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1 Special Relativity

1 Special Relativity

From 1687 until the beginning of the 20th century, Newton’s notion of absolute space
and time were the de-facto standard for physical theories describing mechanical motion
of point particles and extended objects. It is so pervasive of the realm of physics, and in
accordance with our everyday experiences, that it is still the foundation of most courses
in physics and engineering. The equations for building ships, shooting rockets, up to
the movement of stars and planets, rested on the foundation of Newton’s three laws of
mechanics, as well was the law of gravity.

It was just in 1887, when it turned out that Newtonian notions of space and time,
together with the well-known Galilei-transformation, had to be extended to describe
velocities close to the speed of light. In thie first chapter, we will go over this generali-
sation.

First we recall Newton’s notions of space and time, as well as that of inertial observers
and Galilei-transformations.

In Newtonian physics, space has the form of a 3-dimensional affine space, while time
has the structure of a 1-dimensional affine space, i.e. a line. An inertial observer is one
on whom no physical forces act. Such an observer moves, as per Newton’s first law of
mechanics, either not at all, or along a straight line with constant velocity.

To each inertial observer O corresponds an associated inertial coordinate system,
with coordinates xi, where i = 1,2,3. In these coordinates, Newton’s second law can be
expressed as

d2xi

dt
= 0

for any curve t ↦ xi(t) of an inertial observer. Of course, every inertial observer is at
rest in their worn inertial coordinate system, namely at the origin xi = 0.

All inertial observers are considered equivalent, so it is prudent to understand how
the coordinates of one inertial observer can be transformed into those of another one.

Assume there are two inertial observers O and Õ, with respective coordinates xi and
x̃i. From Õ’s perspective, O moves in positive x̃1-direction with velocity v. If the axes
of the two coordinate systems are parallel, then the two sets of coordinates are related
by the Galilei transformation law

t̃ = t

x̃1 = x1 + vt

x̃2 = x2

x̃3 = x3

(1.1)
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1 Special Relativity

Here t and t̃ are the time measured by either observer, which agree, since time is inde-
pendent of the observer. Assume that at t = 0, observer O throws a stone in positive
x1-direction with velocity dx1/dt = w. Then Õ would measure the velocity of that stone
to be

w̃ = dx̃1

dt̃
= dx̃1

dt
= dx1

dt
+ v = w + v. (1.2)

So velocities add up in Newtonian mechanics, which is what conforms to our everyday
experience.

1.0.1 From Galilei to Lorentz

In 1887, Michelson and Morley attempted to measure the relative speed of the Earth
with respect to the aether, which at that time was thought to be the medium in which
electromagnetic waves propagate. The experiment, famously, turned out to have a neg-
ative result: No matter in which direction the measurement apparatus moved, it always
measured a speed pf

c = 3 ⋅ 108 ms−1.

This directly contradicts (1.2), which predicts that two differently moving observers
should measure different speeds of light, differing by their relative difference in velocity.
But they did not. As it turned out, every inertial observer measures the same value of
the speed of light, directly contradicting the Galilei transformations. A way out was
proposed by slightly changing the transformation laws (1.1).

As it turns out, the time t has to be transformed along side the other three coordinates
xi. To treat them all on the same footing, one introduces

x0 ∶= ct.

The collection of four coordinates are being denoted by xµ, with µ = 0,1,2,3. The ansatz
for the new transformation can be written as

x̃0 = A(x0 + Bx1)

x̃1 = C(x1 + vt) = C(x1 + βx0)

x̃2 = x2

x̃3 = x3

with β ∶= v
c .

Now assume that at time t = 0, O sends out a light ray in the x1-direction. The
coordinates on the light rays then satisfy dx1/dt = c, so x1 = x0, or, more general,

(x0)2 − (x1)2 − (x2)2 − (x3)2 = 0. (1.3)
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1 Special Relativity

To conform with the result from Michelsons and Morleys experiment, we have to demand
that the curve on Õ’s system satisfies the same equation, just for the x̃µ. From this it
follows that

0 = (x̃0)2 − (x̃1)2 − (x̃2)2 − (x̃3)2

= A2 (x0 −Bx1)2 − C2 (x1 − v

c
x0)

2

− (x2)2 − (x3)2

= (A2 −C2v
2

c2
) (x0)2 − (C2 −A2B2) (x1)2 − (x2)2 − (x3)2

+ (2C
v

c
− 2AB)x0x1.

From comparison with (1.3) we can read off that

A2 −C2v
2

c2
= 1, (1.4)

C2 −A2B2 = 1, (1.5)

2C
v

c
− 2AB = 0. (1.6)

This can be solved for A, B, and C, and we obtain1

B = β = v

c
, A = C =∶ 1√

1 − β2
γ.

which gives us the formula for the Lorentz transformation as

x̃0 = γ (x0 + βx1) ,

x̃1 = γ (x1 + βx0) ,

x̃2 = x2,

x̃3 = x3.

(1.7)

This transformation law is an example of a Lorentz transformation, which are those affine
coordinate transformations which preserve the speed of light for all inertial observers.
To check how the law (1.2) changes in this case, consider the same situation as before,
but now Õ’s coordinates are related to O’s via (1.7) and not (1.1). One gets, for the

1Up to signs, which would correspond to a parity transformation, or time reflection in Õ’s system.
These are allowed, but not the solutions we look at here.
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1 Special Relativity

time

space

event: two stars collide

expanding shock wave

Figure 1.1: In a space-time diagram, times increases upwards, so a diagram of two stars
encircling each other, colliding and exploding would roughly look like this.

speed measured in Õ’s system, that

w̃ = dx̃1

dt̃
= c

dx̃1

dx̃0
= c(dx̃

0

dx0
)
−1 dx̃1

dx0

= c( d

dx0
(γ(x0 + βx1)))

−1 d

dx0
(γ(x1 + βx0))

= c

1 + β wc
(w
c
+ β) = v + w

1 + vw
c2

For speeds small w.r.t. the speed of light, i.e.üv,w ≪ c; this tends towards (1.2), while
for w = c this leads to w̃ = c, as demanded.

1.0.2 Minkowski space

A consequence of replacing Galilei- with Lorentz transformations is not just an adapta-
tion of formulas, but a reworking of Newton’s notion of space and time. In particular,
one considers a four dimensional unification of space and time (the so called Minkowski
space R1,3). Curves in Minkowski space describe motions, e.g. two stars circling each
other and colliding. A point in Minkowski space is called an event (when and where
something happens). In the coordinate system in Minkowski space, the point 0 is the
origin event. The coordinate axes are x0 = ct, x1 = x,x2 = y, x3 = z. We interpret this
as follows: The parameter t is the elapsed time as measured by someone sitting at
x1 = x2 = x3 = 0 with the conversion factor c which works because c is the same in all
frames of reference. The xi, i = 1,2,3 are the distance from the x0-axis. We write xµ for
a four vector. In our convention, Greek indices will always run from 0 to 3.
The curve that an object (observer, space ship...) traces out in Minkowski space is called
a world line. A world line is a map

φ↦ xµ(φ) (1.8)

with a more or less arbitrary curve parameter φ.
An inertial system is defined as a coordinate system that has the following properties:
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1 Special Relativity

"world line"

Figure 1.2: The world line of a (point-like) object, traced out in a coordinate system.

� Any freely moving object (i.e. one without force acting on it) is described by a
straight line.

� Light rays always move on world lines with slope equal to 1.

The first condition is similar the old Newtonian physics: A coordinate system is called
”inertial” if and only if F⃗ =m¨⃗x holds, i.e. ¨⃗x = 0 for freely moving objects.
The second condition means that the speed of light is the same in all inertial systems.
To each inertial observer corresponds an inertial system. The world line of the observer
in his own frame of reference is given by

xµ(t) =
⎛
⎜⎜⎜
⎝

ct
0
0
0

⎞
⎟⎟⎟
⎠
. (1.9)

at rest (in this CS)

slower than light

faster than light

Figure 1.3: World lines of point particles moving freely. The slope of the line indicates
how fast the particle moves.
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1 Special Relativity

1.1 Minkowski-distance squared

In Minkowski space, the distance between two points does not exist, but the distance
squared does:

d(E1,E2)2 ∶= c2(∆t)2 − (∆x1)2 − (∆x2)2 − (∆x3)2 =
3

∑
µ,ν=0

ηµν∆x
µ∆xν (1.10)

with the Minkowski metric

η =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟
⎠
. (1.11)

Figure 1.4: Two events E1 and E2 in Minkowski space.

From now on we want to save space and omit the sum over indices. Whenever there is
an index appearing twice (once as upper, once as lower index), it is summed over. This
is called the Einstein convention. Now, we can write

d(E1,E2)2 = ηµν∆xµ∆xν . (1.12)

Also, if an index appears only once (called a free index ), it has to appear on both sides
of the equation, and in the same position. An index is not allowed to appear more than
twice. See table 1.1 for examples.
The Minkowski squared distance can have either sign, which is why d(E1,E2) doesn’t

exist. We categorize the distances squared by their sign:

� d(E1,E2)2 > 0: time-like

� d(E1,E2)2 < 0: space-like

� d(E1,E2)2 = 0: light-like
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1 Special Relativity

allowed not allowed
xµ = yµ xµ = yµ
xµ = T µννσ xσ + yµ xµ = yν
ηµνxµxν = 3 xµyν = T µν + ηµν
xµyν = T µν xµ = ηνσyσzσT σνµ

Table 1.1: Allowed and disallowed index placements

Velocity vectors of curves have a Minkowski length squared:

∣dx
µ

dφ
∣
2

= ηµν
dxµ

dφ

dxν

dφ
. (1.13)

The velocity vector does not express the velocity directly, the velocity is the inverse
slope of dxµ/dφ. A curve is called time-like/space-like/light-like if ∣dxµ/dφ∣2 > 0/ < 0/ =
0∀φ. The Minkowski length of a time-like curve with [0,1] ∋ φ↦ xµ(φ) is given by

l(x) = ∫
1

0
dφ

¿
ÁÁÀ∣dx

µ

dφ
∣
2

. (1.14)

This length l(x) does not depend on the parameterization of x. Here, x is the complete
world line, while xµ describes its components.

Figure 1.5: Velocity vector of a world line.

We assume that no physical signal can travel faster than light. So an event E can
not have an influence on all other events E′, not even all of those which, in an inertial
system, have a larger x0-coordinate (i.e. lie in the future of E). In fact, for two events
E, E′, which are space-like with respect to each other, different inertial observes can
disagree on which of the two happens before the other!

Because of this, it is convenient to define “future” and “past” in a coordinate-independent
way. First of all, we call a curve φ → xµ(φ) causal, if ∣dxµ/dφ∣2 ≥ 0. We call it future
pointing if dx0/dφ > 0, and past-pointing if dx0/dφ < 0.
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1 Special Relativity

For an event E, the set J +(E) of all events E′ which are in the causal future of E are
those which can be reached from E by a future-pointing, causal curve, i.e.:

J +(E) ∶= {E′ ∣ there is a future pointing, causal curve from E to E′} (1.15)

Similarly, J −(E), the causal past of E, is the set of all events with a causal, future
pointing curve from E′ to E, or alternatively, a causal past-pointing curve from E to
E′. The chronological future/past I±(E) consist those events E′, which can be reached
from E by a future-(past-pointing time-like curve. The light-cone of E, denoted VE, is
given by all events E′ that can be reached by alight signal from E, i.e.

V ∶= {E′ ∣ d(E,E′)2 = 0}. (1.16)

The future / past light cone V ± is defined as one would expect (see figure 1.6).

Figure 1.6: Chronological future and past of an event E. Here, J +(E) = I+(E)∪V +(E),
similarly for x↔ −.

1.2 Change of inertial systems

Let the coordinates of an event in one inertial system be called xµ and in another inertial
system x̃µ. How are they related?
Remember: Free particles move along straight lines. That means the transformation
law has to be affine-linear. An affine transformation conserves points, straight lines and
planes. The transformation law should look something like this:

yµ = Λµ
νx

ν + aµ. (1.17)

Here, Λµ
ν is a 4 × 4 matrix which does not depend on x. The upper index labels the

rows, the lower index the columns. The vector aµ is a translation independent of x. It
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1 Special Relativity

can be arbitrary, the interesting question is what forms Λ can take.

Figure 1.7: Two inertial systems, describing Minkowski space. The same event E has
coordinates x0 = 4, x1 = 3, and x̃0 = 1, x̃1 = 1.

The speed of light is the same in all inertial systems. If d(E1,E2)2 = 0 in one iner-
tial system, it has to be 0 in all inertial systems. In fact, one can show that, if two
observers use the same scale of measurement, and use only light signals to construct
their coordinate systems, they will always agree on the value d(E1,E2)2 between two
events E1,E2. So we shall demand to only allow coordinate transformations that leave
d(E1,E2)2 unchanged. Label the coordinates of the events in one inertial system xµ and
yµ, in the other inertial system x̃µ and ỹµ. Then the length squared in the first system
is

dIS1(E1,E2)2 = ηµν(xµ − yµ)(xν − yν)
!= dIS2(E1,E2)2

= ηµν(x̃µ − ỹµ)(x̃ν − ỹν)
= ηµνΛµ

σΛν
ρ(xσ − yσ)(xρ − yρ)

= ησρΛσ
µΛρ

ν(xµ − yµ)(xν − yν). (1.18)

Here, we used the same ηµν and in the last step, simply renamed the indices that are
summed over. This equation holds for all events E1,E2, i.e. all coordinates xµ, yµ. It
follows that

ηµν
!= ησρΛσ

µΛρ
ν . (1.19)

The Lorentz-transformations in matrix form are

ΛTηΛ = η. (1.20)

They form the Lorentz group, which is the group

L = O(1,3) = {Λ ∈ R4×4∣ΛTηΛ = η}. (1.21)
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1 Special Relativity

The group O(n) is the group of orthogonal n × n matrices, meaning its elements are
matrices that are real and whose inverse is equal to their transpose. The group is called
the orthogonal group.
Important members of O(1,3) are

� rotations in space:

Λ =
⎛
⎜⎜⎜
⎝

1 0 0 0
0
0 R
0

⎞
⎟⎟⎟
⎠

(1.22)

with a rotation matrix

R ∈ SO(3) = {R ∈ R3×3∣RTR = 1,detR = 1}. (1.23)

The group SO(n) is called the special orthogonal group and is a subgroup of O(n).
It contains all elements of O(n) with determinant equal to 1. These matrices de-
scribe rotations, which is why the group sometimes is called the rotation group.

� boosts that connect two inertial systems for observers with constant velocity with
respect to each other. A boost in x1-direction has the form

Λ =
⎛
⎜⎜⎜
⎝

coshψ − sinhψ
− sinhψ coshψ

1
1

⎞
⎟⎟⎟
⎠

(1.24)

with ψ ∈ R.

� further elements: Time reversal

T µν =
⎛
⎜⎜⎜
⎝

−1
1

1
1

⎞
⎟⎟⎟
⎠

(1.25)

and parity (reversal of spatial orientation)

P µ
ν =

⎛
⎜⎜⎜
⎝

1
−1

−1
−1

⎞
⎟⎟⎟
⎠
. (1.26)

Warning: Even though p and η look exactly alike, they are not identical! This is
already apparent from their index positions (η has two indices downstairs, P one
up- and one downstairs), but also from their respective role: η is used to construct
the Minkowski distance between events, while P is a coordinate transformation,
i.e. it is a way to compute one set of coordinates of an event, from its coordinates
in another coordinate system.
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1 Special Relativity

Time dilation

In each inertial system for each observer, the coordinates are what the observer at rest
would measure with rods and clocks. In particular, to each inertial system corresponds
one inertial observer, and vice versa. In the future, we will use them interchangeably.
2 From the coordinate x0 = ct, t = x0/c is the time that passed for the observer, the
other three are the distance from the observer, along the three main axes. In Minkowski
space, all points that have the same t-coordinate form a plane of simultaneous events.
In equation ??, we already calculated how the world lines of two observers look in the
same system. Now assume that at 0, they meet and synchronize their clocks. I.e., in IS1,
O1 is at rest and O2 moves in negative x1-direction with speed v. At the event where
they meet, both clocks show t = s = 0. At t = t0, O1 looks at his clock and asks what
O2’s clock shows at this moment. The event E is “the position of O2 at t = t0”. In IS1,
E has the coordinates (ct0,−vt0,0,0)T with v = c tanhψ. Transform this to IS2:

⎛
⎜⎜⎜
⎝

coshψ sinhψ
sinhψ coshψ

1
1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

ct0
−ct0 tanhψ

0
0

⎞
⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜
⎝

ct0 (coshψ − sinh2 ψ
coshψ )

0
0
0

⎞
⎟⎟⎟⎟
⎠

=
⎛
⎜⎜⎜
⎝

ct0
coshψ

0
0
0

⎞
⎟⎟⎟
⎠
. (1.27)

The x1 coordinate of E is 0 because O2 hasn’t moved in this system. In the second
line, the identity cosh2ψ − sinh2ψ = 1 was used. This factor of coshψ depends on v the
following way:

coshψ =

¿
ÁÁÀ cosh2ψ

cosh2ψ − sinh2ψ

= 1√
1 − tanh2ψ

= 1√
1 − v2/c2

=∶ γ.

Since v ≤ c, the expression 1
coshψ is always smaller or equal to 1. So the event E has, in

IS2, the coordinates (ct0
√

1 − v2/c2,0,0,0)T . That means that for O1, it seems like less

time has passed for O2 by a factor of
√

1 − v2/c2.

2In fact, in the classical literature about relativity, much time is devoted to the technical aspects of
how an inertial observer would construct their inertial coordinate system, with light signals being
sent back and forth.
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1 Special Relativity

Length contraction

O1 sits in a car of length L and passes O2 with speed v. The front and the back of the
car have the following coordinates:

xµb (t) =
⎛
⎜⎜⎜
⎝

ct
0
0
0

⎞
⎟⎟⎟
⎠

; xµf(t) =
⎛
⎜⎜⎜
⎝

ct
L
0
0

⎞
⎟⎟⎟
⎠
. (1.28)

World lines for front and back in IS1

x̃µb (t) =
⎛
⎜⎜⎜
⎝

ct coshψ
ct sinhψ

0
0

⎞
⎟⎟⎟
⎠

(1.29)

and

x̃µf(t) =
⎛
⎜⎜⎜
⎝

coshψ sinhψ
sinhψ coshψ

1
1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

ct
L
0
0

⎞
⎟⎟⎟
⎠
=

⎛
⎜⎜⎜
⎝

ct coshψ +L sinhψ
ct sinhψ +L coshψ

0
0

⎞
⎟⎟⎟
⎠

!=
⎛
⎜⎜⎜
⎝

0
L′

0
0

⎞
⎟⎟⎟
⎠
.

Figure 1.8: A car at rest in coordinates xµ, and moving with constant speed v in coor-
dinates x̃µ.

The way for O2 to determine the length L′ in their coordinate system is to ask “what is
the x̃1-component of the world line of the front of the car, at that moment when the back
of the car passes my position?” To compute this, one needs to compute the intersection
of x̃µf(t) with the x̃1-axis. Let us assume that happens at the curve parameter t = t0, so

ct0 = −L tanhψ = −Lv
c

(1.30)
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and

L′ = ct0 sinhψ +L coshψ = −L tanhψ sinhψ +L coshψ

= L(− sinh2ψ

coshψ
+ cosh2ψ

coshψ
) = L

coshψ
= L

γ
.

The car appears shorter for O2 by a factor of
√

1 − v2/c2.

Elapsed time of a moving observer

How much time passes for an observer moving along an arbitrary (not necessarily
straight) world line x between events E1 = x(0) and E2 = x(1)? To calculate this,
we subdivide the interval [0,1] into small bits:

0 = φ0 ≤ φ1 ≤ φ2 ≤ ... ≤ φN = 1. (1.31)

On the segment between xµ(φj) and xµ(φj+1), the curve is nearly linear (if the curve is
smooth). We transform to the system in which the observer is at rest (for this moment):

x̃
(j) µ

1 = Λ µ
(j) ν

xν(φj) + aµj =
⎛
⎜⎜⎜
⎝

0
0
0
0

⎞
⎟⎟⎟
⎠

(1.32)

x̃
(j) µ

2 = Λ µ
(j) ν

xν(φj+1) + aµj =
⎛
⎜⎜⎜
⎝

c∆tj
0
0
0

⎞
⎟⎟⎟
⎠
. (1.33)

The elapsed time is

∆tj =

√
d ( x̃

(j)
1, x̃

(j)
2)

2

c
. (1.34)

The Minkowski distance squared is invariant under Lorentz transformations, which
means that

∆tj =
√
d(xµ(φj), xµ(φj+1))2 = 1

c

√
ηµν(xµ(φj+1) − xµ(φj))(xν(φj+1) − xν(φj)). (1.35)

Use the approximation

xµ(φj+1) ≈ xµ(φj) +
dxµ

dφj
∆φj + O(∆φ2

j) (1.36)

to obtain

∆tj ≈
1

c

√
ηµν

dxµ

dφ

dxν

dφ
∆φj + O(∆φ2

j). (1.37)
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Figure 1.9: Approximation of a curve with short straight lines.

The total elapsed time is the sum over all intervals of time:

T = lim
N→∞

N−1

∑
i=0

∆tj =
1

c ∫
1

0
dφ

¿
ÁÁÀ∣dx

µ

dφ
∣
2

= 1

c
l(x). (1.38)

Timelike curves in Minkowski space can be parameterized by the proper time (Minkowski
length):

s(φ) = ∫
φ

φ0
dφ′

¿
ÁÁÀ∣dx

µ

dφ′
∣
2

. (1.39)

The curve is regular, when dxµ/dφ′ /= 0 holds for all φ′. The relation can be inverted as
s↦ φ(s), so that we can write

x̂µ(s) ∶= xµ(φ(s)). (1.40)

The length of the curve is given by

l(x̂) = ∫
s1

s0
ds = s1 − s0 (1.41)

where ds is called the infinitesimal line element. It is given by

ds2 = c2(dt)2 − (dx1)2 − (dx2)2 − (dx3)2 = ηµνdxµdxν . (1.42)

It contains all information about the spacetime geometry and tells how much time passes
for an observer that moves through spacetime.

1.2.1 Relativistic kinematics

Observers in special relativity move along world lines, usually parameterised by proper
time s ↦ xµ(s). The 4-velocity for a particle that is obtained by deriving with respect
to proper time is given by

uµ ∶= c
dxµ

ds
.
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Note that the vector u has the dimension of a velocity. It satisfies u2 ∶= ηµνuµuν = c2.
The 3-velocity measured by the inertial observer who belongs to the coordinate system
is v⃗, which has components vi with i = 1,2,3, given by

vi ∶= dxi

dt
= c

dxi

dx0
. (1.43)

Note that the proper time s (time passing for the particle) and x0 (time passing for the
inertial observer) do not run at the same speed, there is a difference

ds = 1

γ
dx0

coming from time-dilation. Here γ is the factor

γ = 1
√

1 − v⃗2

c2

,

where v⃗ is the velocity (1.43). Note that, for a general, accelerated world line, this will
depend on s. With this we get

uµ = c
d

ds
xµ = γc

d

dx0
xµ.

So u is the vector with components

u = γ(c, v⃗).

For relativistic kinematics, an important physical quantity is the so-called 4-momentum
p of a particle, which is defined by

pµ ∶= m0 u
µ.

Here m0 is the so-called rest mass, which is the inertial mass measured in the rest frame
of the particle. Note that m0 is the same in every inertial system by definition, while the
inertial mass (i.e. the “resistance” of a particle against being accelerated) might depend
on the frame. One also writes

p = (γm0c, γm0v⃗) =∶ (mrelc, mrelv⃗).

mrel ∶= m0γ is called the “relativistic mass”. It captures the inertial properties of the
particle. Note that the 0-component of pµ, divided by c, has dimensions of an energy,
and indeed one writes

p = (E/c, p⃗).

The one has

p2 ∶= ηµνp
µpν = E2

c2
− p⃗2
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while on the other hand, one has p2 =m2
0u

2 =m2
0c

2, so

E2 = c2p⃗2 + m2
0 c

4.

Indeed, for small velocities ∣v⃗∣ ≪ c, one gets

E = m0c
2 + 1

2
m0v⃗

2 + . . . .

So E indeed measures the energy stored in a particle, which has both a rest contribution
m0c2, as well as a kinetic contribution, which, to lowest order in the velocity, coincides
with the non-relativistic kinetic energy.

