does so in
the usual way that time-dependent effective field theories do [20].

e New Signatures: Although inflation, where found so far in string theory, is well-described
by a 4D effective field theory, several inflationary scenarios do wiffeéheir implications
from simple slow-roll models. Brane-antbrane inflationary mechanismslsargae rise
to relic cosmic strings [24, 69, 70], and the detection of these would praddsiderable
circumstantial evidence for this kind of mechanism. DBI inflationary modelspeadict
non-Gaussian primordial fluctuations, and their detection would definitiuéyout inflation
due to a single-field slow-roll mechanism [73].

o Naturalness: For most stringy scenarios parameters in the potentials must be adjusted in or-
der to ensure a slow roll, at a level which is consistent with the adjustmentsréhetquired
in simple single-field models. But two approaches may prove to be more pronmsihig
regard: Kahler Moduli Inflation [58], and DBI inflation [73], since tleesay produce in-
flation more robustly than other models. Whether these models definitively emgmore
natural than others remains the subject of active current study.

e Reheating: It is a bit premature to fully address reheating issues, since no string model
has yet been constructed which provides both a convincing inflationetyrg as well as a
properly formulated Standard Model sector to describe particle physasding a proper
understanding of the Hierarchy Problem [66, 75]. Both are requiraddeess reheating after
inflation, but the first indications are that stringy inflationary scenariogige a number of
novel challenges and opportunities for reheating [71, 72].

Further insights are certain to emerge as the inflationary options becomeietttigated.
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