For interactions between particles, it is the sum of all pµ which is conserved, both in
classical relativistic mechanics, as well as in QFT. This incorporates both momentum-
and energy conservation in physical processes. Mechanical laws are, as in Newtonian
mechanics, written in the form

d

ds
pµ = fµ,

where fµ is the relativistic analogue of a force. The precise form of the force depends
on the physical theory at hand.

1.2.2 Non-inertial observers

So far, we have only considered inertial observers, which means coordinate systems of
observers moving freely. But in reality, observers are often non-inertial (accelerated)
because they are subject to forces (electromagnetism, gravity, ...). The coordinate sys-
tems of those observers will not be inertial. Because of that, there will be inertial forces.
Those are forces that arise in non-inertial reference frames due to their acceleration and
seem to have no physical origin, for example centrifugal forces in rotating frames. Be-
cause of this, they are often also called pseudo forces.
Consider an observer O moving along the world line

xµ(s) =
⎛
⎜⎜⎜
⎝

d sinh s
d

d cosh s
d

0
0

⎞
⎟⎟⎟
⎠

(1.44)

that is parameterized by the proper time s. Construct a coordinate system with coor-
dinates yµ for O. This will not be an inertial system!

Between the proper time s and s+∆s, the observer nearly moves along a straight line
(if ∆s≪ 1):

xµ(s +∆s) = xµ(s) + dx
µ

ds
∆s +O(∆s2) (1.45)

where we encounter the proper velocity dxµ/ds. This means that for a short time interval,
O is moving almost along the same world line as the inertial observer OI with world line

xµ(I)(τ) = x
µ(s) + dx

µ

ds
dτ (1.46)
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world line of O

Figure 1.10: World line of the Rindler observer 1.44.

with τ being the proper time of OI . So at least for this short moment, O and OI should
see the world (nearly) the same way, so they should have the same plane of simultaneous
events (at least in their near vicinity) which is given by

Σs = {xµ(s) +Xµ ∣ ηµνXµdx
ν

ds
(s) = 0 }. (1.47)

It is orthogonal to xµ(I). Having the same plane of simultaneous events means having the
same notion of things happening right now.
For this moment, the world line for OI is a straight line tangential to the world line of
O at the point xµ(s) = xµ(I)(0). The vector Xµ comes from the origin and crosses xµ and

xµ(s).
Because O is accelerating, Σs and Σs′ will not be parallel for s /= s′. We calculate the
proper velocity as

dxµ

ds
(s) =

⎛
⎜⎜⎜
⎝

cosh s
d

sinh s
d

0
0

⎞
⎟⎟⎟
⎠

(1.48)

(the prefactor d vanished because we get an additional factor 1/d from the derivative).
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The directions orthogonal (in the Minkowski inner product) to that are

e
(s)
1 =

⎛
⎜⎜⎜
⎝

sinh s
d

cosh s
d

0
0

⎞
⎟⎟⎟
⎠
, e

(s)
2 =

⎛
⎜⎜⎜
⎝

0
0
1
0

⎞
⎟⎟⎟
⎠
, e

(s)
3 =

⎛
⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟
⎠
. (1.49)

All of these (3d hyper-)planes Σs intersect in {xµ ∶ x0 = x1 = 0, x2, x3 arbitrary} (sinh
is only 0 if its argument is 0). At these points, the coordinates yµ break down: The
event {xµ = 0} would be having several different yµ-coordinates, but coordinates must
uniquely define events.

Figure 1.11: Plane of simultaneity Σs for the Rindler observer O at proper time s. It
coincides with that of the inertial observer OI .

Coordinate system O is yµ (with y0 = s) such that his world line in his coordinate
system is given by

yµ(s) =
⎛
⎜⎜⎜
⎝

s
0
0
0

⎞
⎟⎟⎟
⎠
. (1.50)
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The transformations between the coordinate systems are

x0 = (y1 + d) sinh
y0

d
(1.51)

x1 = (y1 + d) cosh
y0

d
(1.52)

x2 = y2 (1.53)

x3 = y3. (1.54)

Here we already see that in O’s system, y1 = −d is a problem. If y1 = −d, y2 = y3 = 0,
all points for all y0 get mapped to {xµ = 0}. Since coordinates need to uniquely identify
events, we can only allow y1 > −d.

Figure 1.12: Rindler coordinates yµ, covering the Rindler wedge. They break down at
the boundary of that wedge.

For y1 > −d, the coordinates xµ(yµ) can be inverted:

y0 = d ⋅ arctanh
x0

x1
(1.55)

y1 =
√

(x1)2 − (x0)2 − d (1.56)

y2 = x2 (1.57)

y3 = x3. (1.58)
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This only works for ∣x1∣ > ∣x0∣, because otherwise, y1 would become imaginary. So we
only take x1 > ∣x0∣. This is called the Rindler wedge. In the inertial system, if we only
look at the x0, x1-plane, this is only the right area outside of the light cone. In O’s
system, it corresponds to a Rindler horizon at y1 = −d where O’s world ends, so to
speak.

Figure 1.13: Coordinate patches in the Rindler wedge. In Rindler coordinates, the region
y1 ≤ −d is not accessible (“behind the horizon”).

In O’s system, a freely moving observer does not move along a straight line. Assume
that O has, in his space ship, a rock. That rock is tossed out of the airlock at s = 0.
From that point on, the rock moves freely. In the inertial system, the world line of rock
is given by

xµ(r)(τ) =
⎛
⎜⎜⎜
⎝

τ
d
0
0

⎞
⎟⎟⎟
⎠
, (1.59)

the rock moves on a straight line. In O’s system however, the world line takes the form

yµ(r)(τ)
⎛
⎜⎜⎜
⎝

d ⋅ arctanh τd√
d2 − τ 2 − d

0
0

⎞
⎟⎟⎟
⎠
. (1.60)

The rock never crosses the horizon because for the same reasons as before, ∣τ ∣ > ∣d∣ is
never possible. However, τ approaches d. The rock comes infinitely close to the horizon,
but never crosses it.
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O's world line

rock's world line rock's world line

O's world line

Figure 1.14: World line of the Rindler observer, and a rock that is being dropped, both
in Minkowski coordinates and Rindler coordinates.

For small ∣τ ∣ ≪ 1, we can expand y0
(r) and y1

(r) in a Taylor expansion:

y0
(r)(τ) ≈ τ (1.61)

y1
(r)(τ) ≈ −

1

2d
τ 2. (1.62)

We expanded
√
d2 − x − d ≈ d − d − x

2d + ... with x = τ 2. Equations 1.61 and 1.62 hold for
a short time. Compare this to ”free fall” in a constant gravitational field: The change
in height is given by

∆h(t) = −1

2
gt2 (1.63)

with the acceleration g.
For τ → d, y0(τ)→∞ and y1(τ)→ −d. This means that the rock can reach the horizon
after an infinite amount of time. From O’s point of view, the rock approaches the
horizon, but never reaches it. Also, it seems to ”freeze in time”.
The Rindler observer feels a force in negative y1-direction with an acceleration

a = − 1

y1 − d
(1.64)

which diverges at the horizon. The force that this Rindler observer experiences is ”fic-
titious” (it has no physical cause, so to speak, like the centrifugal or the Coriolis force).
They are a result of being in a non-inertial system.

24



1 Special Relativity

1.3 The gravitational force and relativity

Special relativity posed a new framework for the motion of point particles, which was
an extension of Newton’s mechanics, in particular his three laws of motion. It also
fit perfectly with Maxwell’s electrodynamics, which describes the electric interaction
of particles. It was clear pretty quickly, that also Newton’s law of gravity should be
adapted to fit into the relativistic framework proposed by Einstein. In particular, the
Coulomb potential of a charge at rest and the gravitational potential of a mass at rest
both looked fairly similar, so the two forces should be quite similar as well, right?

Unfortunately, writing a law of gravitational attraction between massive particles in
a way that fit with Einstein’s special relativity theory proved quite difficult. There were
several reasons for that, but one of the major ones was that, although gravity and electro-
magnetism might look similar in some way, they were quite different in other important
ways. For instance, the electric charge, which is the source for the electromagnetic field,
does not change under Lorentz transformations (it is also called a Lorentz-scalar), while
the mass of a particle, which is the source of the gravitational field, turned out to be
dependent of the observer. This proved to be an insurmountable obstacle for writing
down a law of gravity which works for relativistic particles in Minkowski space.

However, Einstein found a solution to this problem, in the so-called equivalence prin-
ciple. Namely, he realised that an observer falling freely in the gravitational field (e.g. of
the Earth), feels weightless during their fall. In Newtonian mechanics, this is a conse-
quence of the fact that an observer, who is accelerated by the gravitational field, feels
a fictitious force which exactly counteracts the gravitational force. Einstein, however,
realised that the freely falling observer themself is an inertial observer, and therefore
feels weightless, while the person standing on the surface of the Earth does not feel a
physical force, but feels a fictitious force – just like the Rindler observer, who keeps a
constant distance to the horizon.

So the equivalence principle states that gravity is equivalent to a fictitious force one
feels due to an accelerated motion.

Consider the following four observers observing the fall of an apple:

I The first observer in in a room on earth. The apple is accelerated downwards with
g⃗.

II The observer is in a room that is accelerated upwards in space (far from gravity
sources) by an angel that is carrying it with g⃗ in the opposite direction to the
acceleration in the first example.

III The observer is in a freely falling room near earth.

IV The observer is in a room that is moving freely in space.

Let’s look at how Newton views these systems:
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Figure 1.15: The equivalence principle states that an observer (in a small room with
no windows) can not distinguish whether she is feeling a downward force
because the is standing on the ground of the Earth, or is in space, but being
accelerated upwards with constant acceleration (like a Rindler observer).

Figure 1.16: Equally, the equivalence principle states that an observer (in a small win-
dowless room) can not distinguish whether she is falling freely in a gravita-
tional field, or floating weightless in space.

I This is an inertial system: It is at rest. There is a physical force acting on the
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apple given by
F⃗g =mgg⃗ (1.65)

where mG is the gravitational mass.

II This is not an inertial system: It is accelerated and the apple is at rest. To explain
its movement, we need to introduce a fictitious (or inertial) force

F⃗I =mI g⃗ (1.66)

with the inertial mass mI .

III This is not an inertial system: It is accelerated. There is a physical force F⃗G
pulling him downwards, and there is a fictitious force since he is accelerated:

F⃗g + F⃗I = (mg −mI)g⃗ = 0. (1.67)

IV This is an inertial system: There are no forces whatsoever.

Now let’s look at how Einstein sees things:

I This is not an inertial system: The observer feels a force.

II This is not an inertial system: The observer feels a force.

III This is an inertial system: There are no forces.

IV This is an inertial system: There are no forces.

So they only agree on 2 and 4.
The Einstein point of view rests on mI =mg. This is called the equivalency principle. As
far as we know, it seems to hold (within experimental precision in 2017: ∣mI/mg − 1∣ <
10−13).
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1.3.1 Movement of an inertial observer in a gravitational field

Einstein’s idea of how to include gravitational force into relativity was as follows: The
gravitational force that people feel is no physical force, but a fictitious force. Therefore,
every observer which is not accelerated does not feel any gravitational force (even if it
is being moved around by the gravitational field). Therefore, it has to be treated the
same way as an inertial observer in special relativity.

Well, not quite: an important point is that the equivalence principle only holds exactly
for point-like observers. It only holds approximately for small observers, i.e. those who
do not have a large spatial extension. If your body is several thousand kilometres large,
you can feel the gravitational field of the earth pulling you in different directions, i.e. one
can feel the tidal forces of the gravitational field.

In other words, an observe who is only influenced by the gravitational field is an
inertial observer – but her inertial system might not encompass all of space-time, but
only a small neighbourhood around her world line. But in that coordinate system, the
laws of special relativity should hold! Assume such an inertial observer has an inertial
system with coordinates ξµ. Any other observer, which moves only under the influence
of the gravitational field, has a world line ξµ(s) satisfying

d2ξµ

ds2
= 0. (1.68)

A general, non-inertial observer O (such as the Rindler observer) will have a different
coordinate system, and might not perceive the inertially moving particles as moving
along a straight line. What is the equation of motion in their coordinates xµ?

We assume that locally the two coordinate system can be transformed into one an-
other, and that xµ(ξ) and ξµ(x) are smooth and inverse to one another. This means
that all partial derivatives ∂ξµ

∂xν exist, are smooth, and satisfy

∂ξµ

∂xν
∂xν

∂ξρ
= δµρ,

∂xµ

∂ξν
∂ξν

∂xρ
= δµρ. (1.69)

We express the world line s↦ ξµ(s) in O’s coordinates xµ. ONe has

0 = d2ξµ

ds2
= d

ds
( d
ds
ξµ(x(s))) = d

ds
(∂ξ

µ

∂xν
dxν

ds
)

= d

ds
(∂ξ

µ

∂xν
) dx

ν

ds
+ ∂ξµ

∂xν
d2xν

ds2
= ∂2ξµ

∂xρ∂xν
dxρ

ds

dxν

ds
+ ∂ξµ

∂xν
d2xν

ds2
.

This can be expressed as:

0 = ∂xσ

∂ξµ
∂ξµ

∂xν
d2xν

ds2
+ ∂xσ

∂ξµ
∂2ξµ

∂xρ∂xν
dxρ

ds

dxν

ds
. (1.70)

Using the fact that the matrices with entries ∂xσ

∂ξµ and ∂ξµ

∂xν are inverse to one another,
i.e. (1.69), we get:

d2xµ

ds2
+ ∂xµ

∂ξσ
∂2ξσ

∂xρ∂xν
dxρ

ds

dxν

ds
= 0. (1.71)
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This equation of motion still contains terms which depend on the inertial coordinates
ξµ, to which our observer O might not have any access (or might not be interested in).
But there is a better way to express this equation of motion, by introducing the so-called
space-time metric. This is a local version of the Minkowski distance.

Consider two events close to one another, which, in the inertial observer’s system,
have coordinates ξµ and ξµ + ∆ξµ. Since for the inertial observer the laws of special
relativity should hold, the space-time distance between the two events are

∆s2 = ηµν∆ξ
µ∆ξν .

We express these in O’s coodrdinates xµ, and get

∆ξµ = ∂ξµ

∂xρ
∆xρ + . . . , (1.72)

up to terms of higher order in the ∆xρ. The partial derivatives are to be taken at xµ

the coordinates of the first event. This gives us

∆s2 = ηµν
∂ξµ

∂xρ
∂ξν

∂xσ
∆xρ∆xσ. (1.73)

In the limit of the two events approaching one another, one gets

ds2 =∶ gρσdxρdxσ. (1.74)

where we have defined the space-time metric

gµν ∶= ηρσ
∂ξρ

∂xµ
∂ξσ

∂xν
. (1.75)

These are coefficients which measure the infinitesimal space-time distance between events.

Figure 1.17: Two events which are close to one another have the space-time distance
∆s2, which can be expressed with the help of the metric coefficients gµν . If
the coordinates xµ are actually inertial coordinates, we have gµν = ηµν . In
general, however, gµν will be different from ηµν , and can even change from
point to point.

The equation of motion (1.71) can now be expressed in terms of the metric coefficients,
and their partial derivatives. This is great, because we do not need to make a reference
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to an inertial observer, but can work entirely with physical quantities which can be
measured entirely by O. For this we need the inverse metric gµν , which is defined by
the inverse matrix to gµν , i.e.

gµνg
νρ = δρµ, gµνgνρ = δµρ . (1.76)

With these we define the so-called Christoffel symbols Γµνρ, by

Γµνρ ∶= 1

2
gµσ (∂gσν

∂xρ
+
∂gσρ
∂xν

−
∂gνρ
∂xσ

) . (1.77)

The Christoffel symbols are symmetric in the lower two indices.

Γµνρ = Γµρν für alle µ, ν, ρ = 0, . . . ,3. (1.78)

Nex we express the inerse metric in terms of the inverse Minkowski metric ηµν :

gµν = ∂xµ

∂ξρ
∂xν

∂ξσ
ηρσ. (1.79)

Insert now (1.75) into the expression of the brackets in (1.77), and we get:

∂gσν
∂xρ

+
∂gρσ
∂xν

−
∂gρν
∂xσ

(1.80)

= ηλτ (
∂

∂xρ
(∂ξ

λ

∂xσ
∂ξτ

∂xν
) + ∂

∂xν
(∂ξ

λ

∂xρ
∂ξτ

∂xσ
) − ∂

∂xσ
(∂ξ

λ

∂xρ
∂ξτ

∂xν
))

= ηλτ (
∂2ξλ

∂xρ∂xσ
∂ξτ

∂xν
+ ∂ξ

λ

∂xσ
∂2ξτ

∂xν∂xρ
+ ∂2ξλ

∂xν∂xρ
∂ξτ

∂xσ
+ ∂ξ

λ

∂xρ
∂2ξτ

∂xν∂xσ

− ∂2ξλ

∂xσ∂xρ
∂ξτ

∂xν
− ∂ξ

λ

∂xρ
∂2ξτ

∂xσ∂xν
)

= 2ηλτ
∂2ξτ

∂xν∂xρ
∂ξλ

∂xσ
. (1.81)

Here we have used the symmetry of the metric: gµν = gνµ. Now we use (1.79), and get
for the Christoffel symbol:

Γµνρ = ∂xµ

∂ξα
∂xσ

∂ξβ
ηαβηλτ

∂2ξτ

∂xν∂xρ
∂ξλ

∂xσ

= ∂xµ

∂ξτ
∂2ξτ

∂xν∂xρ
.

But this is exaclty the expression in (1.71), which is why we can write :

d2xµ

ds2
+ Γµνρ

dxν

ds

dxρ

ds
= 0. (1.82)

So in order to incorporate the gravitational force, Einstein assumed the following:
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1 Special Relativity

� Space-time is still four-dimensional, and events can be expressed in coordinates,
but the space might not have the structure of an affine space anymore.

� Observers which are only being influenced by the gravitational force are the inertial
observers. In their respective inertial coordinate systems ξµ. the laws of special
relativity hold. But these coordinate systems do not necessarily cover all of space-
time any more.

� The geometry of space-time is encoded in the space-time metric gµν , which mea-
sures the space-time distance between nearby events. In an inertial coordinate
system gµν = ηµν , but in general (non-inertial) coordinates xµ, the metric will be
different, and depend on the point. It will be a field.

� In general coordinates, the equations of motion for a particle under the influence
of gravity is (1.82).

Figure 1.18: The same world line satisfies ξ̈µ = 0 in the inertial coordinate system, and
(1.82) in an arbitrary CS.
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2 Tensor fields on arbitrary manifolds

The treatment of tensor fields on arbitrary manifolds is a mathematical discipline called
differential geometry. Here, we can only give a brief introduction into a very wide field.
We will treat, in general, n-dimensional space with arbitrary coordinates. Even though
mathematically, this fits into the realm of geometry, it is actually ubiquitous in physics:
The concepts appear as coordinates in space(-time) (x0, ..., xn, ϕ, θ, ρ, ...) and as ther-
modynamic properties (temperature T , pressure p, entropy S) that are coordinates on
some manifold.
The notation in this chapter will be as follows: In general n-dimensional spaces, we
denote coordinates by xi, i = 1, ..., n. We use Greek indices µ, ν = 0,1, ..., n − 1 almost
exclusively when talking about the spacetime in general relativity.

2.1 Vectors, dual vectors and tensors

2.1.1 Vectors

In classical physical systems with finitely many degrees of freedom, one almost exclu-
sively deals with real, finite-dimensional vector spaces V . A vector v from such a space
will always be an abstract object, but in physics it is important to do computations with
real numbers. To be able to do this, one needs to introduce a basis, which consists of a
choice of vectors e1, e2, . . . , en, such that each abstract vector v can be decomposed into
this basis, via

v =
n

∑
i=1

viei, (2.1)

with unique real numbers vi, i = 1, . . . , n, which are called the components of V (with
repsect to the basis {ei}ni=1). As customary, we will also here use the Einstein convention
and omit the sum, i.e. we will always write v = viei. The number n is called the dimension
of V .

Instead of working with the abstract v, one can work with its components. In other
words, a basis provides a linear isomorphism between V and Rn. It is important to
notice that this isomorphism depends on the basis: If a vector has certain components
with respect to one basis, it might have completely different components with respect
to another basis. Assume that we have given a second set of basis vector sẽi, then we
also have

v = ṽiẽi. (2.2)
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2 Tensor fields on arbitrary manifolds

How do the components ṽi and vi depend on each other? That depends on how the
two sets of basis vectors relate to one another. Each of the ẽi can be decomposed with
respect to the basis vectors ei, so we have

ẽi = Mi
jej (2.3)

for some real numbers Mi
j. Since the decomposition also has to work in the other way,

the coefficients Mi
j form an invertible matrix M . With this, we get

ṽiẽi = ṽiMi
jej

!= viei, (2.4)

and since the coefficients are unique, this means that ṽiMi
j = vj (for all j, and with an

implied sum over the i).
Now let N i

j denote the coefficients of the matrix N , which satisfies N−1 =MT , or, in
coefficients:

Mi
jNk

j = δik,

N i
jM

j
k = δki .

The matrix N is also called contragredient to M . Multiplying with Nk
j and summing

over j, we get

Nk
jv
j = Nk

j ṽ
iMi

j = ṽiδki = ṽk, (2.5)

or in other words

ṽi = N i
jv
j. (2.6)

2.1.2 Dual vectors

To every vector space V there is the so-called dual space, denoted by V ∗, which consists
of linear forms on R, i.e.

V ∗ = {α ∶ V → R ∣ α is linear} (2.7)

Any dual basis vector α is completely determined by its values α(ei) on the basis vectors.
For any basis {ei}ni=1 of V , there is a dual basis {θi}ni=1 of V ∗ (in particular, the two have
the same dimension). The dual basis is defined by

θi(ej) = δij. (2.8)

Every dual vector α can be decomposed into these, i.e.

α = αiθ
i. (2.9)

The coefficients αi are real numbers, and they are precisely the values of α on the basis
vectors, i.e.

α(ei) = (αjθj)(ei) = αjδ
j
i = αi. (2.10)
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2 Tensor fields on arbitrary manifolds

Under a change of basis vectors ei → ẽi, also the dual basis changes. The dual basis
vectors θ̃i can be decomposed into the θi, and we make the ansatz θ̃i = Aijθj. Plugging
this into the definition of the dual basis, and using the linearity of the θi, we obtain

δij = θ̃i(ẽj) = Ailθ
l(Mj

kek) = AilMj
kδlk = AikMj

k. (2.11)

We see that the matrix A satisfies the same equation as N , so they have to agree: A = N .
Very similarly, one shows the the coefficients of a dual vector changes under a change of
basis, such that

α̃i = Mi
jαj. (2.12)

Again, it is important to note that, under a change of basis, neither a vector v nor a
dual vector α change – it is just that their coefficients vi and αi change, because they
are now computed with respect to a different basis (or a different dual basis).

2.1.3 Higher order tensors

Vectors and dual vectors are two examples of a more general construction in physics:
tensors.1 Given two vector spaces V and W , one can form the tensor product V ⊗W
between them. For our intents and purposes, the tensor product consists of all formal
linear combinations of v ⊗w, with v ∈ V and w ∈W , such that

α(v ⊗w) = (αv)⊗w = v ⊗ (αw)

v ⊗ (w1 +w2) = v ⊗w1 + v ⊗w2

(v1 + v2)⊗w = v1 ⊗w + v2 ⊗w.

Because of this, if {ei}ni=1 is a basis for V and {fj}mj=1 is a basis for W , then ei ⊗ fj form
a basis for V ⊗W . In particular, every element T in V ⊗W can be decomposed as

T = T ijei ⊗ fj. (2.13)

Notably, dim(V ⊗W ) = dim(V )dim(W ). The T ij are called the components of T , and
as usual, they depend on the choice of bases in V and W . In general, one can form
arbitrarily long tensor products V ⊗W , V ⊗W ⊗ U . . . of arbitrary vector spaces, but
we will in the following only be concerned with a specific sort of tensor products. For
a vector space V , we will only consider tensor products of some copies of V and some
copies of V ∗ (in any order). We will call the type of the tensor the numbers (r, s), where
r is the number of V ’s and s the number of V ∗’s in the tensor product.

Careful: the tensor product is not commutative, so one has

V ⊗W ≠W ⊗ V. (2.14)

1Although this is meant with respect to a specific vector space. Higher order tensors also form a larger
vector space themselves.
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Although the two vector spaces on either side of (2.14) are isomorphic, it is a good idea
to be aware that the order of the tensor product, and therefore the position of indices,
is in general important.

As with dual vectors, a change of basis of V also changes the components of more
general tensors. For example, if we have a tensor T out of the tensor product space
V ⊗ V ∗ ⊗ V , its components T ijk are defined by

T = T ij
k ei ⊗ θj ⊗ ek. (2.15)

Under a basis change ei → ẽi, also the the θi change, and the tensor product basis in
general. So we have

T = T̃ ij
k ẽi ⊗ θ̃j ⊗ ẽk

!= T ij
k ei ⊗ θj ⊗ ek. (2.16)

Since the (dual) basis vectors change as ẽi = Mi
jej and θ̃i = N i

jθj, we get, with a very
similar calculation than in the previous subsection, that

T̃ ij
k = N i

rMj
sNk

t T
r
s
t. (2.17)

This is a general rule for the way in which the components of a tensor transform under
change of basis:

each upper (“contravariant”) index gets a N

each lower (“covariant”) index gets a M.

The names contravariant and covariant are not used very much any more nowadays.

2.1.4 Some physical examples

So far, tensors have been rather abstract objects. But they do appear in many places in
classical physics. Almost all physical quantities are tensors, where the underlying vector
space V = R3 (in Newtonian mechanics), or V = R4 (in special relativity). The reason is
that many of these quantities do somehow depend on directions in space(-time), and thus
their components change when the basis in space(-time), i.e. the Cartesian coordinates,
change. In the following we will look at a few examples:

1. Temperature T
This is a tensor of type (0,0), also called a scalar. The reason is that temperature
is just a number, which does not depend on any direction.

2. Velocity vi

This is very clearly a vector (indeed, the underlying vector space is R3, which is the
space of translations of Euclidean space in which Newtonian physics is happening.
Since velocity is an infinitesimal translation, the components have one upper index.
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3. Force Fi
In Newtonian mechanics, one does not often see the difference between vectors
and dual vectors. But if one pays close attention, one realizes that the physical
concept of force is a dual vector. This is due to the fact that force essentially tells
you how much (potential) energy W a particle gains, if it moves a bit ∆xi in a
certain direction. Therefore, if this ∆x is a vector, the energy gain is

W = −F (∆x) = −Fi∆xi. (2.18)

The minus sign comes from the fact that a force field always points into the direc-
tion of where a particle would lose the most energy.

4. Stress σij
Stress is a tensor of type (0,2). The reason being that it tells you which sort of
force acts on which part of the surface of a small piece of matter. A bit of matter
having normal vector Ai, where Ai = Ani, with the area A and the normal direction
ni, experiences, under some external deformation, a force

Fi = σijA
j. (2.19)

For example, for a hydrostatic fluid, the stress tensor is

σij =
⎛
⎜
⎝

−P 0 0
0 −P 0
0 0 −P

⎞
⎟
⎠
, (2.20)

which is understandable, since the pressure acts perpendicular to the surface to-
wards the center of the piece of matter. The non-diagonal entries of this tensor
have to do with the shear a piece of matter is experiencing. For most physical
cases, the stress tensor is symmetric, i.e. it satisfies σij = σji.

5. Magnetic field Bij

Contrary to the way in which the magnetic field os often depicted as a vector, it
is actually a tensor of type (0,2). It is different from the stress tensor, however,
in that it is antisymmetric, i.e. it satisfies Bij = −Bji. The reason for this is that
the magnetic field is actually a way to tell how much magnetic flux Φ is going
through a small piece of are, which is being spanned by two vectors ni and mi. In
particular, one has that

Φ = Bijn
imi. (2.21)

In the definition of the piece of surface, it is important to keep track of the orienta-
tion, otherwise the magnetic flux will change sign. This is why B is antisymmetric:
it changes sign under exchange of ni and mi (which is the same as reversing the
orientation of the surface).
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Figure 2.1: Different forces can act on different sides of a small piece of matter. This
causes a deformation which can be described using the stress tensor σij.

2.1.5 Operations on tensors

There are several operations on tensors which will turn out to be quite useful.

� Multiplication of tensors
This operation takes e.g. a tensor T of type (p, q) and one S of type (r, s), and
produces a tensor U of type (p+r, q+s). For example: let T be from V ⊗V ∗ (type
(1,1), components T ij), and S be from V ∗⊗V ∗ (type (0,2), components Sij. The
tensor U is an element in the tensor product V ⊗V ∗⊗V ∗⊗V ∗. It has components
U i

jkl are related to those of T and S via

U i
jkl = T ij Skl. (2.22)

Now, the ingeniousness about an equation like (2.22) is that it completely describes
the relation between U , T and S – and it is true with respect to every basis!
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Because of the way in which components of tensors like (...) transform under a
change of basis, if equation (2.22) is true with respect to one basis, it is true with
respect to every basis. Namely, one has

Ũ i
jkl = T̃ ijS̃kl = (N i

rMj
sT rs)(Mk

tMl
uStu) = N i

rMj
sMk

tMl
uU r

stu (2.23)

In other words, the definition of (2.22) defines a set of numbers for every choice
of basis. These numbers, for different choices of basis, are related to one another
just as the components of a tensor of type (1,3) would. In other words, this way
one can define a tensor of that rank.

� Contraction of a tensor
This operation takes a tensor of type (p, q) and produces a tensor of type (p−1, q−
1). For example, we take a tensor T with components T ijk (i.e. of type (2,1)), and
choose one upper and one lower index. For this example, we choose the first and
the second index. Then we define the components of a type (1,0) tensor (i.e. a
vector) S by

Si = T kk
i. (2.24)

Again, if we do this with respect to another basis, then the numbers S̃i are related
to the numbers Si just as the components of a (1,0) tensor would:

S̃i = T̃ kk
i = Mk

rNk
s

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=δsr

M i
tT

r
s
t = M i

tδ
s
rT

r
s
t = M i

tT
r
r
t = M i

tS
t. (2.25)

2.1.6 Symmetries of tensors

Very often, tensors in physics are not just elements in some tensor product space, but
they often come with special symmetries regarding the exchange of their indices. As
depicted in the examples earlier, for instance, the magnetic field Bij is antisymmetric,
i.e. satisfies Bij = −Bji.

Since we will deal with tensors with an arbitrary number k of indices, and its prop-
erties under exchange of these indices, it pays to remind ourselves of the notion of a
permutation. A permutation σ in k elements is an invertible map of the numbers from
1 till k to itself, i.e.

σ ∶ {1, . . . , k} → {1, . . . , k}. (2.26)

A special example of a permutation is an exchange of two elements i ≠ j, e.g. σ(i) = j,
σ(j) = i, and all other σ(k) = k. Every permutation can be written as a sequence of such
a so-called transposition. The sign of a permutation σ is denoted by (−1)σ or sgnσ, and
it is ±1, depending on whether σ consists of an even or an odd number of transpositions,
i.e.

(−1)σ = { 1 σ is a sequence of an even number of transpositions
−1 σ is a sequence of an odd number of transpositions

(2.27)

38



2 Tensor fields on arbitrary manifolds

We denote the set of all permutations in k elements by Sk.
A tensor S of type (k,0) is called totally symmetric, if its components do not change

under permutation of indices, i.e.

Si1i2⋯ik = Siσ(1)iσ(2)⋯iσ(k) for all σ (2.28)

Similarly, a tensor A of the same type is called totally antisymmetric if the compo-
nents get get a minus sign whenever one exchanges two indices. In other words

Ai1i2⋯ik = (−1)σ Aiσ(1)iσ(2)⋯iσ(k) for all σ (2.29)

Examples for totally symmetric tensors are the stress tensor, which satisfies σij = σji,
or the Minkowski metric, which satisfies ηµν = ηνµ. Examples for totally antisymmetric
tensors are the magnetic field, as already mentioned, or the epsilon tensor from the cross
product: εijk = εjki = −εjik = ⋯.

Given an arbitrary type (k,0) tensor T , one can project onto its symmetric part S,
which is a totally symmetric type (k,0) tensor, whose components are defined by

Si1i2⋯ik = T (i1i2⋯ik) ∶= 1

k!
∑
σ∈Sk

T iσ(1)iσ(2)⋯iσ(k) . (2.30)

Similarly, its antisymmetric part A is defined by

Ai1i2⋯ik = T [i1i2⋯ik] ∶= 1

k!
∑
σ∈Sk

(−1)σT iσ(1)iσ(2)⋯iσ(k) . (2.31)

In both cases, the sum ranges over all permutations in k elements. A the names suggest,
the (anti-)symmetric part of T is a totally (anti-)symmetric tensor.

The above definitions are given with respect to a basis, but note that the equations
satisfy our rules for well-defined tensor equations. So, if the components of a (k,0)-
tensor are (anti-)symmetric with respect to one basis, they are so with respect to all
bases.

All of these definitions have been made for type (k,0)-tensors, but one can similarly
define totally (anti-) symmetric tensors of type (0, k). What does not exist are totally
(anti-)symmetric tensors of mixed type. For example, it does not make sense to demand
that a type (1,1) tensor is symmetric under its two indices: the condition T ij = T j i does
not satisfy the rules for well-defined tensor equations – so if it is true with respect to
one basis, it is not necessarily true for all of them.

What one can define, however, are tensors which partially (anti-)symmetric. For
instance, a tensor T with components T ijkl could be only symmetric with respect to its
first two lower indices, i.e. satisfy T ijkl = T ikjl. So

T ijkl = T i(jk)l ∶=
1

2
(T ijkl + T ikjl). (2.32)

If T would be symmetric with respect to only its first and third lower index, one would
write that as T ijkl = T i(j∣k∣l) = 1

2(T ijkl + T ilkj). One can quickly see where this is going,
and one can define tensors of arbitrarily complex behaviour under permutation of their
indices.
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2.2 Manifolds

An n-dimensional (real) manifold is a ”second countable Hausdorff space M with a
maximal atlas”. It’s a space that locally looks like (a piece of) Rn. ”Second countable”
means that M is not ”too large”, for example if the manifold is a straight line, it is not
longer than the real line. A Hausdorff space is a space where two different points can
always be separated by open sets. In practice, M can be described by local coordinate
charts: (x,U) where U is some open subset of M and x ∶ U → x(U) ⊂ Rn a coordinate
map.

Figure 2.2: A manifold M is a space where the neighbourhood U of every point P loosk
like a piece V of Rn. Points in U get assigned coordinates x1, . . . , xn.

Imagine as an example M being the two-dimensional surface of a three-dimensional
torus. A part U of this surface is mapped by x(U) to a two-dimensional, Cartesian
coordinate system R2. Here, points in U can be described by coordinates (x1, x2). If
two charts (x,U) and (x̃, Ũ) overlap (U ∩ Ũ /= ∅), the points in M which belong to
both U and Ũ can be described by either coordinate system. We can map between the
coordinate systems by x̃ ○x−1 (from x(U ∩ Ũ) to U ∩ Ũ ⊂M to x̃(U ∩ Ũ)) and by x ○ x̃−1

in the other direction. Of course, we can only map the overlap between U and Ũ this
way. These two maps are also denoted as x̃i(x) and xi(x̃). They need to be smooth
(infinitely often differentiable).

Let us consider some examples for manifolds:

1. The plane M = R2 is a manifold as obviously, all Rn look like Rn not only locally,
but everywhere. On R2, there are several different coordinate charts. The most
well-known are of course Cartesian coordinates (x1, x2) which cover all of M , but
polar coordinates (r,ϕ) only cover part of M . They are not defined on the negative
part of the x1 axis and at 0.

2. The 2-sphere S2 = {r⃗ ∈ R3∣∥r⃗∥2 = 1} is the surface of a three-dimensional ball.
Spherical coordinates (ϕ, θ) are only defined for −π < ϕ < π and 0 < θ < π. The
coordinates (ϕ,π), the north pole and the south pole are not defined. If they were
included, the manifold would be non-continuous/-differentiable at those points.
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Figure 2.3: On the overlap of two coordinate charts one can change the coordinates. The
change xi(x̃) and its inverse x̃i(x) are infinitely often differentiable, so one

can form partial derivatives, e.g. ∂xi

∂x̃j
.

3. Thermodynamics, for example the state variables of an ideal gas: p, V, T . Their
equation of state (pV = kBT ) defines a two-dimensional manifold. Possible coor-
dinates are either (p, V ), (T,V ), (p, T ) or more complicated coordinates which are
functions of these three (the thermodynamic potentials S,F,H,U, ...). Thermody-
namics is mostly a rewriting of differential geometry.

Note that in the examples, we can see that in practice, coordinates are not always called
xi, for example sometimes people use ϕ, θ,ψ, ... if they are angles.

2.2.1 Tangent vectors

Vectors can be regarded as ”infinitesimal translations on M”. Every tangent vector x at
a point p in M arises as the velocity vector to a curve in M through p. In a coordinate
chart (x,U), such a curve is given by φ ↦ xi(φ). So the velocity vector of that curve is
given by n numbers

X i = dxi

dφ
∣
φ=0

. (2.33)

The coordinates of p are xi(0). The same curve in M in a different coordinate system
(x̃, Ũ) is given by

x̃i(φ) = x̃i(xj(φ)). (2.34)
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So the same vector X in the other coordinate system is given by the coefficients

X̃ i = dx̃
i

dφ
= ∂x̃

i

∂xj
Xj. (2.35)

Figure 2.4: Tangent vectors are velocity vectors of curves. Their components change
under a change of coordinates.

The vector is not a part of M . It is ”stuck at point p”, but as a tangential vector can
lie outside of M . In the special case of Minkowski space, vectors point from one event
to another, and they can be thought of as lying inside Minkowksi space itself.
All tangent vectors to a point p form a vector space called the tangent space TpM . It is
the space of all velocity vectors of curves through p. The dimension of TpM is the same
as that of M , which is n: dimTpM = dimM = n. In drawings, people usually attach TpM
to p, but it is important to realize that TpM is something completely different from M .
Another mistake that is easily made is to think that the tangent spaces at two different
points p and p′ have something to do with each other. For example, the question could
arise where two tangent spaces on a one-sphere intersect. That question is nonsensical
as TpM and Tp′M are completely different things and a relation between them is only
falsely suggested in drawings.

The collection of all TpM for all p is called the tangent bundle TM .
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Figure 2.5: Careful: tanget spaces assigned to different points P and Q do not intersect,
even if images might suggest so!

2.2.2 Basis for TpM

Given a set of coordinates xi around p, so that p has coordinates (x1(p), x2(p), ..., xn(p)),
there is a nice set of basis vectors

∂

∂x1
∣
p

,
∂

∂x2
∣
p

, ...,
∂

∂xn
∣
p

. (2.36)

The derivative ∂/∂xi∣p is the tangent vector which belongs to the curve which in the
coordinates {xi} is given by

φ↦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x1(p)
x2(p)
⋮

xi(p) + φ
⋮

xn(p)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.37)

where all components are constant except for the ith component. An arbitrary curve
φ↦ xi(φ) has a tangent vector at p, which can be decomposed as follows:

Xp =
dxi

dφ

∂

∂xi
∣
p

=X i ∂

∂xi
∣
p

. (2.38)

Here, Xp is a vector in TpM , X i are numbers and the partial derivatives are vectors
in TpM . The construction of these basis vectors depend on coordinates. Their relation
to the basis vectors with respect to a different coordinate chart (x̃, Ũ) is:

∂

∂x̃i
∣
p

= ∂xj

∂x̃i
∂

∂xj
∣
p

. (2.39)
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2.2.3 Vector fields

A vector field X on M is a (smooth) assignment of tangent vectors Xp to every point p.
In a coordinate system, (part of) X can be described by ∂/∂xi∣p:

Xp =X i(xj(p)) ∂

∂xi
∣
p

, (2.40)

In short:

X =X i ∂

∂xi
(2.41)

where X is a vector field, X i are the n coefficient functions and the derivatives are the
basis vector fields that are only defined on U . A vector field in two different coordinate
systems is expressed as

X =Xj ∂

∂xj
= X̃ i ∂

∂x̃i
, (2.42)

which means for the transformed components

X̃ i = ∂x̃
i

∂xj
Xj. (2.43)

Figure 2.6: Basis vector fields ∂
∂xi

are those which, in local coordinates x are pointing in
the i-th direction.

Vector fields can act on scalar fields (”functions”): Let f ∶M → R be a function and
X a vector field on M . Then X(f) is also a function:

X(f)(p) ∶=X i ∂f

∂xi
∣
xi(p)

, (2.44)

where we have used the symbol f for both the function f ∶M → R, as well as the function
in a local coordinate chart f ○ x−1 ∶ x(U)→ R. The action of a vector field on a function
is therefore defined as

X(f) =X i ∂f

∂xi
. (2.45)

The commutator of vector fields X and Y is again a vector field, and its action on a
function is

[X,Y ](f) ∶=X(Y (f)) − Y (X(f)). (2.46)
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In local coordinates, this reads

[X,Y ](f) =X i ∂

∂xi
(Y j ∂f

∂xj
) − Y i ∂

∂xi
(Xj ∂f

∂xj
)

=X i∂Y
j

∂xi
∂f

∂xj
+X iY j ∂2f

∂xi∂xj
− Y i∂X

j

∂xi
∂f

∂xj
−XjY i ∂2f

∂xi∂xj
. (2.47)

The terms with the double derivative are the same because we sum over all i and j, so
the commutator can be written as

[X,Y ] = (X i∂Y
j

∂xi
− Y i∂X

j

∂xi
) ∂

∂xj
. (2.48)

2.2.4 1-forms

The dual object to vector fields are 1-forms. Where a vector field assigns a vector to
each point, a 1-form ω assigns to each point a dual vector ωp ∈ (TpM)∗, so ωp is a linear
map from TpM to R. In local coordinates, a basis of TpM is given by ∂/∂xi∣p. The dual
basis of T ∗

pM is given by dxi∣p with the property

dxi∣p ( ∂

∂xj
∣
p

) = δij. (2.49)

It is a local basis only defined on U . Every 1-form ω can in local coordinates be written
as ω = ωidxi with ωi being n coefficient functions. A change of coordinates can be done
by

dx̃i = ∂x̃
i

∂xj
dxj (2.50)

so that ω = ωidxi = ω̃idx̃i, which means

ω̃i =
∂xj

∂x̃i
ωj. (2.51)

2.2.5 Curve integrals of 1-forms

Let ω be a 1-form on M and γ a curve in M . In local coordinates, γ is given by φ↦ xi(φ)
where a ≤ φ ≤ b. From ω = ωidxi follows

∫
γ
ω ∶= ∫

b

a
dφω (dγ

dφ
) ∶= ∫

b

a
dφωi

dxi

dφ
(2.52)

where dγ/dφ is the tangent vector. This holds assuming that γ fits into one coordinate
chart and is called the integral of ω over γ. Examples are

1. M = R3 with ω a force field and γ the path of a particle in ω. Then ∫γ ω is the
change of energy of that particle as it moves along γ.

2. M = {(T, p, V ) ∶ kBT = pV }, e.g. with ω = dU the change of energy or ω = dS the
change of entropy. The curve γ is the thermodynamic process. Then ∫ ω is the
total change of energy/entropy after the process.

45



2 Tensor fields on arbitrary manifolds

Figure 2.7: A 1-form can be integrated along a curve γ. The value is the integral over
the velocity vector dγ

φ , evaluated at ωγ(φ).

2.2.6 General tensor fields on M

A tensor field T of type (r, s) is locally described by its coefficients, e.g. T j
i k (r indices

upstairs, s indices downstairs). The T j
i k are functions of the coordinates {xi}. Locally,

we write

T = T j
i kdx

i ⊗ ∂

∂xj
⊗ dxk. (2.53)

Physicists usually don’t write the basis vectors. Under a change of coordinates, the same
tensor T has different coefficients

T̃ j
i k =

∂xl

∂x̃i
∂x̃j

∂xm
∂xn

∂x̃k
T m
l n. (2.54)

Careful: contravariant (upstairs) indices get the matrix ∂x̃/∂x while covariant (down-
stairs) indices get the inverse matrix ∂x/∂x̃. So the transformation behaviour is precisely
the same as in the last chapter, just that the (constant) matrix Mi

j has been replaced

with ∂xj

∂x̃i
(which now depends on the coordinates xi), and N i

j has been replaced with
∂x̃i

∂xj
.

So the only things that have changed compared to the previous chapter, where we
talked about tensors, is: tensor fields on manifolds have a tensor at each point p in the
manifold, and each is a tensor with respect to a different vector space (namely TpM).
A basis for the tangent spaces is given by the coordinate basis vectors ei = ∂

∂xi
, and its

dual basis θi = dxi. So, each time we change our local coordinates, we also automatically
change the basis and dual basis for each (co-)tangent vector space in the region where
the coordinates are defined. The matrices M and N are then given by the Jacobian of
the change of coordinates (and its inverse).

2.2.7 The Cartan derivative

A totally anti-symmetric tensor field of type (0, k) is called a k-form ωi1...ik = ω[i1...ik].
The Cartan derivative for a 0-form (function) is defined as

df = ∂f

∂xi
dxi. (2.55)
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For higher k, dω is a (k + 1)-form with

(dω)i1...ik+1 = ∂[i1ωi2...ik+1] =
1

(k + 1)!∑p
(−1)p∂ip(1)ωip(2)...ip(k+1) . (2.56)

Of course, ddω = 0 for all ω. If dω = 0, then we call ω closed. If we can write ω = dη,
then we call ω exact. Every exact k-form is closed, but not necessarily the other way
round. Curve integrals for exact 1-forms ω = df over a curve γ ∶ φ↦ xi(φ) are given by

∫
γ
ω = ∫

γ
df

= ∫
b

a
dφ

∂f

∂xi
∂xi

∂φ

= ∫
b

a
dφ

d

dφ
(f(x(φ))) = f(x(b)) − f(x(a)). (2.57)

2.3 Metrics, connections and curvature

So far, we have no a priori notion of ”length of a tangent vector” or ”angle between
vectors”. To get those, we need some additional structure, called metric. A metric g is
a symmetric tensor field of type (0,2). In coordinates, it is given by

g = gijdxidxj (2.58)

(here, we omitted the ⊗) with gij = gji. (Note that it is not a 2-form since it is symmetric,
not anti-symmetric. For example, the Cartan derivative of a metric makes no sense.) It
provides at each point p an inner product on TpM between two tangent vectors Xp and
Yp:

⟨Xp, Yp⟩ = gp(Xp, Yp) ∶= gijX i
pY

j
p (2.59)

which again is symmetric: ⟨Xp, Yp⟩ = ⟨Yp,Xp⟩. The signature of a metric is (p, q, r)
with the constraint p + q + r = n. Here, p is the number of positive eigenvalues (with
multiplicity) of gij. Analogously, q is the number of negative and r the number of 0
eigenvalues. If r /= 0, we call the metric degenerate. In this case, it is not invertible.
Accordingly, a metric with r = 0 is called non-degenerate and its inverse metric exists.
The inverse metric g−1 is a symmetric tensor field of type (2,0) and satisfies

gijgjk = δik ; gijg
jk = δ ki . (2.60)

If p = n, the metric is positive definite, the inner product ⟨Xp,Xp⟩ is positive for all
nonzero Xp. In this case, q = r = 0 and the metric is also called a Riemannian metric.
A metric with p = 1, q = n − 1 and r = 0 is called a Lorentzian metric. Examples are

1. R3 with the standard inner product:

gij =
⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎠
= δij (2.61)
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in Cartesian coordinates.

2. R1,3 with Minkowski metric η:

ηµν =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟
⎠
. (2.62)

Here, p = 1, q = 3, r = 0.

3. M = S2 with coordinates (ϕ, θ). Then the components are given by

gϕϕ = sin2 θ; gϕθ = gθϕ = 0; gθθ = 1. (2.63)

The metric is given by

g = dθ ⊗ dθ + sin2 θdϕ⊗ ϕ = dθ2 + sin2 θdϕ2 =∶ ds2. (2.64)

One can use a non-degenerate metric to raise and lower indices. For example:

Tijk = gjj′T j′

i k
(2.65)

T ijk = g
ii′T j

i′ k. (2.66)

By the way, special relativity is a special case of the analysis on manifolds, just chose the
metric (1,−1,−1,−1) and restrict to only coordinate systems which are inertial systems.
That means that, in that case, the change of coordinates x̃µ = Λµ

ν+aµ leads to ∂x̃µ

∂xν = Λµ
ν ,

which is constant (which makes many thing easier in special relativity).

2.3.1 The covariant derivative

In Minkowski space, one can form derivatives of tensors ∂T . If T has e.g. components
T j
i k, then ∂T has coefficients ∂lT

j
i k. This is quite important, e.g. for formulating physical

laws like the conservation law in electrodynamics ∂µjµ = 0. On general manifolds, this
doesn’t work so easily any more.

Assume we have a vector field X which in one coordinate system has the components
X i, and in another {x̃i} the components X̃ i. If we form the derivatives in both coordinate
systems, i.e. ∂X i/∂xj and ∂X̃ i/∂x̃j, these do not form the coefficients of a tensor. To
see this, we make the transformation from one coordinate system to the other:

∂

∂x̃j
X̃ i = ∂

∂x̃j
( ∂x̃

i

∂xk
Xk)

= ∂x̃i

∂xk
∂Xk

∂x̃j
+ ∂x

m

∂x̃j
∂2x̃i

∂xm∂xk
Xk

= ∂x̃i

∂xk
∂xm

∂x̃j
( ∂

∂xm
Xk) + ∂x

m

∂x̃j
∂2x̃i

∂xm∂xk
Xk. (2.67)
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Here, we first plugged in the definition of the coordinate transformation matrix. In the
next step, we acted with the derivative operator ∂/∂x̃j according to the chain rule and
inserted ∂xm/∂xm = 1 in the second term in order to avoid ∂x̃i/∂x̃j. In the last step, we
did the same in the first term so that Xk is derived with respect to the coordinates of
the system it is defined in.
The first term of equation 2.67 is exactly how a tensor T km of rank (1,1) would trans-
form, but the second term spoils the transformation behavior. Obviously, the numbers
∂X i/∂xj do not form the coefficients of tensors. To interpret this geometrically, we ask
the question: What would the directional derivative of a vector field along a curve be?
To answer this question, consider a path γ through a vector field X. In local coordinates,
γ has the form

xi(φ) = xi(0) +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
⋮
0
φ
0
⋮
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.68)

where the jth component is non-zero. We define the point p as p = γ(0), i.e. p has
coordinates xi(0). The point q has coordinates xi(0) + φδij. We can then try to use the
usual definition of the derivative:

∂iX
i = lim

φ→0

X i(xk(0) + φδkj) −X i(xk(0))
φ

. (2.69)

But X i(xk(0)+φδkj) and X i(xk(0)) are (coefficients of) vectors from different tangent
spaces TpM and TqM . It makes no sense to subtract them. To define a useful notion of a
directional derivative, we need a notion of parallel transport: First, we transport the
vector Xq ∈ TqM to TpM ”without changing its direction”. Then, we can subtract Xp and
form the limit. The mathematical structure needed to define this is called connection.
A general connection is defined by its Christoffel symbols. Having a non-degenerate
metric (no matter what the signature is) allows for a special one, called Levi-Civita
connection, which we will construct now.

We first try to get some geometrical intuition by considering a simple example: A 2d
surface in R3, which is given by a function f(x, y) = z. This surface is a manifold M .
The standard coordinates on M are x1 = x,x2 = y.

Now, from a point q with tangent space TqM , we move the vector Xq ∈ TqM to p

and denote it by X̂p. In general, X̂p will not be an element of TpM . Because of that,

we project X̂p to TpM and denote it by X̃p. Note that we use the ambient R3 for that
construction.

The embedding of M in R3 provides a metric g on M , simply because every vector
tangent to M can be viewed as a vector in R3, and that has a standard notion of length.
Because of this, g is also called the induced metric.
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Figure 2.8: The naive way of defining the derivative of a vector field X in the direction
of Y would be to form a difference quotient between X i(x) and X i(x+ εY ),
dividing by ε and taking the limit of ε→ 0. But thie is problematic, since the
two vectors at different points are living in different vector spaces, so they
cannot be added or subtracted from one another.

Figure 2.9: We first consider a 2d manifold embedded in R3, which is given by the
equation z = f(x, y). This manifold automatically inherits an induced metric
from the ambient R3.

Let’s construct the basis vector fields. The point p has coordinates x1, x2. Then

∂

∂x1
∣
p

= d

dφ
∣
φ=0

⎛
⎜
⎝

x1 + φ
x2

f(x1 + φ,x2)

⎞
⎟
⎠
=
⎛
⎜
⎝

1
0

∂f
∂x1 (x1, x2)

⎞
⎟
⎠

(2.70)

∂

∂x2
∣
p

=
⎛
⎜
⎝

0
1

∂f
∂x2 (x1, x2)

⎞
⎟
⎠
. (2.71)
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Figure 2.10: To define parallel transport of a vector Xq to a vector X̃p, we first translate

Xq to X̂p at p, which might not be in TpM any more. We then project it
to TpM , calling the result X̃p.

For derivatives, we introduce the notation

f,i ∶=
∂f

∂xi
, f,ij ∶=

∂2f

∂xi∂xj
. (2.72)

The induced metric on M on coordinates x1, x2 is

gij = ⟨ ∂

∂xi
,
∂

∂xj
⟩ = δij + f,if,j =

⎛
⎝

1 + ( ∂f
∂x1

)2 ∂f
∂x1

∂f
∂x2

∂f
∂x1

∂f
∂x2 1 + ( ∂f

∂x2
)2

⎞
⎠
. (2.73)

The derivatives 2.70 and 2.71 are the basis of the tangent space TpM . The basis of the
tangent space TqM is constructed analogously, so that the vector in q and its parallel
transported version on p can be written as

Xq =X i
q

∂

∂xi
∣
q

(2.74)

X̃p = X̃ i
p

∂

∂xi
∣
p

. (2.75)

If we have these, how do we get X̃ i
p? We use equations 2.70 and 2.71 to write

Xq =X i
q (

ei
f,i(xk + φδkj)

) (2.76)

where xk = (x1, x2) are the coordinates of p, e1 = (1,0)t and e2 = (0,1)t. The coordinates
of q are xk + φδkj. We also write

X̃p = X̃ i
p (

ei
f,i(xk)

) . (2.77)

The projected vector is

X̂p =X i
q (

ei
f,i(xk + φδkj)

) . (2.78)
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This is just a translation in R3, it doesn’t change the components of 3-vectors. The
scalar product of X̂p with the basis vectors is

gijX̃
j
p = ⟨X̂p,

∂

∂xi
∣
p

⟩

=Xk
q ( ek
f,k(xl + φδlj)

)( ei
f,i(xl)

)

=Xk
q (δik + f,i(xi)f,k(xl + φδlj))

=Xk
q (δik + f,i(f,k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
gik

+φf,jk +O(φ2)))

= gikXk
q + φf,if,jkXk

q +O(φ2). (2.79)

In the fourth line, we expand f,k(xl + φδlj) into a Taylor expansion in φ to first order.
We then calculate

gij,k =
∂

∂xk
(δij + f,if,j) = f,if,jk + f,ikf,j (2.80)

which leads us to

gij,k + gik,j − gjk,i = f,if,jk + f,jf,ik + f,kf,ij + f,if,jk − f,kf,ij − f,jf,ik
= 2f,if,jk. (2.81)

Plugging this into equation 2.79 (multiplied with the inverse metric gil) yields

X̃ i
p =X i

q + φXk
q

1

2
gil(gil,k + gkl,j − gik,l)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Γi

jk

+O(φ2). (2.82)

With this, we define the directional derivative in j-direction as

(∇jX)i = lim
φ→0

X̃ i
p −X i

p

φ

= lim
φ→0

(
X i
q −X i

p

φ
+ ΓijkX

k
q +O(φ)) . (2.83)

If we then take the limit of this with q = p, we get the covariant derivative

(∇jX)i = ∂jX i + ΓijkX
k. (2.84)

It depends on the metric via Christoffel symbols Γijk. While the derivation was specific
to 2d surfaces on R3, equation 2.84 depends only on the metric. We take this as a guess for
a derivative on arbitrary manifolds. Let M be a general manifold with a non-degenerate
metric g, and X a vector field. In xi coordinates, we write the Christoffel symbols as

Γijk =
1

2
gim(gmj,k + gmk,j − gjk,m). (2.85)
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We change to other coordinates x̃i:

Γ̃ijk =
1

2
g̃im(g̃mj,k + g̃mk,j − g̃jk,m). (2.86)

Look at how gij,k transforms:

g̃mj,k =
∂g̃mj
∂x̃k

= ∂x
k′

∂x̃k
∂

∂xk′
(∂x

m′

∂x̃m
∂xj

′

∂x̃j
gm′j′)

= ∂x
k′

∂x̃k
∂xm

′

∂x̃m
∂xj

′

∂x̃j
gm′j′,k′ + gm′j′

∂2xm
′

∂x̃m∂x̃k
∂xj

′

∂x̃j
+ gm′j′

∂2xj
′

∂x̃j∂x̃k
∂xm

′

∂x̃m
. (2.87)

In the first line, we just write out g̃mj,k. In the second line, we transformed both the
derivative and the metric according to tensor transformation laws. In the next line, we
carried out the derivative with respect to xk

′

using the chain rule. Using this, we get

Γ̃ijm = ∂x̃i

∂xi′
∂xj

′

∂x̃j
∂xm

′

∂x̃m
Γi

′

j′m′ +
∂x̃i

∂xi′
∂2xi

′

∂x̃j∂x̃m
. (2.88)

This is not a tensor transformation as is obvious from the additional term. Transforming
equation 2.84 however yields

∇̃iX̃
j = ∂iX̃j + Γ̃jikX̃

k

= ∂X̃
j

∂x̃i
+ Γ̃jikX̃

k

= ∂x̃j

∂xj′
∂xi

′

∂x̃i
(∂i′Xj′ + Γj

′

i′k′X
k′) + ( ∂x̃

j

∂xj′
∂2xj

′

∂x̃i∂x̃k
Xk + ∂

∂xk′
( ∂x̃

j

∂xl′
)X l′ ∂x

k′

∂x̃i
)

= ∂x̃j

∂xj′
∂xi

′

∂x̃i
(∇i′X

j′) +Xk′ ∂

∂xk′
( ∂x̃

j

∂xj′
∂xj

′

∂x̃i
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=δji

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

= ∂x̃j

∂xj′
∂xi

′

∂x̃i
(∇i′X

j′). (2.89)

Here, we again just put in the definition in the first line and spelled out the derivative
in the second line. In the third line, we transformed X̃j, the partial derivative and Γ̃jik
according to equation 2.88 and the normal tensor transformation rules. The respective
transformations of index k cancel in the first term. The end result shows that the
covariant derivative that we defined transforms like a tensor. We see that the covariant
derivative transforms like a (1,1)-tensor.

We can also define the derivative of a vector field X in the direction of another vector
field Y , which gives us yet another vector field ∇YX with coefficients

(∇YX)i = Y j∇jX
i, (2.90)
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so
∇i ≡ ∇ ∂

∂xi
. (2.91)

One can not only form the covariant derivative of vector fields, but of arbitrary tensor
fields. For this, one wants the product rule to hold, i.e.

∇X(T ⊗ S) = (∇XT )⊗ S + T ⊗ (∇XS) (2.92)

for two tensor fields T,S. Also, the covariant derivative of a function is identical to the
partial derivative:

∇kf = ∂kf. (2.93)

One can show that the only way to do this is to define the covariant derivative of a
(r, s)-tensors to be a (r, s + 1)-tensor with components

∇kT
j1...jr

i1...is
= ∂kT j1...jr

i1...is
+ Γj1kmT

mj2...jr
i1...is

+ ... + ΓjrkmT
j1...jr−1m

i1...is
(2.94)

− Γmki1T
j1...jr

mi2...is
− ... − ΓmkisT

j1...jr
i1...is−1m

. (2.95)

With this definition, one has that for functions f and vector fields X,Y , and tensor
fields T and S of the same type:

∇fXT = f(∇XT ) (2.96)

∇X(T + S) = ∇XT +∇XS (2.97)

∇X+Y T = ∇XT +∇Y T. (2.98)

A vector field X is called covariantly constant along a curve γ, if ∇ dγ
dφ
X = 0 for

all φ. In coordinates, γ is given by φ↦ xi(φ), so we have

0 = ∇ dxi

dφ
∂

∂xi
Xj

= ∂x
i

∂φ
∇iX

j

= dx
i

dφ

∂Xj

∂xi
+ Γjik

dxi

dφ
Xk

which leads us to

dXj

dφ
+ Γjik

dxi

dφ
Xk = 0. (2.99)

This is an ordinary differential equation for the coefficients X i(xj(φ)). Note that it
is a differential equation that one can write down not only for vector fields which are
defined everywhere, but also for vector fields which are only defined along the curve.
For instance, given a curve φ ↦ γ(φ), in local coordinates φ ↦ xi(φ), and a function
φ↦X(φ), where each X(φ) is a tangent vector in Tγ(φ)M . So we have a vector for each
φ. The covariant derivative of X along the curve γ is then denoted by

D

dφ
X i = dX i

dφ
+ Γijk

dxj

dφ
Xk. (2.100)
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Sometimes, people also write ∇
dφ instead of D

dφ . If D
dφX = 0, then the vector X is said to

be parallely transported along the curve γ. Note that this is a first order differential
equation for the X i(φ). So, if an initial condition X i(0) is given, as well as a curve,
then a unique solution exists – which is the result of parallely transporting the initial
vector along the curve.

2.3.2 Geodesics

On a manifold M with non-degenerate metric g, one can measure the ”length” of curves
γ. We have to distinguish different metrics:

� Riemannian metrics: For all γ with φ↦ xi(φ), the length is given by

l(γ) = ∫ dφ
√
gijẋiẋj (2.101)

where ẋi ∶= dxi/dφ.

� Lorentzian metric, time-like curves: Then gijẋiẋj > 0 and

l(γ) = ∫ dφ
√
gijẋiẋj. (2.102)

� Lorentzian metric, space-like curves: Then gijẋiẋj < 0 and

l(γ) = −∫ dφ
√
−gijẋiẋj. (2.103)

� Lorentzian metric, light-like curves: gijẋiẋj = 0 and

l(γ) = 0. (2.104)

Consider two points p and q in M , with a Riemannian metric. The ”distance” between
them is d(p, q) = infγ∶p→q l(γ) 2 For Lorentzian metrics and timelike curves, we define
d(p, q) = supγ∶p→q l(γ). Unfortunately, it becomes a bit tricky if one wants to define for
space-like separated points, which is why one usually does not do that.

A curve between p and q such that l(γ) is stationary (i.e. does not change under small
changes of γ) is called a geodesic. In particular, if there is a curve such that l(γ) =
d(p, q), then that γ is a geodesic. Consider a curve in local coordinates φ↦ xi(φ) and let
this curve be parameterized by the arc length (Riemannian: curve length; Lorentzian,
time-like: proper time). This means that

gijẋ
iẋj = 1 (2.105)

2Here we have to take the infimum instead of the minimum because, the minimum may not exist, for
example consider the case of M = R2/(0,0), the plane without the origin. Two points on the real
axis on either side of the origin have no direct line between them, without leaving M . That way, all
curves between them must go through the plane, and can only approach the minimal length.
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Figure 2.11: We consider a small variation δxi of a path φ→ xi(φ).

Consider a small deviation from a curve: φ ↦ xi(φ) + εδxi(φ). This other curve is not
necessarily parameterized by arc length. We demand δxi to vanish at the end points.
The condition for xi(φ) to be a geodesic is

d

dε
l(xi + εδxi)∣ε=0 = 0 for all variations δxi. (2.106)

This means

0 = d

dε
∣
ε=0
∫ dφ

√
gij(x + εδx)

d

dφ
(xi + εδxi) d

dφ
(xj + εδxj)

= ∫ dφ
1

2
√
gij(x) d

dφx
i d
dφx

j
(gij,k δxk ẋi ẋj + 2gijδẋ

iẋj)

⇔ 0 = ∫ dφ(gij,kδxkẋiẋj + 2gijδẋ
iẋj). (2.107)

The square root in the fraction is +1, due to parameterization. Use partial integration
and δxi = 0 at the end points:

0 = ∫ dφ(gij,kδxkẋiẋj − 2δxi
d

dφ
(gijẋj))

= ∫ dφδxk(gij,kẋiẋj − 2gkj,iẋ
iẋj − 2gik,jẍ

j). (2.108)

The expression in brackets has to vanish:

0 = gij,kẋiẋj − 2gkj,iẋ
iẋj − 2gik,jẍ

j (2.109)

⇔ 0 = ẍi + 1

2
gim(gmj,k + gmk,j − gjk,m)ẋjẋk. (2.110)

This gives us

ẍi + Γijkẋ
jẋk = 0. (2.111)

This is the defining equation of motion for a geodesic. For Lorentzian metrics and time-
like curves, these are the equations of motion for a freely falling observer. Note that,
in the case of Lorentzian metrics, we have only defined this so far for time-like curves.
However, the differential equation can be used for either of the cases of time-like, space-
like or light-like. The derivation for the other two cases are completely analogous, and
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lead to the same differential equation (2.111). Note that (2.111) is a ordinary differential
equation for the xi(φ) of second order. So, for there to be a unique solution, one needs
an initial position xi(0) and initial velocity ẋi(0).

In Minkowski space, we have already seen that freely falling observers move along
geodesics (which are just straight lines in that case). Here we have also seen that
geodesics in general are those curves in which the length of the curve is stationary. In-
deed, the “dawdling principle” (in German: “Trödelprinzip”) states that an observer
always moves from one event to the other so that they take the maximal time.

2.3.3 Parallel transport

On a general manifold M with non-degenerate metric g, we can use the Christoffel
symbols to define a notion of parallel transport. (Note that our previous procedure
relied on surfaces being embedded in R3). Parallel transport of a vector Xq (from the
tangent space TqM of a point q) along a curve is the solution to the ordinary differential
equation 2.99 with the initial condition X i(φ = 0) =X i

q. Having an ordinary differential
equation and coefficients that are all smooth means that there is a unique solution.

Figure 2.12: The covariant derivative allows the notion of parallel transport fo vectors
along curves. A vector X i(φ) is parallely transported along a curve, if
DX i/dφ = 0.

The result of the parallel transport at p depends on which path one takes from q to
p. For example, imagine we want to parallel transport a vector from the tangent space
at the north pole of a sphere to the point on the equator ”in the direction the vector
points”. If we take the shortest path, the vector will point directly ”downwards”. If we
start with a path perpendicular to the first one, transport the vector to the equator and
then move it along the equator to p, it will be perpendicular to the vector we got from
the first path.

The Christoffel symbols define a notion of being covariantly constant and of par-
allel transport. We have already looked at the Levi-Civita connection with coefficients
Γklm = 1/2gkj(gjl,m + gjm,l − glm,j). But any other choice of Christoffel symbols defines a
connection, they just have to transform like

Γ̃klm = ∂x̃k

∂xk′
∂xl

′

∂x̃l
∂xm

′

∂x̃m
Γk

′

l′m′ +
∂x̃k

∂xm′

∂2xm
′

∂x̃l∂x̃m
. (2.112)
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Figure 2.13: Parallely transporting a vector from a point p to a point q can yield different
results, depending on which way one has chosen.

To define some other connection, simply chose some Γklm in one coordinate system. The

Γ̃klm in other coordinate systems are then uniquely determined by equation 2.112. Still,
the Levi-Civita connection is special: It is, for a given metric, the only one with the
following two properties:

∇kgij = 0 (2.113)

and a connection which satisfies (2.113) is called metric compatible. This ensures
that for a connection and a metric geodesics stationarize the length of a curve. The
other property is

Γklm = Γkml, (2.114)

and a connection which satisfies (2.114) is called torsion-free. In the following, we
show this. Let g be a non-degenerate metric and Γklm the Christoffel symbols of any
connection satisfying equations 2.113 and 2.114. Then, because of the way in which the
covariant derivative acts on tensors fields (2.94), we have that

0 = ∇kglm = ∂kglm − Γpklgpm − Γpkmglp. (2.115)

Similarly, by renaming the indices, we get

0 = ∇lgkm = ∂lgkm − Γplkgpm − Γplmgkp (2.116)

0 = ∇mgkl = ∂mgkl − Γpmkgpl − Γpmlgkp. (2.117)

Now, we use equation 2.114 to calculate 2.115 − 2.116 + 2.117:

− 2Γpmkgpl + ∂kglm − ∂lgmk + ∂mgkl = 0. (2.118)
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Rearranging and multiplying with gpl from the left, we get

Γpmk =
1

2
gpl(glm,k + glk,m − gmk,l), (2.119)

which is the familiar expression of the Levi-Civita connection, which means that it is the
only connection we get when assuming equations 2.113 (metric-compatible) and 2.114
(torsion-free).

2.3.4 Geometric interpretation of torsion

A connection corresponds to a ”geometry” on a manifold, it relates different parts of
the manifold and defines what they look like with respect to each other. A connection
with torsion (Γklm /= Γkml) describes a geometry in which parallelograms do not close.
Imagine three points P,Q,R with coordinates P ∶ xi, Q ∶ xi + εi, R ∶ xi + δi (εi and δi are
translations). Accordingly, we call the vector from P to R δ and the one from P to Q
ε. Now, we parallel transport δ to Q along ε and call the resulting vector Y , and ε to R
along δ where we call the resulting vector X. The vectors X and Y don’t point to the
same point as they do for a torsion-free connection.

Figure 2.14: For a connection with torsion, small parallelograms, whose sides are given
by the vectors ε, δ, X, and Y , do not close.

We denote their difference by Z. If Z = εiδj... +O(ε3, ε2δ, δ2ε, δ3), i.e.

lim
∣ε∣→0

∣δ∣→0

Z

∣ε∣ ∣δ∣
/= 0, (2.120)

then the connection is said to have torsion. The curve from P to R is given by xi(φ) =
xi + φδi with 0 ≤ φ ≤ 1. Let Xk(φ) be the solution to the geodesic equation

Ẋk(φ) = −Γkmlδ
mX l(φ) (2.121)

with the initial condition Xk(0) = εk. Now we assume that the components of δ are
small: ∣δm∣ ≪ 1 (i.e. the Γkml don’t vary much between P and R). We can then Taylor
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expand the Christoffel symbols to obtain

Ẋk(φ) = −Γklm(φ = 0)Xmδl − φΓklm(φ = 0)δnXmδl + ...
= −Γklm(φ = 0)Xmδl +O(δ2). (2.122)

From the initial condition, when integrating we obtain

Xk(φ) = −ΓklmX
m(0)δlφ + εk +O(δ2). (2.123)

We then get at the end of the curve

Xk =Xk(φ = 1)
= −Γklmε

mδl + εk +O(δ2)
= (δkm − δlΓklm)em +O(δ2). (2.124)

Similarly, we obtain
Y k = Y k(φ = 1) = δk − εlδmΓklm +O(ε2) (2.125)

and

Zk = −Y k − εk + δk +Xk

= δlεm(Γklm − Γkml) +O(ε2, δ2)
=∶ δlεmT klm (2.126)

where we introduce the torsion tensor T klm.
We get from a specific parallelogram to more general ones by looking at vector fields
X,Y . Then

Z = T (X,Y ) ∶= ∇XY −∇YX − [X,Y ] (2.127)

and in coordinates
Zk = T klmX lY m. (2.128)

The torsion tensor is the anti-symmetric part of the connection: T klm = −T kml. The
components of the torsion tensor are given by

T kij = Γkij − Γkji. (2.129)

An example of a connection with torsion is the “loxodromic connection” on S2/{N,S},
N and S being the north and south pole, respectively. The connection is defined by
its parallel transport: A vector is parallel transported when the norm of the vector (as
measured in the standard metric ds2 = dθ2 + sin2 θdφ2) is constant and when the angle
between the vector and the meridians is constant.

So we know the solution to parallel transport which means we can compute Γklm
with k, l,m = φ, θ. Consider parallel transport of vectors along meridians and circles of
latitude. First, we look at circles of latitude. Then

Ẋθ = −ΓθφθX
θ − ΓθφφX

φ (2.130)

Ẋφ = −ΓφφθX
θ − ΓφφφX

φ. (2.131)
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Figure 2.15: Parallel transport on S2 with the loxodromic connection: if a vector points
towards north, the parallely transported one also does.

In the following, we look at different solutions to the equations of parallel transport:
If we consider Xφ(λ) = 1, Xθ(λ) = 0, then obviously Γθφφ = 0, Γφφφ = 0.

In the case of Xφ(λ) = 0, Xθ(λ) = 1 (the vector points to the north pole), then Γθφθ = 0,

Γφφθ = 0.
Along a meridian, the equations of motion take the form

Ẋθ = −ΓθθθX
θ − ΓθθφX

φ (2.132)

Ẋφ = −ΓφθθX
θ − ΓφθφX

φ. (2.133)

The solutions to parallel transport in this case are as follows:
For Xθ(λ) = 1, Xφ(λ) = 0 (the vector points to the south pole), we get Γφθθ = 0, Γθθθ = 0.
In the case of Xθ(λ) = 0, Xφ(λ) = 1/ sin θ(λ), with a curve θ(λ) = λ, λ ∈ (λ0, λ1), we
have

0 = ΓφθθX
θ − Γθθφ

°
=0

Xφ (2.134)

and

Ẋφ = d

dλ

1

sinλ
= − cosλ

sin2 λ
= −Γφθφ

1

sinλ
, (2.135)

from which we get that Γφθφ(λ) = −cotλ.

So we can say that the only non-zero Christoffel symbol is Γφθφ(λ) = −cotλ /= Γφφθ = 0, so
we have torsion!

In particular, different circles of latitude are parallel to each other with respect to
the loxodromic connection (They aren’t with respect to the Levi-Civita connection).
Geodesics are called “loxodromes”.

2.3.5 Curvature

In general, curvature (just like torsion) is a property of the connection. One can compute
the curvature of any connection, but we will mostly have the Levi-Civita connection in
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Figure 2.16: In the loxodromic connection, all meridians are parallel to one another. So
closing parallelograms can have different lengths on opposing sides.

Figure 2.17: Geodesics on S2 with the loxodromic connection are the loxodromes, which
are no geodesics with respect to the Levi-Civita connection.

mind. Since that is determined by a non-degenerate metric g, its curvature can be
regarded as a property of the metric.
Curvature means that covariant derivatives in different directions do not commute. This
information is stored in the Riemannian curvature tensor, which is defined by

(∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z)k =∶ Rk
lmnZ

lXmY n. (2.136)

For a geometric interpretation of Rk
lmn, consider two short paths between two points P

and Q on a manifold. We chose one path to be along a small vector ε from P to a point
R, then along another small vector δ to the point Q and the other path to be along δ to
a point S first and then along ε to Q so that the two paths span a parallelogram. Now,
we parallel transport a vector XP from P to Q along both of these paths. We denote
the vector obtained by parallel transport via R by X(P→R→Q) and analogously via S by
X(P→S→Q).

Let P have the coordinates xi. Then R has coordinates xi + εi and the curve is
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Figure 2.18: Parallely transporting a vector XP to a point Q via two different interme-
diate points, R or S, can lead to different results.

xi(φ) = xi + φεi with 0 ≤ φ ≤ 1. We write the equation for parallel transport:

0 = Ẋk + εlΓklmXm

⇒ Ẋk(φ) = −εlΓklm(φ)Xm(φ)
= −εl (Γklm(0) + εp∂pΓklm(0)φ) (Xm(0) + εp∂pXm(0)φ) +O(ε3)
= −εl (Γklm(0) + εp∂pΓklm(0)φ) (Xm(0) − εpΓmpfXf(0)φ) +O(ε3)
= −εlΓklmXm(0) + φεlεp (Γklf(0)Γfpm(0) − ∂pΓklm(0))Xm(0) +O(ε3) (2.137)

where we carried out Taylor expansions in ε. The result is a very easy ordinary differential
equation with initial condition Xk(φ = 0) =Xk

P . The solution at φ = 1 is

Xk
R =Xk(φ = 1)

= (δkm − εlΓklm + 1

2
εlεp (ΓklfΓ

f
pm − ∂pΓklm))Xm

P +O(ε3). (2.138)

Then we get the expression

Xk
(P→R→Q) = (δkm − δlΓklm(R) + 1

2
δlδp (Γklf(R)Γfpm(R) − ∂pΓklm(R)))Xm

R . (2.139)

Here, all Christoffel symbols are the ones at R since R is the initial point of our curve.
They are given by

Γklm(R) = Γklm(P ) + εp∂pΓklm +O(ε2). (2.140)

Then we can write

Xk
(P→R→Q) = (δkm − εlΓklm + 1

2
(ΓklfΓ

f
pm − ∂pΓklm) εlεp − δlΓklm + δlεpΓklfΓfpm

− δlεp∂pΓkfm + 1

2
(ΓklfΓ

f
pm − ∂pΓklm) δlδp)Xm

P +O(ε3, ε2δ, εδ2, δ3). (2.141)
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For Xk
(P→S→Q), we obtain the same expression with ε and δ exchanged. The difference

between the parallel transported vectors is

Xk
(P→R→Q) −Xk

(P→S→Q) = (∂pΓklm − ∂lΓkpm + ΓkpfΓ
f
lm − ΓklfΓ

f
pm) δpεlXm

P +O(ε3, ε2δ, εδ2, δ3)
=∶ Rk

mplδ
pεlXm

P +O(ε3, ε2δ, εδ2, δ3) (2.142)

where we find the coefficients Rk
mpl of the so called Riemann curvature tensor. It

describes the (local) path-dependence of parallel transport, so it is a map TPM → TPM .
Two further ”curvatures” are the Ricci-tensor which is obtained by contracting two
indices of the Riemann curvature tensor:

Rkl ∶= Rm
kml (2.143)

And the Ricci-scalar which can be written as

R ∶= gmnRmn. (2.144)

A connection such that Rk
lmn = 0 is called flat. Parallel transport with respect to a

flat connection does not change under a continuous change of the curve, so the result-
ing vector is independent of the path taken most of the times. Actually, this is only
true for paths that can be continuously transformed into one another, e.g. if there is
a hole in the manifold that lies between two paths in such a way that one cannot be
transformed into the other continuously. In mathematics, these paths are called ”not
homotopy equivalent”.
Also note that Γklm = 0 impliesRk

lmn = 0, but not the other way round (see e.g. Minkowski
space in Rindler coordinates). Since Rk

lmn is a tensor, it is zero in all coordinate systems
if it is zero in one. The Christoffel symbols are not tensors, so they can be zero in some,
but not all coordinate systems.
There are different conventions for the Riemann curvature tensor from different au-
thors, related to ours as follows: Rm

nkl = R(Wald) m
kln = R(Wikipedia)m

nkl = R(Fließbach)m
nlk =

−R(Fließbach)m
nkl.

2.3.6 Symmetries of the Riemann curvature tensor

Here, we will talk about the Riemann curvature tensor of a Levi-Civita connection. We
define

Rklmn ∶= gksRs
lmn, (2.145)

a (0,4) tensor that contains the same information as the Riemann curvature tensor, just
that we lowered the first index. We write down

Rklmn = gks(∂mΓsnl − ∂nΓsml + ΓsmtΓ
t
nl − ΓsntΓ

t
ml). (2.146)

Using
gks(∂mΓsnl) = ∂m(gksΓsnl) − (∂mgks)Γsnl (2.147)
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(simply employing the chain rule), inserting the defining relation for the Christoffel
symbols

gksΓ
s
nl =

1

2
(gkn,l + gkl,n − gnl,k) (2.148)

and the identity
gks,m = gstΓtmk + gktΓtms, (2.149)

we first obtain

gks(∂mΓsnl) =
1

2
(gkn,lm + gkl,nm − gnl,km) − gstΓsnlΓtmk − gktΓtmsΓsnl. (2.150)

Putting this together yields

Rklmn =
1

2
(gkn,ml − gkm,nl + gml,nk − gnl,mk) + gst(ΓtnkΓsml − ΓtmkΓ

s
nl). (2.151)

From this, it is now easy to read off the symmetries:

1. Rklmn = −Rklnm (true for all connections)

2. Rklmn = −Rlkmn (corresponds to parallel transport of vectors being norm-conserving)

3. Rklmn = Rmnkl (only true for the Levi-Civita connection)

4. Rklmn +Rknlm +Rkmnl = 0⇒ Rk[lmn] = 0 (only true for the Levi-Civita connection,
also known as the first Bianchi identity).

This list of symmetries of the Riemann curvature tensor is exhaustive. That means that
if there is some tensor Tklmn satisfying 1 - 4, then there is a metric such that at some
point P in some coordinate system, Rklmn(P ) = Tklmn. This is no statement about Rklmn

at other points.

2.3.7 Independent components of Rklmn

Let the dimension of the manifold be N and the indices k, l,m,n run from 1 to N . We
can write conditions 1 to 3 as

Rklmn = R[kl][mn] (2.152)

where there is also the symmetry of exchanging the two pairs of indices. A pair [mn]
has 1, ...,N(N − 1)/2 =∶ M independent components, so R can be seen as a symmetric
M ×M matrix. For a tensor satisfying conditions 1 to 3, there are M(M + 1)/2 =
N(N − 1)/2(N(N − 1)/2 + 1)/2 = N(N − 1)(N2 − N + 2)/8 independent components.
Considering condition 4, because of 1 to 3 Rk[lmn] = R[klmn] = 0 is only a condition if all
four indices k, l,m,n are different. But if they are different, then the equation R[klmn] = 0
is independent of conditions 1 to 3. That means the number of independent components
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for a tensor satisfying conditions 1 to 4 is N(N −1)(N2−N +2)/8−(N
4
) = N2(N2−1)/12

where (N
4
) is the number of possibilities to chose four different elements out of a set of

N elements and is of course zero for N < 4. For N = 0, there are no components of
Rklmn since that is a point which can’t be curved. For N = 1 there are no components
because a straight line might be curved (for example as a circle), but that is so-called
extrinsic curvature while the Riemann curvature tensor only measures intrinsic curvature
which a line does not have. For N = 2, there is one independent component since
R1212 = R2121 = −R1221 = −R2112 and all other components are zero. Then

Rklmn ∝ gkmgln − gknglm (2.153)

(both have the same symmetries 1 to 3). Choose a non.vanishing component of Rklmn,
e.g. k = 1, l = 2,m = 1, n = 2, and then we have R1212 ∝ det g, where det g = g11g22−g12g21.
Hence

Rklmn =
1

det g
(gkmgln − gknglm)R1212. (2.154)

In two dimension, we can construct the Ricci tensor as

Rkl = gmnRmknl = gklR1212/det g (2.155)

and the Ricci scalar as

R = gmnRmn = 2R1212/det g =∶ 2k (2.156)

where k is the Gauß curvature. For N = 3, there are already six independent compo-
nents, for N = 4 there are 20 and so on.
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3 General Relativity

After 1905, relativistic physics had gained lots of credibility. It explained the negative
results of the Michelson-Morley experiment and fit together perfectly with electromag-
netism where Newtonian mechanics did not. On a mathematical level, the Cartesian
coordinate systems, as well as the Galilei transformation which transformed between
them, had to be replaced by inertial systems in SR, which were related by Lorentz
transformations. This worked perfectly well, and the old, well-known classical mechan-
ics emerged in the limit of c→∞.

While special relativity was perfectly able to explain all electromagnetic phenomena,
the other force, gravity, was not described by it.1 The initial attempts to also formulate
the gravitational force in the language of special relativity, were not successful. One of
the reasons for this was the fact that, while the source for the electric field (the electric
charge e) was a Lorentz scalar, and therefore the same in every inertial coordinate
system, the source for the gravitational field, the inertial/gravitational mass mI , seemed

to depend on the coordinate system, as mI =m0/
√

1 − v2/c2.
Albert Einstein overcame this problem by postulating two fundamental principles, on

which he rested the development of a relativistic theory of gravity:

1. Equivalence principle: All gravitational forces are fictitious. An observer does not
feel the difference between falling freely in a gravitational field and there being no
gravity.

2. General covariance: There are no preferred coordinates. Physical laws should
be form-invariant in every coordinate system. This means that they need to be
formulated as laws between tensor fields on manifolds.

Geometrically, special relativity can also be formulated in the following way: space-
time is a 4-dimensional manifold M ≃ R4, with a Lorentzian metric η, which in an inertial
system is given by ηµν = diag(1,−1,−1,−1). Freely falling observes move along geodesics
of the Levi-Civita connection of that metric. The proper way to generalize this, Einstein
realized, was to simply allow for general Lorentzian metrics g, and treating the case g = η
as the special case in which the gravitational field is very weak.

In the following we will consider the implications of this: space-time will be given by a
4-dimensional manifold with a Lorentzian metric g. Freely falling observers move along
timelike geodesics of the Levi-Civity connection of g. Note that we assume that, in order

1At the time, only two forces were known to physicists. Strong and weak interaction would be discov-
ered much later, with the advent of quantum field theory. Note that, while some quantum effects
in and of itself were known experimentally at this point, it would only be 1925, 20 years after spe-
cial relativity, that Heisenberg and Schrödinger would formulate the fundamental laws of quantum
mechanics as we know them today.
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to move along geodesics, observers need to be point-like and do not weigh anything: they
move in the gravitational field, but do not influence it. Later we will consider how a
distribution of mass results in a specific metric.

Figure 3.1: For a geodesic γ, the FNC coordinates are such that the geodesic itself, as
well as the space-like coordinate lines are geodesics.

3.1 Fermi normal coordinates

We have seen that in Minkowski space, an inertial observer moves along a geodesic

ẍµ + Γµνρẋ
ν ẋρ = 0. (3.1)

This is true in all coordinate systems. In inertial systems, these simplify to ẍµ = 0,
because the Christoffel symbols vanish. For an inertial observer, there is one specific in-
ertial system in which the observer themself is at rest, and their world line (parametrized
in proper time) is given by s ↦ (s,0,0,0). In fact, such a coordinate system exists for
any geodesic

Now consider a general time-like geodesic γ in some spacetime with metric g. We
now construct a local coordinate system, adapted to γ (only works in a neighbourhood
around γ). Let γ be parameterized by proper time s, starting at P . At P , chose three
space-like vectors E1,E2,E3 ∈ TPM , which are all orthonormal:

g(ei, ej) = −δij (3.2)

where the minus sign appears because the vectors are space-like. They shall also be
orthogonal to the velocity vector of γ at P :

E0 ∶=
dγ

ds
∣
s=0

∈ TPM (3.3)
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with g(E0,Ei) = 0 and g(e0, e0) = 1. Then parallel transport the vectors Eµ along
the geodesic. They become a so-called frame Eµ(s) on γ. Since γ is a geodesic,
E0(s) will always be equal to the velocity vector of γ at that point, and since the
Levi-Civita connection is metric compatible, the Eµ(s) will always be orthonormal,
i.e. ⟨Eµ(s), Eν(s)⟩ = ηµν for all s. If, for a fixed µ, the four numbers Eρ

µ denote the
components of Eµ in some coordinates xµ, and the metric components w.r.t. these co-
ordinates are gµν , then one has

gρσE
ρ
µ(s)Eσ

ν (s) = ηµν . (3.4)

Figure 3.2: The basis vectors Eµ(s = 0) are parallelly transported along the whole
geodesic Eµ(s). Because of the geodesic property, nad γ is parameterized by
proper time, E0(s) is always the velocity vector of the curve.

On a point with proper time s = s0, Qs0 , define, for three numbers s1, s2, s3, the geodesic

γs0(τ) which has initial position Qs0 and initial velocity vector
dγs0
dλ ∣

λ=0
= s1E1 + s2E2 +

s3E3. Follow that geodesic until λ = 1. The point of the manifold that we ended up at
then receives the coordinates s0, s1, s2, s3.

Because geodesics might overlap at some point, or not exist for a time λ = 1, it can
happen that not every sµ gets mapped to a point in the manifold, or that points in
the manifold get assigned several different sets of coordinates sµ. These points all have
to be removed from the coordinate chart. But, one can show that at least in a small
neighbourhood around the geodesic γ, the sµ define a proper coordinate system. The sµ

are called Fermi normal coordinates.
In the FNC, the metric takes a very easy form on the geodesic: Let xµ be some other,
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Figure 3.3: The event with Fermi normal coordinates sµ is the one which can be reached
from Qs0 by a space-like geodesic with initial velocity vector siEi(s0).

arbitrary coordinates. Then a geodesic starting at Qs0 looks like this:

xµ(λ) = xµ(s0,0,0,0) + λsiEi −
1

2
λ2ΓµνρE

ν
i E

ρ
j s
isj + ... (3.5)

where xµ(s0,0,0,0) is Qs0 in xµ coordinates. The vectors have components

Eµ
i

∂

∂xµ
= Ei. (3.6)

At λ = 1, one has xµ(s0, s1, s2, s3) = xµ(s0,0,0,0) +Eµ
i s

i +O((si)2). We can write

∂xµ

∂s0
∣
si=0

= Eµ
0 (s0) +

∂Eµ
i (s0)
∂s0

si∣
si=0

+ ... = Eµ
0 (3.7)

and
∂xµ

∂si
= 0 +Eµ

i +O(si)∣si=0 = Eµ
i . (3.8)

So in the sµ coordinate system, the metric takes coefficients g̃µν , and on the geodesic (sµ

with si = 0)

g̃µν ∣si=0 =
∂xρ

∂xµ
∣
si=0

∂xσ

∂xν
∣
si=0

gρσ ∣si=0 (3.9)

with gρσ the metric in xµ coordinates. Then on the geodesic, we have

g̃µν(s0,0,0,0) = gρσeρµEσ
ν = g(Eµ,Eν) = ηµν . (3.10)
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In these coordinates, the metric on the geodesic takes the form ηµν .
Next consider the Christoffel symbols: The coordinate lines for spatial coordinates are

geodesics, i.e. y0(λ) ∶= s0 = const, yi(λ) ∶= si(λ) = λY i for some Y i are geodesics. We
can then write

0 = ÿµ + Γµνρẏ
ν ẏρ = 0 + Γµij(λ)Y iY j. (3.11)

For λ = 0 we get
Γµij(s0,0,0,0)Y iY j = 0 (3.12)

for all Y i which means that
Γµij(s0,0,0,0) = 0. (3.13)

Furthermore: Remember that the Eµ are parallel transported along the geodesic: On
the curve sµ(λ) = (λ,0,0,0)t, the vector X(λ) =XµEµ(λ) with some fixed Xµ is parallel
transported for all Xµ. That means it satisfies the equation of parallel transport

Ẋµ + Γµ0ρ(λ)Xρ = 0 (3.14)

where the index 0 appears because we move along the 0-direction. This implies that

Γµ0ρ(s0,0,0,0) = 0 (3.15)

for all µ, ρ. Then Γµνρ = 0 on the geodesic (in FNC). Since gµν,ρ = gµλΓλρν + gνλΓλµρ, all
first derivatives of g̃µν vanish on the geodesic. Directly on γ, gµν = ηµν , gµν,ρ = 0 in our
coordinate system. The FNC are a reflection of the equivalence principle: An observer
moving on a geodesic views the world locally as if he were in Minkowski space.

Note that this is true only in in the immediate surroundings of the world line of the
observer γ. This can be rather limited if the second derivatives of gµν are large (they
usually do not vanish, even in Fermi normal coordinates).

In second order, we get

gµν(s0, s1, s2, s3) = ηµν + gµν,ijsisj +O((si)3) = ηµν +ZRµiνjs
isj + ... (3.16)

with

Z =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 µ = ν = 0
2
3 µ = i, ν = 0 or µ = 0, ν = i
1
3 µ, ν /= 0.

(3.17)

For each time-like geodesic γ, one can construct coordinates sµ in a neighborhood of γ,
so that in these coordinates the metric and Christoffel symbols on γ look as if one were
in Minkowski space.
For an observer moving along γ, the Fermi normal coordinates are the most ”natural”
ones:

1. s0 corresponds to the proper time along γ.
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2. −((s1)2 + (s2)2 + (s3)2)1/2 corresponds to the proper distance to the observer.

3. Eµ = ∂/∂sµ∣γ are the coordinate axes and stay ”constant” in time (they are parallel
transported along γ).

Since in these coordinates gµν ≈ ηµν and Γµνρ ≈ 0, an observer moving along a time-like
geodesic is the ideal generalization of an ”inertial observer” to the case of curved metrics.
A time-like geodesic is equivalent to a world line of a freely falling observer (who, by
himself, is so light that he will not influence the gravitational field).

3.1.1 Curvature and tidal forces

A point-like observer (a test mass) follows a geodesic and does not feel the gravitational
field. But two observers close to each other will realize that they are accelerated relative
to one another. This is the gravitational tidal force: gravity acts differently on different
regions of an extended body.

Consider a geodesic λ↦ xµ1(s) going through point P1 at λ = 0, and another geodesic
λ↦ xµ2(λ), passing through point P2 at λ = 0 nearby (both parametrized by proper time
λ). The connecting vector having components ∆xµ = xµ2 − x

µ
1 . We assume that the two

points are close to one another, i.e. the components of ∆xµ are assumed to be small.

Figure 3.4: To compute tidal forces of the gravitational field, we consider two geodesics
which are parallel at P1 and P2, only separated by a small distance vector
∆xµ, and compute the relative acceleration of the two geodesics.

We assume that, at P1 and P2 they are parallel, i.e. they have the “same” velocity
vector. In other words, the velocity vectors

Y µ
1 ∶= dxµ1

dλ ∣λ=0
, Y µ

2 ∶= dxµ2
dλ ∣λ=0

(3.18)
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are the result of being parallel transported along ∆xµ(0) = εXµ to one another. The
curve from P1 to P2 can be written as

yµ(τ) = xµ1(λ = 0) + τ ∆xµ. (3.19)

This means that, up to quadratic order in the components ∆xµ, one can write

Y µ
2 = Y µ

1 − Γµνρ∆x
νY ρ

1 + O((∆x)2), (3.20)

where the Christoffel symbol is evaluated at P1. In the following, we will work in Fermi
normal coordinates of geodesic 1, to make life easier for us. We note that, in these
coordinates, because the Christoffel symbols vanish on the geodesic, and we get that
Y µ

2 = Y µ
1 +O((∆x)2). So the velocity vectors being parallel transports of one another is

equivalent to being at rest relative to one another (up to (∆x)2-terms, in Fermi normal
coordinates).

All of this only holds for the moment λ = 0, when both particles are at rest w.r.t one
another. From then on, the two particles will drift apart, and this is captured in the
difference of second derivatives of the respective geodesics. We define the relative velocity
vector at λ = 0 to be:

dY µ
2

dλ ∣λ=0
− dY µ

1

dλ ∣λ=0
= ẍµ2(λ = 0) − ẍµ1(λ = 0). (3.21)

In FNC, these equations become rather simple. Firstly, ẍµ1 = 0, since geodesic 1 is simply
λ ↦ (λ,0,0,0). For geodesic 2, we get that, because of the geodesic equation, at λ = 0
one has

ẍµ2 = −Γµνρ(P2)Y ν
2 Y

ρ
2 = −Γµ00(P2) = Γµ00(P1) − ∂τΓµ00(P1)∆xτ + O((∆x)2). (3.22)

Now remember that in

Rµ
00τ = ∂0Γµτ0 − ∂τΓ

µ
00 + Γµ0νΓ

ν
τ0 − ΓµτνΓ

ν
00 (3.23)

the Christoffel symbols vanish on the geodesic, so the only term remaining is Rµ
00τ =

−∂τΓµ00. Then
ẍµ2(λ = 0) = Rµ

00τ∆x
τ +O((∆sµ)2). (3.24)

Let us write ∆xµ = εXµ. To linear order in ε, the relative acceleration vector at λ = 0 is
given by

aµ ∶= lim
ε→0

ẍµ2(λ = 0) − ẍµ1(λ = 0)
ε

(3.25)

In FNC, we have seen that this vector is given by

aµ = Rµ
00τX

τ = Rµ
νστY

ν
1 Y

σ
1 X

τ . (3.26)

But this is a tensor equation! That means that if it is true in Fermi normal coordinates,
it is true in every coordinate system. So for any geodesic γ1 going through a point P1
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with velocity vector Y1, a parallel geodesic γ2 passing through a point P2 which lies
in direction εX, is turning towards a slightly different direction than γ1. The relative
acceleration, to lowest order in ε, is

ẍµ2 − ẍ
µ
1 = εR(Y,X)Y +O(ε2) (3.27)

ẍµ2(P2) − ẍµ1(P1) = εaµ +O(ε2). (3.28)

Note that neither observer 1 nor 2 feels an acceleration: They both move along a geodesic.
But they’ll realize that they’ll drift apart (or together).

Figure 3.5: We consider many freely moving observers (e.g. dust particles), in a small
box-like region.

Next, we will consider many idealized observers close to one another, e.g. light dust
particles at rest in a cube. Each of them moves along its own geodesic. Again, we use
Fermi normal coordinates. The cube gets compressed/expanded along s0 due to tidal
forces. How does the (3d-)volume of this box change over time (s0), depending on the
curvature tensor? We write

xi(s0) = xi(0) + 1

2
(s0)2Ri

00jx
j(0) +O((xi)2, (s0)3) =M i

j (s0)xj(0) (3.29)

where we define the linear map

M i
j (s0) = δij +

1

2
Ri

00j(s0)2 + .... (3.30)

We denote the volume of a cube of length 1 by ”Vol” and calculate it as

Vol(s0) = detM i
j (s0) = det(δij +

(s0)2

2
Ri

00j + ...) . (3.31)

Here, the determinants are determinants of 3× 3 matrices. We imposed the condition
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Figure 3.6: We consider the deformation of the box containing the dust, since all particles
move on geodesics. For small time steps, this will be a linear deformation of
the box, i.e. a combination of shear and compression/expansion. Note: the
particles only move under the influence of an external gravitational field, but
do not attract each other here, since they are so light.

Vol(0) = 1. The derivatives are

d

ds0
Vol(0) = 0 (3.32)

d2

ds02 Vol(0)

= Tr(−Ri
0j0)

= −
3

∑
i=1

Ri
0i0

= −Rµ
0µ0

= −R00

= −RµνY
µY ν . (3.33)

where we used that R0
000 = 0. We get the 00-component of the Ricci tensor. The Y µ

are the initial velocities of the dust particles. Apparently, the Ricci tensor contains
information about the rate of contraction/expansion of a congruence of geodesics, with
initial velocity vector Y . The development of a volume is given by

Vol(λ) = Vol(0) − 1

2
λ2RµνY

µY ν +O(λ3). (3.34)

If the Raychaudhuri scalar RµνY µY ν is bigger than zero, parallel geodesics get con-
tracted.
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3.2 Dynamics of general realtivity

3.2.1 The energy-momentum tensor

So far we have considered observers as test masses, i.e. as point-like particles of zero
mass, which are influenced by the gravitational field, but do themselves not generate
one. In fact, it is quite complicated in general relativity to consider the gravitational field
generated by a point-like source. What one can do, however, is consider the gravitational
field generated by a continuous matter distribution.

Figure 3.7: The energy-momentum tensor Tµν of a matter field in space-time describes
the relation between an observer with velocity vector Y µ, and the measured
energy / momentum flow density pµ.

In Newtonian gravity, mass density ρ is the source of the gravitational potential Φ:

∆Φ = 4πGNρ (3.35)

The gravitational force is then given by

F⃗ = −m∇⃗Φ. (3.36)

Note the similarity to electromagnetism:

4πjµ = ◻Aµ (3.37)

and
F = dA. (3.38)

We would expect something similar to happen in general relativity. Newtonian gravity
should be the non-relativistic limit of general relativity and the mass density ρ should
lead to curvature of (the Levi-Civita-connection of) gµν . But from special relativity, we
know that mass corresponds to energy, so indeed any form of energy stored in matter
(momentum, pressure, shear stress...) should lead to a curved metric. All of these are
combined in the energy-momentum tensor Tµν . This is a tensor field, which contains
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information about the various forms of energy contained in a continuous distribution of
matter. That can be a fluid, but also the electromagnetic field itself (which also counts
as matter in this context). Quantum fields also have an energy-momentum tensor, which
plays a prominent role in quantum field theory.

The content of this tensor field is as follows: An observer with the four-velocity Y µ

measures the four-momentum vector pµ of the fluid

pµ = Tµν Y ν (3.39)

One also often uses the version of the tensor where two indices have been raised, i.e.
T µν ∶= gµρgνσTρσ, and also uses the name energy-momentum tensor for that. The mean-
ing of the individual components is:

T µν =
⎛
⎜⎜⎜
⎝

T 00 T 0i

T 11 T 12 T 13

T i0 T 21 T 22 T 23

T 31 T 32 T 33

⎞
⎟⎟⎟
⎠
= T νµ (3.40)

where
T 00 = ρc2 (3.41)

is the energy density of the matter, and

T 0i = T i0 = cviρ (3.42)

the momentum density. The T ij, for i, j = 1,2,3, are the components of the stress
tensor of the fluid. This menas that the diagonal terms have an interpretation as the
pressure (hydrostatic pressure in case of a fluid, or radiation pressure in the case of the
electromagnetic field). The off-diagonal terms T ij with i ≠ j contain information about
shear deformation of the matter.
Examples:

� Perfect fluid in thermomdynamic equilibrium: Such a field can be described by the
velocity vector field uµ, which, at each point in space-time, describes the velocity
vector of a particle co-moving with the fluid (with gµνuµuν = 1). An observer at
such a point, which is at rest with respect to the fluid, measures no relative flow,
but only the energy density. The tensor has the form

T µν = (ρ + p

c2
)uµuν − gµνp (3.43)

with energy density ρ and pressure p. In the comoving observer”s frame (i.e. in
Fermi normal coordinates) the observer would measure

T µν =
⎛
⎜⎜⎜
⎝

ρc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

⎞
⎟⎟⎟
⎠
. (3.44)
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� Electromagnetic field: In Minkowski space, where the field content can e.g. be
described by the fields E⃗ and B⃗, the energy-momentum tensor is

T µν =
⎛
⎝

1
2(ε0E2 + B2

µ0
) cε0(E⃗ × B⃗)T

cε0E⃗ × B⃗ 1
2(ε0E2 + B2

µ0
)δik − ε0EiEk − 1

µ0
BiBk

⎞
⎠
. (3.45)

In a general space-time, the electromagnetic field is given in terms of the field
strength tensor Fµν , and the energy-momentum tensor can be written as

T µν = F µγF ν
γ + 1

4
gµνFρσF

ρσ (3.46)

with F µν ∶= gµρgνσFρσ.

� Klein-Gordon field: For a KG field φ(x) in Minkowski space, the energy-momentum
tensor is given by

Tµν = (∇µφ)(∇νφ) −
1

2
gµν(gαβ∇αφ∇βφ +m2φ2). (3.47)

In Fermi normal coordinates, where the velocity vector of an observer is Y µ, the con-
tinuity equation for a fluid relates the change of energy density to the gradient of the
momentum flow, i.e.

∂iT
0i = −∂0T

00 (3.48)

where on the left hand side is the change of momentum and on the right hand side the
change of energy density. Again, we compare this to electromagnetism:

∂0j
0 = −∂iji. (3.49)

Because of ∂iT 0i + ∂0T 00 = ∂µT µνYν = ∇µT µνYν , this is equivalent to

∇µT
µνYν = 0 (3.50)

for all Y . So each observer measures the divergence

∇µT
µν = 0. (3.51)

This continuity equation plays an important role in terms of energy conservation in
matter, and is satisfied by all sensible physical matter fields.

3.2.2 Connection between T µν and gµν

The energy-momentum tensor should serve as a source for the curvature of gµν . In
analogy to electromagnetism, we would want this to be some second.order derivative
operator acting on gµν being equal to T µν . There are in principle several ways to achieve
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this, and one can not derive the correct way from first principles. But there are some
good ad-hoc assumptions which lead to a useful set of equations.

Firstly, we note that, whichever equation we get, should contain Newtonian gravity in
the non-relativistic limit. Now, it is surprisingly hard to actually define the term “non-
relativistic” the proper way. For our purposes, it is enough to consider the limit of our
formulas for small velocities vi ≪ c, and slowly-varying gravitational fields, i.e. gµν,0 = 0.
We also assume that the deviations of the metric from gµν , as well as spatial derivatives
gµν,i ≪ 1 of the metric are small.

The proper velocity of an observer is

vµ = dx
µ

dx0
≈ ( 1

vi/c.) (3.52)

Obviously, vi/c≪ 1 and x0 = ct with t being the time measured by the observer. We can
expand this as

dxµ

dx0
= 1

c
ẋµ = ( c

vi
)(1 +O (v

i

c
)) (3.53)

and the second derivative as

ẍµ = 1

c2

d2xµ

dt2
(3.54)

with

d2xµ

dt2
= ai

= −Γiµν
dxµ

dt

dxν

dt

= −Γi00c
2 (1 +O (v

i

c
))

= −c
2

2
giλ(gλ0,0 + g0λ,0 − g00,λ) (1 +O (v

i

c
))

≈ c
2

2
giλg00,λ

= c
2

2
gijg00,j

= −c
2

2
g00,i. (3.55)

Since g is not time-dependent, the derivative in x0-direction g,0 vanishes. Compare this
to Newtonian physics:

a⃗ = −∇⃗Φ (3.56)

⇒ ai = −Φ,i (3.57)

⇒ ∂iΦ = c
2

2
g00,i. (3.58)

79



3 General Relativity

If Φ = 0, then g00 = 1, so for slowly varying, weak gravitational potentials Φ, the geodesics
in the metric

gµν =
⎛
⎜⎜⎜
⎝

1 + 2Φ
c2 0

−1
−1

0 −1

⎞
⎟⎟⎟
⎠

(3.59)

nearly behave as if they were to move in a gravitational potential Φ(x1, x2, x3). In our
limit, 2∂iΦ/c2 ≪ 1. The non-zero Christoffel symbols are

Γi00 =
∂iΦ

c2
; Γ0

i0 = Γ0
0i =

∂iΦ

c2
. (3.60)

The Riemann tensor is

Ri
0j0 = ∂jΓi00 − ∂0Γijλ

²
=0

+ΓijλΓ
λ
00 − Γi0λΓ

λ
j0

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
∝(∂iΦ)2/c4

=
∂i∂jΦ

c2
(1 +O(Φ2, (∂iΦ)2)). (3.61)

Similarly

R0
i0j = −

1

c2
∂i∂jΦ(1 +O(Φ2, (∂iΦ)2)). (3.62)

Then
R0

000 = 0, (3.63)

so the 00 component of the Ricci-tensor is

R00 ≈
1

c2
∆Φ (3.64)

and the space-like components

Rij ≈ −
1

c2
∂i∂jΦ. (3.65)

The Ricci-scalar is

R = g00R00 −R11 −R22 −R33 =
2

c2
∆Φ(1 +O(Φ2, (∂iΦ)2)). (3.66)

How does one emulate ∆Φ = 4πGNρ? Consider a non-relativistic fluid with T µν approx-
imately as in equation 3.44. We define

T ∶= gµνT µν ≈ ρc2 − 3p ≈ ρc2 (3.67)

as the trace. The equation

R = 8πGN

c4
T (3.68)

then becomes, in the non-relativistic limit, equal to ∆Φ = 4πGNρ, which is good. But
this equation cannot be the whole story, since not just the trace of the energy-momentum
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tensor T , but all components T µν should serve as a source for the curvature. That means
we should have an equation

Gµν = 8πGN

c4
T µν (3.69)

for some tensor Gµν with Gµνgµν = R. So Gµν = Rµν = gµµ′gνν′Rµ′ν′ would do the job,
but so would Gµν = αRµν + βgµνR with α + 4β = 1. Which one should we take?
We use the continuity equation: demand

∇µG
µν = 0 (3.70)

as a condition on α and β. To see what this implies for α and β, consider the identity

∇µR
λ
νστ +∇σR

λ
ντµ +∇τR

λ
νµσ = 0. (3.71)

This is the second Bianchi identity2. Multiplying with δσλ yields the contracted Bianchi
identities

∇µRντ +∇λR
λ
ντµ −∇τRνµ = 0. (3.72)

Multiplying further with gντgµσ gives

gµσ∇µR −∇λR
σλ −∇τR

τσ = 0. (3.73)

Using symmetry and renaming dummy indices, we obtain

gµσ∇µR = 2∇µR
µσ (3.74)

which is true for all Levi-Civita connections. Now we use this to compute

0
!= ∇µG

µν

= ∇µ(αRµν + βgµνR)
= α∇µR

µν + β(∇µg
µν)R

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+βgµν∇µR

3.74= (α + 2β)∇µR
µν . (3.75)

In general ∇µRµν /= 0, so that means α + 2β
!= 0. Together with α + 4β = 1, we obtain

α = −1; β = 1

2
. (3.76)

So we conclude that

Gµν = −Rµν + 1

2
gµνR. (3.77)

Usually, this is written as

2This equation is true for every connection, even ones different from the Levi-Civita connection. Is is
presented here without proof.
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Rµν −
1

2
gµνR = −8πGN

c4
Tµν . (3.78)

These are the famous Einstein equations where the left hand side equals (up to a
sign) to Gµν , the Einstein tensor. We define the constant factor on the right hand
side (Newton’s constant up to a factor) as κ ∶= 8πGN/c4.

Notice the similarity to electromagnetism in the equation

◻Aµ = 4πjµ (3.79)

where on the left is a second order partial differential operator and on the right hand
side a source term. In equation 3.78, Tµν is the ”source” and gµν the ”field”.

But unlike in electromagnetism, one cannot first specify T µν and then compute gµν .
The physical interpretation of T µν requires a metric (e.g.: for a perfect fluid, T µν =
(ρ+p/c2)uµuν −Pgµν). One has to solve the equations for the metric gµν and the matter
fields at the same time. Note that the Einstein equations cannot be rigorously derived.
We found them by observing that

1. they automatically lead to ∇µT µν = 0 (continuity equation for another field).

2. they lead to ∆Φ = 4πGNρ in some limit.

These are some other promising properties! In fact, there is a theorem by Lovelock
(1972) that states that Gµν is the only (0,2) tensor which

a) is formed from gµν , gµν,ρ and gµν,ρτ .

b) has vanishing divergence ∇µGµν = 0.

c) allows for the Minkowski metric as a vacuum solution to Gµν = 0.

So Gµν = −κTµν seems like a good choice. Alternative choices that sometimes are used
include

� −κTµν = Rµν − 1/2gµνR + gµνΛ with the cosmological constant Λ.

This satisfies a) and b) (∇µgµν = 0), but not c) (a space of constant curvature is a
solution).

� −κTµν = Rµν − 1/2gµνR +αRµσRσ
µ or +βRRµν or other terms added. These lead to

higher order derivatives which violate a), satisfy b) but not c), e.g. the ”Starobinski
model” which leads to inflation.

� −κTµν = Rµν − 1/2gµνR + f(T µνρ ) where the torsion T µνρ is nonzero because the
independent variables used are gµν and Γρµν , Γ = Γ(LC)(g).

But in fact, Gµν = −κTµν has been confirmed (experimentally) so far by every test in
the solar system. In particular by the following two which are not correctly predicted
by Newtonian gravity:
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1. The perihelion shift of Mercury. Mercury’s path around the sun resembles an
ellipse, but the perihelion (the closest point to the sun) and the aphelion (the
farthest point from the sun) shift with each revolution by ∆Φ. Newtonian theory
predicts a different value for ∆Φ than is actually observed (by ∼ 43′′/century).

2. The bending of light rays passing close to a massive object. Again, Newtonian
theory predicts a different value than the one observed (by a factor of 2).

Further, more modern hints are GPS, the gravitational redshift, frame dragging, gravita-
tional lensing etc. For every gravitational effect in the solar system, Einstein’s equations
are enough. On scales of more than the size of one galaxy cluster, the cosmological
constant term has to be added.

Figure 3.8: The shift ∆φ of the Perihelion (the point of the orbit closest to the central
mass) can be computed using General Relativity, or Newtonian gravity. The
computed numbers differ by about 43′′/century. The value obtained by GR
completely agrees with experiment.

Figure 3.9: The bending of light θ at a central star can be computed using General Rel-
ativity, or Newtonian gravity. The computed numbers differ by a factor of 2.
Again, the value obtained by GR (unlike that obtained by Newtonian grav-
ity) completely agrees with experiment. This was observed by the famous
experiment by Sir Arthur Eddington during a solar eclipse in 1919.

3.2.3 The Einstein equations and non-uniqueness of solutions

Consider the structure of the field equations: The fact that gµν = g(µν) (symmetric) means
there are ten independent functions (”variables per point”), so Gµν = G(µν) means that

83



3 General Relativity

Gµν = −κTµν looks like ten equations. But, for every metric one has ∇µGµν = 0 which
means there are four non-trivial relations between the ten equations. So Gµν = −κTµν
are actually only 10−4 = 6 equations. That means that the system is under-determined.
In fact, this is true for every generally covariant theory.

Einstein’s hole argument

Assume we have a solution to Gµν = −κTµν , e.g. for a star. This solution is given in a
coordinate system {xµ}. Now look at another coordinate system yµ the coordinates of
which should coincide with the xµ coordinates outside of a region R, but differ inside.
Let gµν(xσ) satisfy Gµν(g) = 0 in R. Same in yµ coordinates:

ĝµν(yτ) =
∂xµ

′

∂yµ
∂xν′

∂yν
gµ′ν′(xσ(yτ)) (3.80)

satisfies Gµν(ĝ) = 0 in R. But because they are tensor equations, Gµν(x) = 0 and
Gµν(y) = 0 are the same differential equation for g, one written with the x-variables,
one with y’s instead of x’s, ĝµν(xσ) is the metric gµν in y-coordinates, with y’s replaced
by x’s. This gives a new metric ĝ in the xµ coordinate system, ĝ /= g. They both
satisfy Gµν = −κTµν in the x-coordinate system, so specifying Tµν is not enough to
uniquely determine the solutions to gµν . The freedom lies precisely in choosing four
functions yµ(xσ). Six equations G(µν) = −κT(µν) plus four choices yµ(xσ) yields exactly
ten functions g(µν)(x).

Figure 3.10: A matter distribution is the source of the gravitational field gµν via its
energy-momentum tensor T µν

The interpretation is that the transformation gµν → ĝµν is a gauge transformation.
Just as ∂µ(dA)µν = 4πjµ does not uniquely specify Aµ in terms of jµ. The gauge
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Figure 3.11: Because GR is diffeomorphism-invariant, the metric gµν is not uniquely de-
termined by T µν . For any solution gµν , a physically equivalent solution
ĝµν can be obtained via pull-back with a diffeomorphism. Since diffeo-
morphisms act locally, the two metrics can, for instance, only differ inside
a small region where there is vacuum (a “hole”), but not where there is
matter, i.e. where T µν ≠ 0.

transformation in that case is A → A + dχ. Similarly, Gµν = −κTµν does not uniquely
determine the metric gµν , given Tµν . The gauge transformation is g → φ∗g where φ ∶
M →M is a diffeomorphism. So gµν doesn’t have a complete physical meaning and g ∼ ĝ
should be regarded as physically equivalent. They describe the same geometry.

In general, metrics g modulo diffeomorphisms g ∼ φ∗g are geometries [g] (equivalence
classes). General covariance (”background independence”) leads to a gauge symmetry
in the equations of motion for general relativity. That can make it quite difficult to
interpret solutions.

3.2.4 The Einstein-Hilbert action

For a matter field with action Smatter, the equation of motion can be derived by a
variational principle. The same is true for the Einstein equations, they lead to an action
principle. For field theories, actions are always integrals over Lagrange densities. For
integrals over spacetime, L is a function on a manifold with Lorentzian metric g. The
action is given by

S = ∫
M
dnx

√
(−1)n−1 det gL. (3.81)

It is a number independent of the chosen coordinates. Here, det g is the determinant
of the n × n matrix {gµν}nµ,ν=1. The metric having a Lorentzian metric means (in our
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convention) that it has one positive eigenvalue, all other eigenvalues are negative (an
eigenvalue equal to zero would mean that the metric is degenerate). From this follows
that det g is positive if n is odd and negative for n even.

First we show that the expression (3.81) is independent on the choice of coordinates.
Let us consider a change of coordinates (without loss of generality one global coor-

dinate chart) xµ → x̃µ. For simplicity, only look at orientation preserving changes of
coordinates. This means that the Jacobi determinant det(Jµν ) of the matrix

Jµν ∶=
∂x̃µ

∂xν
(3.82)

is positive. The Lagrangian is invariant under this change of coordinates,

L̃(x̃) = L(x). (3.83)

We also need the identities

dnx̃ = det(∂x̃
µ

∂xν
)dnx (3.84)

det g̃ = det g̃µν

= det(∂x
µ′

∂x̃µ
∂xν

′

∂x̃ν
gµ′ν′)

= (det(∂x
µ

∂x̃ν
))

2

det gµν . (3.85)

Using equations 3.83 to 3.85 we obtain

S̃ = ∫ dnx̃
√

(−1)n−1 det g̃L̃

= ∫ dnx
√

(−1)n−1 det gLdet(∂x
µ

∂x̃ν
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
det(J−1)

det
∂x̃µ

∂xν
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

det(J)

= S. (3.86)

Here, we used det(J−1) = det(J)−1.
It follows that the action (3.81), even though expressed in coordinates, is actually a

number independent on the choice of coordinate system. This is a general feature, which
has to do with the fact that the expression

√
(−1)n−1 det gdnx transforms like a density

(similar to an n-form, just without regard for orientation). All actions for field theories
on manifolds are formulated in this way. In fact, one needs a metric to define integration
of scalar functions over manifolds in a coordinate-independent way.

We now show a specific feature of energy-momentum tensors for field theories on
manifolds, the dynamics of which is given by some action Smatter. As we have seen, this
action depends on the metric gµν itself.

Smatter[φ, gµν] = ∫ d4x
√
−det gLmatter(φ, gµν). (3.87)
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A popular choice for how to construct these actions on general manifolds is minimal
coupling to gravity : Take the Lagrangian from some matter theory on Minkowski space
and replace ηµν → gµν , as well as ∂µ → ∇µ. As an example, consider the Klein-Gordon
scalar field φ. On Minkowski space, its Lagrangian is given by

LKG = ηµν(∂µφ)(∂νφ) −m2φ2. (3.88)

The minimally coupled Klein-Gordon field then looks like

L(mc)
KG = gµν(∇µφ)(∇νφ) −m2φ2 = gµν(∂µφ)(∂νφ) −m2φ2 (3.89)

since ∇µ = ∂µ for scalar fields. Actually, in this specific case, there is another popular
choice for an action of the KG field on an arbitrary Lorentzian manifold, which is the
so-called conformally coupled Klein-Gordon field:

L(cc)
KG = gµν(∂µφ)(∂νφ) − (m2 + R

6
)φ2. (3.90)

This behaves much nicer under conformal transformations gµν(x) → Ω(x)gµν(x) in the
case of m = 0.

The energy momentum tensor T µν of a theory can, in general, be computed from the
action by a variation of the metric:

gµν → gµν + εδgµν =∶ g̃µν . (3.91)

Then T µν is defined to be the coefficient under the integral of the variation:

Smatter[φ, g̃µν] = Smatter[φ, gµν + εδgµν]

= Smatter[φ, gµν] +
ε

2 ∫
d4x

√
−det gT µνmatterδgµν +O(ε2). (3.92)

In other words,

T µνmatter =
2√

−det g

δS

δgµν
. (3.93)

A different way of writing this is

T µνmatter =
2√

−det g

δ

δgµν
∫

√
−det gLd4x

= 2
∂L
∂gµν

+ 2
L√

−det g

∂
√
−det g

∂gµν
. (3.94)

For an invertible matrix valued function Mij(t), a useful formula is

d

dt
det(Mij(t)) = det(Mij(t))∑

i,j

(M−1)ij
dMij

dt
. (3.95)
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With the replacement 3.91 we obtain

∂
√
−det g

∂gµν
δgµν =

d

dε
∣
ε=0

√
−det(gµν + εδgµν)

= − 1

2
√
−det g

d

dε
∣
ε=0

det(gµν + εδgµν)

3.95= −det g

2
√
−det g

gµνδgµν . (3.96)

With this we arrive at the very useful formula

∂
√
−det g

∂gµν
= 1

2

√
−det ggµν . (3.97)

This allows us to write the energy-momentum tensor as

T µνmatter = 2
∂L
∂gµν

+Lgµν . (3.98)

The action of composed systems is the sum of the actions of each individual system:

Sgravity + matter = Sgravity + Smatter (3.99)

where Sgravity depends only on the metric while Smatter depends on both the metric and
the field. We have

δ

δgµν
Smatter =

1

2

√
−det gT µνmatter, (3.100)

so in order to get Einstein’s equations from varying Sgravity + matter with respect to gµν ,
we need to have an action Sgravity such that

δ

δgµν
Sgravity =

1

2κ

√
−det g (Rµν − 1

2
gµνR) (3.101)

because then
δ

δgµν
Sgravity + matter = 0⇔ Einstein’s equations. (3.102)

We claim that the action

Sgravity = −
1

2κ ∫
d4x

√
−det gR (3.103)

satisfies equation 3.101. In the following, we show only the main points of the derivation.
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We use the same replacement 3.91 to write

−2κSgravity = ∫
√
−det g̃R̃d4x

= ∫
√
−det(gµν + εδgµν)R[gµν + εδgµν]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶R(ε)

d4x

= ∫ d4x(
√
−det g + 6

2

√
−det ggµνδgµν +O(ε2))(R + dR̃

dε
∣
ε=0

+O(ε2))

= −2κ(Sgravity[gµν] + ε∫ d4x
√
−det g (R

2
gµν + dR̃

dε
∣
ε=0

)) +O(ε2). (3.104)

We calculate

dR̃

dε
∣
ε=0

= d

dε
∣
ε=0

⎛
⎜⎜⎜
⎝
Rµν[gµν + εδgµν]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶R̃µν

gµν[gµν + εδgµν]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=gµν−εgµσgντ δgστ+O(ε2)

⎞
⎟⎟⎟
⎠

= d

dε
∣
ε=0

(Rµν + ε
dR̃µν

dε
∣
ε=0

)(gµν − εgµσgντδgστ) +O(ε2). (3.105)

Without proof:
dR̃µν

dε
∣
ε=0

gµν = ∇µV
µ (3.106)

with
V µ ∶= ∇λδgµλ − gστ∇µδgστ ∼ ∫ d4x

√
−det g∇µV

µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∂µ(

√
−det gV µ)

. (3.107)

This is a total derivative term which means that on a manifold without boundary (and
suitable fall-off behavior of δgµν) one can neglect this term. Then we get for the action

Sgravity[gµν + εδgµν] = Sgravity[gµν] + (− ε

2κ
)∫ d4x

√
−det g (1

2
Rgµν −Rµν) δgµν +O(ε2).

(3.108)
Then

δSgravity

δgµν
= 1

2κ

√
−det g (Rµν − 1

2
gµνR) . (3.109)

We then obtain the action for general relativity which is called the Einstein-Hilbert
action:

Sgravity = −
1

2κ ∫
d4x

√
−det gR. (3.110)

There are modifications of this action which allow for the inclusion of a cosmological
constant, of higher order terms as in the Starobinsky model.
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4 Applications of General Relativity

The fundamentals of general relativity are

� Spacetime (the set of all events) is a manifold equipped with a non-degenerate
Lorentzian metric gµν which describes the geometry of spacetime.

� A freely moving/falling (only influenced by gravity) (point-like) test particle has
a world line satisfying the geodesic equation

ẍµ + Γµνρẋ
ν ẋρ = 0. (4.1)

� The matter fields and the metric satisfy Einstein’s equations

Rµν −
1

2
gµνR = −κTµν (4.2)

and the equations of motion for matter.

It is very hard to find solutions for equations 4.2 in general, even numerically, for several
reasons:

1. Equation 4.2 is a highly complicated set of non-linear, coupled partial differential
equations.

2. General covariance means spacetime diffeomorphisms are a gauge transformation
group. Every differently looking solution might actually describe the same physics.
We don’t know how many solutions to 4.2 exist, only a few examples are known.

One way of simplification is looking for solutions to 4.2 which have a large amount of
symmetry.

4.1 Killing vector fields

A vector field X is called Killing or Killing vector field (KVF) for the metric g iff

LXg = 0 (4.3)

where LX is the Lie-derivative in direction X which is defined as

(LXg)(Y,Z) =X(g(Y,Z)) − g([X,Y ], Z) − g(Y, [X,Z]) (4.4)

where
g(Y,Z) ∶= gµνY µZν . (4.5)
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That means for the components

(LXg)µν =Xλgµν,λ + gµλ∂νXλ + gλν∂µXλ. (4.6)

Assume that the vector field X is some coordinate field ∂σ. Then

(L∂σg)µν = gµν,σ = 0 (4.7)

means that ”g is constant in σ-direction”.
Instead of looking for general solutions to 4.2, it is easier to look for those with (one

or many) KVFs. This is what we will do in the following.

Figure 4.1: A static metric has a time-like KVF X and a space-like hypersurface Σ
orthogonal to it.

We call a metric stationary if there exists a time-like KVF (”time-translation sym-
metry”) that is nowhere near zero. A metric is called static if it is stationary and there
exists a space-like hyper-surface Σ orthogonal to the KVF everywhere (”time-translation
symmetry and no rotations”). An example for a stationary but not static metric involves
a vector field with an internal rotation so that it is not perpendicular to a hyper-surface
Σ in M .

In the static case, there is a nice and convenient set of coordinates X (in the near
vicinity of Σ): Pick any coordinates (x1, x2, x3) on Σ (assuming they cover all of Σ). Any
point on Σ has x0 = 0. For any other point p in the neighbourhood of Σ, follow the vector
field X until one reaches Σ at some point q. If q has coordinates (0, x1, x2, x3), then
p shall have coordinates (x0, x1, x2, x3) where x0 is the curve parameter of the integral
curve at p. This gives a coordinate chart in the vicinity of Σ, and if there are no closed

91



4 Applications of General Relativity

Figure 4.2: A stationary metric has a time-like KVF, but there might be no Σ, e.g. if X
is spiraling.

time-like curves this gives coordinates for all of M . In these coordinates, X = ∂0. The
metric in these coordinates has the form

ds2 = A(dx0)2 −Bidx
idx0 − hijdxidxj. (4.8)

Since ∂0 =X is a KVF, A,B and hij do only depend on (x1, x2, x3). We can write

A(x1, x2, x3) = gµνXµXν = ∣X ∣2 , (4.9)

independent of x0. Because ∂0 is orthogonal to ∂i on Σ, it is orthogonal to ∂i everywhere.
Because of that, Bi = 0 leading to

ds2 = A(dx0)2 − hjidxidxj. (4.10)

By similar construction, a stationary metric can be cast into the form

ds2 = A(x1, x2, x3)(dx0)2 −Bi(x1, x2, x3)dxidx0 − hij(x1, x2, x3)dxidxj (4.11)

with B /= 0. A static metric is a stationary metric which is invariant under time-reversal
x0 → −x0.

4.2 The Schwarzschild metric

The Schwarzschild metric was published by Karl Schwarzschild (not
”
Schwartz-

Child“!) in 1916. It was the first exact non-trivial solution to Einstein’s equations
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4.2 (in vacuum). It is a static metric that has spherical symmetry, meaning that there
are three space-like KVFs L1, L2, L3 satisfying [Li, Lj] = εijkLk, and the orbit of a point
under the vector fields Li is diffeomorphic to a sphere S2.

Figure 4.3: A spherically symmetric metric has three space-like KVFs Li, i = 1,2,3,
satisfying [Li, Lj] = εijkLk. At each point, the Li are tangent to a 2d sphere.
In other words, at each point, the Li are linearly dependent!

All Li are orthogonal to X (time-like) and should describe the exterior field of a
spherically symmetric matter distribution. With this information, one can derive the
Schwarzschild solution. Because of staticity and rotational symmetry, the space-like
hyper-surface Σ foliates into spheres that never overlap, so they are all located inside
of each other (think of a Russian Matryoshka doll). On each of these spheres, the
induced metric necessarily is proportional to dθ2 + sin2 θdϕ2, because that is the only
rotationally invariant metric on S2. We call this proportionality factor r2, and take
t, θ,ϕ as coordinates so that each of the spheres equals a set of points with constant r.
The metric is of the form

ds2 = A(dx0)2 −Cdr2 − r2(dθ2 + sin2 θdφ2). (4.12)

Because of rotational symmetry, A,C can only depend on r, not on θ, φ. Careful: We
have chosen r such that the area of a sphere with constant coordinate r is given by 4πr2,
but r is not a radius in a geometrical sense.

Now determine A(r),C(r) by using Einstein’s equations in vacuum. From the metric

gµν =
⎛
⎜⎜⎜
⎝

A(r)
−C(r)

−r2

−r2 sin2 θ

⎞
⎟⎟⎟
⎠
, (4.13)
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we obtain the Christoffel symbols

Γ0
r0 = Γ0

0r =
A′

2A
, Γr00 =

A′

2C
(4.14)

Γrrr = C ′

2C
, Γθrθ = Γθθr =

1

r
(4.15)

Γrθθ = − r
C
, Γrφφ = −

r sin2 θ

C
(4.16)

Γφrφ = Γφφr =
1

r
, Γφθφ = Γφφθ = cot θ (4.17)

Γθφφ = − sin θ cos θ. (4.18)

All other Christoffel Symbols are zero. The dash denotes the derivative with respect to
r. The Ricci tensor is diagonal with

R00 = −A
′′

2C
+ A′

4C
(C

′

C
+ A

′

A
) − A′

rC
(4.19)

Rrr = A′′

2A
− A′

4A
(C

′

C
+ A

′

A
) − C ′

rC
(4.20)

Rθθ = −1 − r

2C
(C

′

C
− A

′

A
) + 1

C
(4.21)

Rφφ = Rθθ sin2 θ. (4.22)

Einstein’s equation in a vacuum can be written as Rµν = 0, so

0 = R00

A
+ Rrr

C
= − 1

rC
(A

′

A
+ C

′

C
) (4.23)

which implies
A′

A
+ C

′

C
= 0. (4.24)

By noticing that this is
d

dr
(ln(AC)) = 0 (4.25)

we can conclude
AC = const = 1, (4.26)

obtaining

A(r) = 1

C(r)
. (4.27)

From
0 = Rθθ = −1 + rA′ +A (4.28)

we conclude that
d

dr
(rA) = 1 (4.29)

94



4 Applications of General Relativity

which one can integrate to
rA = r + const. (4.30)

We call this constant of integration −rS, and obtain

A = 1 − rS
r
= C−1. (4.31)

With this, we can write finally write down the metric:

ds2 = (1 − rS
r
) (dx0)2 − 1

1− rS
r

dr2 − r2(dθ2 + sin2 θdφ2) (4.32)

Here, rS is a free parameter called Schwarzschild radius.1 The Schwarzschild metric
(4.32) describes the exterior of a spherically symmetric matter distribution, and by its
formula one can see that it is only defined for 0 < r ≠ rS. In fact, we will always assume
r > rS.

We attempt to interpret rS by comparison with Newton’s law of gravity. The world
line of an observer who keeps a constant distance to the central mass, i.e. who has
constant r, is

x0
obs(s) =

1√
1 − rS/r

s (4.33)

with r > rS. Note that this world line is parametrized by proper time! At some time s
the observer lets go of an object which then obeys the geodesics equation

ẍµ + Γµνρẋ
ν ẋρ = 0. (4.34)

We calculate
d2r

ds2
= −Γr00 (

dx0

ds
)

2

= 1

2
grrg00,r

1

1 − rS/r
= − rS

2r2
. (4.35)

This is only true in the instant of the let-go and comes from the initial condition that
first derivatives vanish. For the outside (large r), we expect space-time to have almost
no curvature, so r has the interpretation of a radius in Newtonian physics. In Newtonian
physics the dropped object would undergo an acceleration (with s = ct):

d2r

ds2
= 1

c2

d2r

dt2
= −GNM

r2c2
, (4.36)

where GN is Newton’s constant and M is the total mass of the matter in the center.
This means that

rS =
2GNM

c2
(4.37)

In retrospect, this justifies the sign choice for rS in the derivation.
Putting in numerical values for the sun, the Schwarzschild radius is r⊙ ≈ 2.95 km. From

this we get rS = (M/M⊙)r⊙S , e.g. r
(earth)
S ≈ 8.87 mm. So in these cases, the Schwarzschild

radius is well inside the object itself.

1Birkhoff’s theorem states that any vacuum solution to Einstein’s equations with spherical symmetry
is static. So, actually, one could have derived (4.32) with fewer conditions.
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4.3 Interior solution of Einstein’s equations

We now consider the interior solution of Einstein’s equations, i.e. for the inside of a
spherically symmetric arrangement of matter.

Figure 4.4: The interior solution has Tµν ≠ 0, i.e. ρ(r), p(r) ≠ 0 for r < R, and = 0 for
r ≥ R.

We show the main steps of the derivation of the interior solution. Einstein’s equations
with matter have the form

Rµν −
1

2
gµνR = −κTµν . (4.38)

We write
R = κT ∶= κTµνgµν , (4.39)

so we get

Rµν = κ(1

2
gµνT − Tµν) . (4.40)

In a simplified model of a star as an ideal fluid, the energy momentum tensor is given
by

Tµν = (ρ + p)uµuν − pgµν (4.41)

where ρ is the density, p the pressure and uµ the rest frame of the fluid with gµνuµuν = 1.
Because of staticity and spherical symmetry, ρ and p only depend on r. Repeating the
analysis with the ansatz ds2 = A(r)(dx0)2 −C(r)dr2 − r2dΩ2 leads to

R00 = = −A
′′

2C
+ A′

4C
(C

′

C
+ A

′

A
) − A′

rC
= −κ

2
(ρ + 3p)A (4.42)

Rrr = A′′

2A
− A′

4A
(C

′

C
+ A

′

A
) − C ′

rC
= −κ

2
(ρ − p)C (4.43)

Rθθ = −1 − r

2C
(C

′

C
− A

′

A
) + 1

C
= −κρ. (4.44)

From this it follows that

R00

2A
+ Rrr

2C
+ Rθθ

r2
= − C ′

rC2
− 1

r2
+ 1

r2C
= −κρ. (4.45)
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This means that
d

dr
( r

C(r)
) = 1 − κρ(r)r2. (4.46)

Integration from 0 to r with boundary condition r/C ∣r=0 = 0 yields

C(r) = 1

1 − 2GNM(r)
r

(4.47)

where

M(r) = 4π∫
r

0
dr′(r′)2ρ(r′) (4.48)

is the total mass. To get A(r) is a bit more complicated. From ∇µT µν = 0 we obtain

A′

A
= − 2p′

ρ + p
(4.49)

Equations 4.42 to 4.44 together with 4.49 lead to

p′ = −GNM(r)
r2

(ρ + p)(1 + 4πr3p

M(r)
)(1 − 2GNM(r)

r
)
−1

. (4.50)

This is known as the Tollmann-Oppenheimer-Volkoff equation (TOV). Inserting the TOV
into equation 4.49 gives an ordinary differential equation for A′/A. Integrating this from
∞ to r with A(∞) = 1 yields

A(r) = exp(−2GN ∫
∞

r
dr′

1

(r′)2

M(r′) + 4π(r′)2p(r′)
1 − 2GNM(r′)/r′

) . (4.51)

This gives A(r),C(r) in terms of p(r), ρ(r). To solve ρ(r), p(r), one has to solve the
TOV equation and some equation of state (matter-dependent relation between p and ρ,
e.g. p ∼ ργ for some constant γ).

Quick consistency check: Is the solution with matter outside of the star equal to the
vacuum solution? For r > R, we have M(r) =M(R) =M . We then write

A(r) = exp(−GN ∫
∞

r
dr′

1

(r′)2

M

1 − rS/r′
) . (4.52)

Substituting x′ = 1 − rS/r (with dx′ = dr′rS/(r′)2) leads to

A(r) = exp(∫
x

1

dx′

x′
) = x = 1 − rS

r
, (4.53)

so for r > R the solution coincides with the Schwarzschild solution for total mass M .
Note: For ”normal” stars with radii R > rS, the factor 1/(1 − 2GNM(r)/r) always

stays finite for 0 < r < R. So for the sun, the earth and the stars in the universe the
metric coefficients are finite for all r > 0.
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For quite some time, the singularity at r = rS was regarded to be physically unimpor-
tant (e.g. like the Landau pole in QED). Stars with a density so large that their radius
was smaller than rS were thought to be unrealistic. However, if we look at the stability
for a star with ρ(r) = ρ0 = const for r < R and ρ = 0 for r ≥ R (”incompressible matter”),
we find (without proof) for r < R

A(r) = 1

4

⎛
⎝

3

√
1 − rS

R
−
√

1 − rSr
2

R3

⎞
⎠

2

(4.54)

and

C(r) = (1 − rSr
2

R3
)
−1

. (4.55)

We then obtain

p(r) = ρ0c
2

√
1 − rSr2

R3 −
√

1 − rS
R

3
√

1 − rS
R −

√
1 − rSr2

R3

, (4.56)

p(r) can diverge:

p(r = 0) = ρ0c
2

1 −
√

1 − rS
R

3
√

1 − rS
R − 1

R→9/8rSÐ→ ∞. (4.57)

So for a given radius R, a star can only have a maximum total mass M . Infinite pressure
means that matter collapses, so the star is unstable. Note that also in Newtonian physics
there can be instabilities of the matter, but the one talked about here is of a fundamental
nature: It doesn’t come from properties of matter, but from relativistic effects in the
TOV equation.

Figure 4.5: The pressure in an incompressible star depends on r and rS, diverging at
r = 0 for R < 9

8rS.

If even incompressible matter collapses, then every realistic matter will collapse, in-
dependent of its equation of state. There is a theoretical possibility that, when a very
massive star collapses (because its fusion fuel runs out), it becomes so compressed that
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it cannot sustain its own weight no matter what the matter does (degenerate, Pauli’s
principle, ...). This leads to a total gravitational collapse behind r = rS. This is what is
referred to as black hole.

For normal celestial bodies, the Schwarzschild metric is only valid for r > R ≫ rS.
However, there are numerous indications that there actually exist objects with R < rS
in the universe where all of the mass is concentrated behind the Schwarzschild radius.
This is the result of complete gravitational collapse. At the end of the life cycle of a
star (greatly simplified), it explodes, leaving a remnant mass Mrem. If this is smaller
than roughly 1.4 solar masses (Chandrasekhar limit), it turns into a white dwarf. If
it is smaller than roughly 3 solar masses (Tollmann-Oppenheimer-Volkhoff limit)
it becomes a neutron star. If the remnant mass is even bigger than that, a black hole
forms. It is expected that every star with a remnant mass bigger than three solar masses
becomes a black hole eventually. Since there are very heavy stars in the universe, it is
expected that black holes exist. What is the physical significance of rS for a black hole?
The light cones become more and more narrow as r → rS. In fact, the surface r = rS is
light-like. The curve x0(λ) = λ, r(λ) = const = rS is light-like. At r = rS, an observer
would have to travel at the speed of light to keep a constant ”distance to the center”
(r constant). There are no light rays which originate at r < rS and cross the boundary
r = rS, hence the name black hole. The boundary r = rS is also called the event horizon.

Figure 4.6: Light cones near r = rS become more and more vertical, similarly to the
Rindler horizon.

Let’s take a more detailed look at the geodesics: Consider an observer at constant
r = r0, dropping some small object. Look at the geodesic of that object. Since φ̇ = θ̇ = 0,
only r, x0 are important in what follows. The metric is

ds2 = A(r)(dx0)2 −C(r)dr2 (4.58)

with

A(r) = 1

C(r)
= 1 − rS

r
. (4.59)
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The Christoffel symbols are

Γ0
0r =

A′

2A
(4.60)

Γr00 =
A′

2C
(4.61)

Γrrr =
C ′

2C
(4.62)

and the geodesic equation is
ẍµ + Γµνρẋ

ν ẋρ = 0. (4.63)

With the curve parameter s and µ = 0:

d2x0

ds2
+ A

′

A

dx0

ds

dr

ds
= 0 (4.64)

⇔
d2x0

ds2

dx0

ds

+
dA
ds

A
= 0 (4.65)

⇔ d

ds
(ln

dx0

ds
+ lnA) = 0 (4.66)

⇔dx0

ds
A = const =∶ F (4.67)

determined by the initial conditions. The world line of the rocket is

xµrocket(s) =

⎛
⎜⎜⎜⎜
⎝

1√
A(r0)

s

r0

0
0.

⎞
⎟⎟⎟⎟
⎠

(4.68)

That means that
F =

√
A(r0) (4.69)

if the geodesic of the object is parameterized by proper time. Also, the curve is always
time-like of norm squared equal to 1:

1 = g00 (
dx0

ds
)

2

+ grr (
dr

ds
)

2

= A(r) (dx
0

ds
)

2

−C(r) (dr
ds

)
2

= F 2

A(r)
−C (dr

ds
)

2

. (4.70)

From this, we obtain

dr

ds
= −

√
F 2 − 1

C(r)
= −

√
A(r0) −A(r), (4.71)
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where we have chosen the negative sign of the square root because we treat the case of
an object falling towards the center. Look at the ordinary differential equation with x0

as curve parameter

dr

dx0
=

dr
ds
dx0

ds

= A(r)
F

dr

ds
= −A(r)

¿
ÁÁÀ1 − A(r)

A(r0)
. (4.72)

If x0 →∞, then r → rS so that dr/dx0 → 0. Now look at the proper time passing for the
object along the geodesics:

l = ∫
r0

rS
dr

¿
ÁÁÀ(dx

0

dr
)

2

A(r) −C(r) (dr
dr

)
2

= ∫
r0

rS
dr

¿
ÁÁÁÁÀ

A(r) 1

(A(r)
√

1 − A(r)
A(r0))

2 −C(r)

= ∫
r0

rS
dr

¿
ÁÁÀ 1

A(r)
1

1 − A(r)
A(r0)

− 1

A(r)

= ∫
r0

rS
dr

1√
A(r) −A(r0)

=
√

r0

rS
∫

r0

rS
dr

√
r

r0 − r
<∞. (4.73)

Figure 4.7: The world line of an object, dropped from a rocket which keeps a constant
distance r0 to the black hole. Again, this is similar to the Rindler horizon
case.

So the object itself does not perceive that it takes forever to reach the horizon. It
reaches r = rS after finite proper time. Again, this is similar to what happened to
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the Rindler observer. Indeed, the event horizon is in very close analogy to the Rindler
horizon. Just as in that case, r = rS is a coordinate singularity. The metric coeffi-
cients diverge, because x0, r, θ, φ are only good coordinates for r > rS, just as Rindler
coordinates were for y1 > −1/d. So what happens at r < rS? We need to find different
coordinates which cover more than just r > rS, just as Minkowski coordinates cover more
than x1 > ∣x0∣.

4.3.1 The Kruskal extension

The Kruskal extension of the Schwarzschild metric is a metric in a specific set of coor-
dinates (the Kruskal coordinates), which extends the Schwarzschild metric. This means
that there is a coordinate transformation of the domain of Schwarzschild coordinates
(x0, r, θ, φ) to a subset of Kruskal coordinates T,X, θ, φ. The central idea is to replace
r, x0 by different coordinates which are the parameters for ingoing and outgoing light
rays. We start with

ds2 = (1 − rS
r
) (dx0)2 − 1

1 − rS
r

dr2. (4.74)

A light ray satisfies

(dx
0

dr
)

2

= ( r

r − rS
)

2

, (4.75)

which means that radial null geodesics satisfy

x0 = ±r∗ + const (4.76)

where

r∗ = r + rS ln( r
rS

− 1) (4.77)

with
dr∗
dr

= 1

1 − rS
r

. (4.78)

This is called the Regge-Wheeler-tortoise coordinate. Now define null coordinates u, v as

u ∶= x0 − r∗ (4.79)

v ∶= x0 + r∗. (4.80)

In these coordinates, the metric looks like

ds2 = (1 − rS
r
)dudv (4.81)

where a symmetric product between du and dv is implied such that

g = ( 0 1
2
(1 − rS

r
)

1
2
(1 − rS

r
) 0

) . (4.82)
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Figure 4.8: Change from (x0, r∗) to (u, v).

Now r is a complicated function of u and v, implicitely defined by

v − u
2

= r∗ = r + rS ln( r
rS

− 1) . (4.83)

Taking the exponential of both sides gives

exp(v − u
2rS

) = exp( r
rS

)( r
rS

− 1) (4.84)

⇒rS
r

exp(− r
rS

) exp( v

2rS
) exp(− u

2rS
) = (1 − rS

r
) (4.85)

⇒ds2 = rS
r
e
− r
rS e

v
2rS e

− u
2rS dudv. (4.86)

Defining new coordinates

U ∶= −e−
u

2rS (4.87)

V ∶= e
v

2rS (4.88)

leads to

ds2 =
4r3

S

r
e
− r
rS dUdV. (4.89)

Yet new coordinates

T ∶= U + V
2

(4.90)

X ∶= V −U
2

(4.91)

give

ds2 =
4r3

S

r
e
− r
rS (dT 2 − dX2) (4.92)
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with

( r
rS

− 1) e
r
rS =X2 − T 2 (4.93)

x0

rS
= 2arctanh

T

X
. (4.94)

This implicitly defines r since the equations can’t be solved for r. One can extend X,T
from X > ∣T ∣ to more values, up to X2 − T 2 = −1 which corresponds to a singularity at
r = 0. The metric can be written as

ds2 =
4r3

S

r
dT 2 −

4r3
S

r
dX2 − r2dΩ2. (4.95)

Figure 4.9: Kruskal diagram, where light rays travel along lines of slope 1, every point
(T,X) is a 2-sphere (i.e. represents all points (T,X, θ, φ) for fixed (T,X).

In a so-called Kruskal diagram, every point is a 2-sphere. Light rays always move
on world lines with slope 1. Note that a Kruskal diagram is not quite what is called a
Penrose diagram: For that it would have to be bounded.

The interior of region II is not static (or even stationary). There is a KVF ξ which,
in region, coincides with ∂0 (”time”): ξ = ∂0 in region I. But in region II, ξ becomes
space-like. Region II is the opposite of static: Every time-like curve (not only geodesics)
runs into the singularity at r = 0 (X2 − T 2 = −1) after a finite proper time.2 Region III
is the ”time-reversed” version of region II: Every time-like curve needs to have its origin

2 The geodesics actually take the longest time – the more you struggle, the quicker you die.
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III

III

IV

Figure 4.10: Different regions in the Kruskal diagram: region I is the outside of the
black hole, which is where r > rS, i.e. where Schwarzschild coordinates dare
defined. Region II is inside the black hole, region III is inside the white
hole, region IV is a causally disconnected universe which also touches both
black and white hole.

at the singularity r = 0 and has to leave region III after a finite proper time. This is
called a white hole. Region IV is a ”different universe” which is causally disconnected
from ours. The whole Kruskal diagram is probably not a realistic model for the black
holes in our universe.

4.4 Gravitational red-shift

A very useful tool to examine the physical properties of space-time is the so-called
geometrical optics approximation. It replaces electromagnetic waves with light-like
curves.

1. A light ray is represented by a light-like geodesic λ↦ xµL(λ).

2. The velocity vector kµ = dxµL
dλ is the wave-vector of the light ray.

3. An observer with world line s ↦ xµ(s), who intersects the world line of the light
ray, measures a frequency of

ω = gµν
dxµ

ds
kν . (4.96)
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Figure 4.11: Gravitational collapse of a star. The diagram shows Kruskal coordinates
”folded together” at the singularity r = 0 (bold dot-dashed line). This
means that in this image, light cones ”flip over” inside the event horizon
(small circle, dashed line).

The geometrical optics approximation is valid whenever the lateral extension of the light
ray is very small (in particular compared to scales on which the curvature varies).

Let us consider the Schwarzschild metric, and two observers O1 and O2, both keeping
constant distance to the event horizon: rS < r1 < r2. They send each other light signals.
Their respective world lines (parametrized by proper time) are

xµI (s) =

⎛
⎜⎜⎜⎜
⎝

1√
1−rS/rI

s

rI
0
0

⎞
⎟⎟⎟⎟
⎠

(4.97)

with I = 1,2. Now O1 sends a light ray to O2. Assume that the curve parameters at
which the light ray starts and ends are λ1 and λ2, respectively, i.e.

rL(λ1) = r1, rL(λ2) = r2.

Then the velocity vectors of the light-like geodesic at these points are

dxµL
dλ

(λ1) =∶ kµ1 ,
dxµL
dλ

(λ2) =∶ kµ2 (4.98)
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Figure 4.12: Two observers keeping a constant distance to the event horizon, sending
ieach other light signals. They observe a shift in frequency ω1 = ω2 of the
same light ray.

such that

ω1 = gµν
dxµ1
ds

kν1 = A(r1)k0
1

dx0
1

ds
(4.99)

with
A(r) = 1 − rS

r
. (4.100)

The other observer measures the frequency

ω2 = A(r2)k0
2

dxµ2
dλ

= gµν
dxµ2
ds

dxν1
dλ

. (4.101)

Remember that for any geodesic in Schwarzschild spacetime (even light-like ones, see
last section or the exercises)

dx0
L

dλ
A(rL(λ)) = const =∶ F (4.102)

is constant along the geodesic Then

k0
L(λ)A(rL(λ)) = const. (4.103)

We can then write

ω1

dx01
ds

= ω2

dx02
ds

⇔ ω1

√
1 − rS

r1

= ω2

√
1 − rS

r2

(4.104)

⇔ ω2

ω1

=
√

1 − rS
r1√

1 − rS
r2

. (4.105)
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Since r2 > r1 > rS, this means that ω2 < ω1, so O2 sees the light ray with a different
(i.e. red-shifted) frequency compared to O1. Slower-running frequency means that O1’s
time seems to run slower from the point of view of O2. Also, ω2/ω1 → 0 as r1 → r2,
so from the point of view of an external observer, anything falling into the black hole
becomes infinitely red-shifted eventually.

4.5 Motion in rotationally symmetric gravity field

Computing the motion around a rotationally symmetric matter distribution was one
of the main successes of Newtonian physics, allowing to derive Kepler’s laws of motion
which had been found empirically before. A similar computation can be carried out in
General relativity, using the Schwarzschild metric.

We consider the geodesic equation of motion

d2xµ

dλ2
+ Γµνρ

dxν

dλ

dxρ

dλ
= 0. (4.106)

In what follows we will consider both massive and massless particles. In the case of
massive particles, we assume that the curve parameter λ = s coincides with proper
time. In the massless case, the geodesic will be light-like, so proper time is zero, so it
cannot be used as curve parameter. In that case, we assume a parameterisation from
the geometrical optics approximation.

The normalisation of the world lines will be indicated by the parameter ε:

gµν
dxµ

dλ

dxν

dλ
= ε = { 1 falls m > 0,

0 falls m = 0.
(4.107)

We work in our usual coordinates

(x0, x1, x2, x3) = (ct, r, θ, φ). (4.108)

In what follows, the “dot” shall always indicate derivation w.r.t. λ.
First we simplify the situation somewhat: Due to rotational symmetry, we choose our

curve to have an initial condition of starting in the θ = π/2-plane, and having an initial
velocity vector also lying in that plane, i.e. θ(0) = π

2 and θ̇(0) = 0. Consider (4.106) for
µ = 2, i.e. the θ-coordinate, we get with (4.14) – (4.18):

θ̈ = −2

r
ṙθ̇ + sin θ cos θ (φ̇)2. (4.109)

One can see that this part of the geodesic equations can be solved via

θ(λ) = π

2
= constant. (4.110)
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So we assume that indeed that θ̇ = 0 throughout the whole curve, so the movement of
the particle takes place entirely in the θ = π

2 -plane. With this choice, the rest of the
geodesic equations (µ = 0,1,3) can be written as:

ẍ0 = −A
′

A
ẋ0ṙ (4.111)

r̈ = − A
′

2C
(ẋ0)2 − C ′

2C
ṙ2 + r

C
φ̇2 (4.112)

φ̈ = −2

r
ṙ φ̇. (4.113)

The last equation (4.113) can be rewritten as

1

r2

d

dλ
(r2 φ̇) = 0. (4.114)

In other words, the quantity

` ∶= r2 φ̇ = const (4.115)

is a constant of motion. This is reminiscent of the angular momentum, and indeed,
the quantity ` is called angular momentum of a particle in GR. Indeed, for large r this
quantity tends towards the Newtonian angular momentum ` ≈ L/c.

The metric we consider is static, so there is a time-like KVF, ∂0. As is shown in
an exercise, the inner product between the velocity vector of a geodesic an a KVF are
constant. In our case, this means that

F ∶= gµν ẋ
µXν = (1 − rS

r(λ)
) ẋ0(λ) = const. (4.116)

One can show that this is equivalent to the geodesic equation for x0(λ) (4.111). We
have already encountered this constant of motion in our treatment of the central fall.

The fourth and last geodesic equation is the one for r (4.112). We can rewrite it with
the help of the constants F and `:

d2r

dλ2
= −F

2A′

2A
− C ′

2C
(dr
dλ

)
2

+ `2

Cr3
. (4.117)

Multiplying with 2C dr
dλ , this yields

d

dλ
[C (dr

dλ
)

2

+ `
2

r2
− F

2

A
] = 0. (4.118)

Indeed, the expression the square brackets is nothing else but the normalisation of the
velocity vector, i.e.

C (dr
dλ

)
2

+ `
2

r2
− F

2

A
= −ε = const. (4.119)
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This can be written as

(dr
dλ

)
2

= F 2 − `2

Cr2
− ε

C
(4.120)

Now we have used all components of the geodesic equations. To find a solution to the
geodesic equations for certain given initial conditions, one proceeds as follows: First
compute F and ` from the initial condition. Depending on whether one wants to solve
for massive or massless particles, one either has to use ε = 1 or ε = 0. Then one has to
solve the equation (4.120). This will usually be the main difficulty, since it might not be
possible exactly to solve that ODE. If one can solve it, however, receiving a solution r(λ)
(i.e. numerically), then one can, by integrating (4.115) compute φ(λ), and by intgration
of (4.116) one can get x0(λ). With (4.110) this gives all components of the trajectory.

In general this is complicated, but one can make some qualitative statements using
(4.120). It can be rewritten as:

ṙ2

2
+ Veff(r) = E = const. (4.121)

Here the effective potential is given by

Veff(r) = −rS
2r
ε + `2

2r2
− `2rS

2r3
. (4.122)

The effective energy E is given by

E ∶= F 2 − ε
2

. (4.123)

Equation (4.121) describes a classical one-dimensional movement of a particle of mass
m = 1 and position r in a potential (4.122), with total energy E. Careful: these are not
necessarily the actual energy of the particle, the name is just chosen to highlight the
similarity of (4.121) with the 1d-movement.

Solutions to these equations have several well-understood properties. The solutions
are constricted to the region E ≥ Veff. If there is a minimum of Veff, and E is only slightly
above it, the system will make small oscillations around that minimum.

4.5.1 The massive case: ε = 1

An equation like (4.121) also appears for the Kepler problem in Newtonian mechanics.
In that case the effective potential has a very similar form. The first two terms in
(4.122) also appear. One recognise the attractive Newtonian potential ∼ 1/r, as well as
the repulsive term ∼ 1/r2, signifying the angular momentum barrier. For large r, these
terms dominate the third term, which is propertional to 1/r3. That third term does not
appear in the Kepler problem, and is a direct consequence of relativistic physics. It is
attractive, and dominates the other two, in case a particle comes too close to the center
r = 0.
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4 Applications of General Relativity

Figure 4.13: Effective potential for ε = 1, for some fixed value of `: For large r, this
looks like the one from Newtonian mechanics. For small r, the angular
momentum barrier can be crossed, when the particle comes too close to the
black hole.

For a fixed value of `, the effective potential Veff(r) is depicted in figure 4.13.
In Newtonian mechanics, there are essentially two cases: a bound trajectory (ellipses),

and unbound trajectories (hyperboloids or paraboloids). In the case of a black hole, there
are, however, three cases:

1. The bound case: E < 0 and r ≥ rmax. These are similar to the Kepler ellipses, on
which the particle orbits around the black hole indefinitely.

2. The unbound case: 0 < E < Vmax and r ≥ rmax. These are similar to scattering
trajectories, where an object comes from infinity, gets scattered, and flies off to
infinity again.

3. The singular case: E > Vmax or r < rmax. These can only appear in the relativistic
case. The only ones which are physically relevant are the ones that start at infinity,
and are able to cross the angular momentum barrier, coming so close to the black
hole that they get sucked in.

4.5.2 The massless case: ε = 0

The trajectory for m = 0, i.e. for ε = 0, looks quite different from the one in Newtonian
physics. Here we have

Veff(r) = `2

2r2
− `2rS

2r3
. (4.124)

The attractive term from the Newtonian potential ∼ −1/r is missing.
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Figure 4.14: Effective potential for m = 0. There is a local max́ımum, leading to an
unstable circular orbit of light particles (the photosphere).

In figure 4.14 we have some effective potential for ε = 0. There are no (stable) bound
trajectories, since the effective potential has no local minimum. There are only those
trajectories which are being scattered, or those which vanish in the black hole.

Since the potential has a maximum, there is an circular orbit around the black hole.
However, it is unstable: a tiny disturbance will send it either to infinity or into the black
hole.

4.5.3 Light scattering

The light scattering in the gravitational field of a star was the first experimental verifi-
cation of GR. These light rays correspond to geodesics in figure 4.14 which come from
infinity, get close to the star (up to r = rmin, and then fly off to infinity again. During
that time, the accumulated angle, which describes the scatterinag angle of the light ray,
can be computed in the limit of r ≫ rS.

To compute this, we are mainly interested in the connection between r and φ. From
(4.120) we get:

dφ

dr
= dφ

dλ
(dr
dλ

)
−1

= ± `
r2

1√
F 2 − `2/(r2C) − ε/C

. (4.125)

Here the sign has to be chosen to be the correct one of dr/dλ, depending on whether
the light ray is outgoing or incoming. Integrating once and using A = C−1, one gets

φ(r2) − φ(r1) = ±∫
r2

r1
dr

1

r2

√
C(r)

√
F 2

A(r)`2 −
1
r2 −

ε
`2

. (4.126)

In most cases this integral will not be analytically solvable However, for the case of
r ≫ rS, one can compute it for r2 = rmin and r1 =∞.
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Figure 4.15: A light ray scattered in the gravity field of a star.

We consider ε = 0, looking at the deflection of light. We set r1 =∞, φ(r1) = 0, and call
the total angle of deflection 2∆φ. In figure 4.15 one can see that the angle, for which
r = rmin, has to satisfy

φ(rmin) = π

2
+∆φ (4.127)

The point with r = rmin is the one where

dr

dφ
= 0. (4.128)

Hence the inverse of (4.125) has to vanish. With ε = 0 we get

F 2

A(rmin)`2
− 1

r2
min

= 0, (4.129)

or

F 2

`2
= A(rmin)

r2
min

. (4.130)

With this, and ε = 0, the integrand of (4.126) becomes

1

r2

√
C(r)

√
F 2

A(r)`2 −
1
r2 −

ε
`2

= 1

r

√
C(r)

√
r2A(rmin)
r2minA(r) − 1

, (4.131)

and the deflection angle satisfies (choosing the correct sign for incoming light rays)

∆φ + π
2

= φ(rmin) − φ(∞) = −∫
rmin

∞
dr

1

r

√
C(r)

√
r2A(rmin)
r2minA(r) − 1

. (4.132)
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Using the approximation rS/rmin ≪ 1, i.e. that the light ray does not come close to the
Schwarzschild radius, we get.

√
C(r) = 1√

1 − rS
r

= 1 + rS
2r

+ . . . (4.133)

Also, we have that

r2

r2
min

A(rmin)
A(r)

− 1 = r2

r2
min

1 − rS
rmin

1 − rS
r

− 1

= r2

r2
min

(1 − rS
rmin

+ rS
r
) − 1 + . . .

= ( r2

r2
min

− 1)(1 − rrS
rmin(r + rmin)

) + . . .

With this we obtain

π

2
+∆φ ≈ ∫

∞

rmin

dr
rmin

r

1 + rS/(2r)√
(r2 − r2

min) (1 − rrS
rmin(r+rmin))

. (4.134)

The first term under the integral assumes all values from 0 to ∞.The second, however,
is always close to 1, which is why we can expand it with the help of 1/

√
1 + x ≈ 1 − x/2

for ∣x∣ ≪ 1. With this we get, while only considering terms of first order in rS/r and
rS/rmin:

∆φ + π
2

≈ ∫
∞

rmin

dr√
r2 − r2

min

rmin

r
(1 + rS

2r
+ rrS

2rmin(r + rmin)
) . (4.135)

This integral can be solved, and one gets:

∆φ + π
2

= π

2
+ rS

2rmin

+ rS
2rmin

(4.136)

or, in other words:

∆φ = rS
rmin

. (4.137)

We consider the case of the sun, and a light ray just barely grazing the surface. We have
the values r⊙S = 2.97km, and r⊙min = 695500km, in other words:

2∆φ⊙ =
2r⊙S
r⊙min

= 0.00000854 = 1.76 arc seconds.

This value is different from the value predicted by Newtonian mechanics, by a factor
of 2. This is significant, and it was possible to measure this value with the technical
possibilities of the early 20th century. Sir Arthur Eddington used this in order to confirm
GR this way in 1919, during a total solar eclipse.
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Figure 4.16: On the scale of, say, our Milky Way, matter is arranged quite irregularly.

4.6 Cosmology

Cosmology attempts to describe the large scale-structure of the universe using general
relativity. Observational data about the universe shows that on large scales, matter (that
we can see) is distributed homogeneously any isotropically. So on very large scales, the
geometry should be isotropic and homogeneous.

Homogeneous means that ”every point looks the same”, while isotropic means that
”at a point every direction looks the same”. Because of homogeneity, space-time foliates
into hyper-surfaces Σt. For two points p, q ∈ Σt, there is a map φ ∶M →M , so that

φ∗g = g (4.138)

φ(p) = q. (4.139)

Such a map is called an isometry. Isotropy means there is a unit time-like vector field
X, so that for every point p and s1, s2 orthonormal to X, ∣s1∣2 = ∣s2∣2, there is a map
φ ∶M →M with

φ∗g = g (4.140)

with φ(p) = p, dφ(X(p)) =X(p), dφ(s1) = s2. In formulas:

φµ(xν) ∶Mµ
ν ∶=

∂φµ

∂xν
, Mµ

νX
ν(p) =Xµ(p), Mµ

ν s
ν
1 = s

µ
2 . (4.141)
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Figure 4.17: On larger scales, galaxy clusters and super clusters arrange in filaments and
voids.

Homogeneity and isotropy together mean that the Σt are orthogonal to X. The metric
needs to have the form

ds2 = dt2 − hijdxidxj (4.142)

where h is the spatial metric on each Σt. This metric hij is Riemannian, and describes
homogenous and isotropic universe Σt. Note that, unlike in the static case, we allow hij
to depend on t here. Consider the Riemann curvature tensor of h: R

(3) i
jkl. Note that in

general, R
(3) i

jkl /= Ri
jkl. The symmetries are R

(3) ij
kl = hjj

′

R
(3) i

j′kl, R
(3) ij

kl = R
(3) [ij]

[kl].

These coefficients define a map Φ ∶ V → V , where V = (TpΣt) ∧ (TpΣt) via

(Φv)ij ∶= R
(3) ij

klv
kl (4.143)

with vij = v[ij] and dimV = 3 the space of 3d bivectors. There is a positive definite inner
product H on V :

H(v,w) ∶= hi[jhk]lvijwkl (4.144)

with H(v,w) =H(w, v) and H(v, v) ≥ 0. From the symmetries of R
(3) ij

kl, we get

H(Φv,w) =H(v,Φw), (4.145)
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Figure 4.18: On the largest accessible scale, matter is approximately homogenous and
isotropic.

meaning Φ is self-adjoint, so it has three orthogonal eigenvectors. Because of isotropy,
all eigenvalues are the same (otherwise, we could chose a preferred direction in V , and
therefore in TpΣt). So

Φ =KIdV (4.146)

⇔ R
(3) ij

kl =Kδ
i
[jδ

j
l] (4.147)

⇔ R
(3)

ijkl =K(hikhjl − hilhjk) (4.148)

with a constant K and IdV the identity of V . Because of homogeneity, K only depends
on t, so each Σt is a space of constant curvature because the Ricci tensor is R

(3)
jl = 2Khjl

and the Ricci scalar is R(3) = 6K. We need to distinguish three cases:

� K > 0: Σt ∼ S3 of radius 1√
K

� K = 0: Σt = R3, hij = δij

� K < 0: Σt ∼H3, hyperbolic space of radius 1√
−K .
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We can write

Σt ≃
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(w,x, y, z) ∈ R4

RRRRRRRRRRRRRR

K > 0 w2 + x2 + y2 + z2 = 1
K2

K = 0 w2 + x2 + y2 + z2 = 0
K < 0 w2 − x2 − y2 − z2 = 1

K2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (4.149)

at least locally: e.g. one could have Σt ∼ RP3 = S3/Z2 ∼ SO(3) (a 3-sphere module
discrete symmetry). But we ignore the not-simply-connected alternatives. We write the
metric as

ds2 = dt2 − a(t)2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dψ2 + sin2ψdΩ2 K > 0
dx2 + dy2 + dz2 K = 0
dψ2 + sinh2ψdΩ2 K < 0

(4.150)

where dΩ2 = dθ2 + sin2 θdφ. We define

k =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

+1
0
−1

if K =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

> 0
= 0
< 0

(4.151)

and write
dx2 + dy2 + dz2 = r2dΩ2 + dr2 (4.152)

and for k = 1 with r ∶= sinψ

dψ2 = dr2

1 − r2
, (4.153)

for k = −1 and r ∶= sinhψ

dψ2 = dr2

1 + r2
. (4.154)

The general metric can be written as

ds2 = dt2 − a2(t) ( dr2

1 − kr2
+ r2dΩ2) . (4.155)

4.6.1 Homogeneous and isotropic matter

Consider the energy-momentum-tensor

T µν = ρuµuν + P (gµν + uµuν). (4.156)

In our case

uµ =
⎛
⎜⎜⎜
⎝

1
0
0
0

⎞
⎟⎟⎟
⎠
. (4.157)

We now consider only the case k = 0 with the metric

ds2 = dt2 − a(t)2(dx2 + dy2 + dz2). (4.158)
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The non-vanishing Christoffel symbols are

Γtxx =
1

2
gtt(−gxx,t) = aȧ = Γtyy = Γtzz (isotropy) (4.159)

Γxtx =
1

2
gxx(gxx,t) =

ȧ

a
= Γxxt, same for y, z. (4.160)

The Riemann curvature tensor is

Rt
ttt = 0 (4.161)

Rx
txt = −

ä

a
, same for y, z. (4.162)

Rt
xtx = äa (4.163)

Ry
xyx = ȧ2, same for all combinations of x, y, z. (4.164)

Then the Ricci tensor is

Rtt = −3
ä

a
(4.165)

Rxx = äa + 2ȧ2 (4.166)

and the Ricci scalar is

R = Rtt − a−2(Rxx +Ryy +Rzz) = −6( ä
a
+ ȧ

2

a2
) . (4.167)

The energy-momentum tensor is given by

Tµν =
⎛
⎜⎜⎜
⎝

ρ
−a2P

−a2P
−a2P

⎞
⎟⎟⎟
⎠
. (4.168)

From the Einstein equations, we get

Rtt −
1

2
gttR = = −κTtt ⇔ −3

ȧ2

a2
= −κρ (4.169)

Rxx −
1

2
gxxR = −κTxx ⇔ 2äa + ȧ2 = κa2P (same for x, y) (4.170)

⇒ 3ä

a
= −κ

2
(ρ + 3P ), 3ȧ2

a2
= κρ. (4.171)

With κ = 8πGN and setting c = GN = 1:

3ä

a
= −4π(ρ + 3P ) (4.172)
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and
3ä2

a2
= 8πρ. (4.173)

For k /= 0, the result is (without proof):

3ä

a
= −4π(ρ + 3P ) (4.174)

ȧ2

a2
= 8π

ρ
− k

a2
. (4.175)

These are called the Friedmann-Roberston-Walker equations where a is the so-
called scale factor. The immediate observation is that a matter-filled universe cannot
be static: We have ä < 0 unless ρ = 0, P = 0 (and k = 0).

Historically, Einstein published his equations in 1915 and in 1917 introduced the
cosmological constant Λ as a modification:

Rµν −
1

2
gµνR −Λgµν = −κTµν . (4.176)

In 1923, The FRW equations were published. With the cosmological constant term they
take the form

3ä

a
= −4π(ρ + 3P ) +Λ (4.177)

ȧ2

a2
= 8π

3
ρ − k

a2
− Λ

3
. (4.178)

This way, Λ and ρ might have been tuned to allow for a static universe where ä = ȧ = 0,

so that k
!= 1. However, in 1939 Hubble observed the expansion of the universe.

In the FRW equations, ρ(t) is a matter density which in this context means it contains
everything that is not gravity, e.g. dust, radiation, dark matter and so on.

Hubble’s law (which holds no matter what the precise solutions for a, ρ,P are) can
be formulated as follows: Consider the distance of two galaxies. Their world lines
correspond to the unit time-like vector field (they are the isotropic observers). Their
time-dependent distance d(t) is measured in the induced (Riemannian) metric on Σt:

d(t) = ∫ dλ
√
−gµν ẋµẋν (4.179)

where xµ is a curve in Σt. We have

0 = gµ0ẋ
µẋ0 (4.180)

0 = g00(ẋ0)2 (4.181)

⇒ d(t) = a(t)∫ dλ
√
−gµν ẋµẋν = a(t)d0. (4.182)
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Figure 4.19: The distance of two isotropic observers can change over time.

Since d0 does not depend on t, we get

ḋ = ȧd0 =
ȧ

a
d(t) =∶Hd (4.183)

with the Hubble parameter H. So whether the universe expands (H > 0) or contracts
(H < 0), objects have a ”relative velocity” to one another proportional to their distance.
This is the observation Hubble made: Galaxies move away from us, the further away,
the faster. This is a crucial, important confirmation of general relativity. The best value
for H nowadays is H ≈ 1/(14.4bn ys). This value can change in time. Note that ḋ can
easily become greater than the speed of light. This is no violation of relativity. In fact,
each galaxy is (nearly) at rest. They do not move with respect to one another, rather
the space between them expands.

4.6.2 Light propagation in FRW spacetimes

In the geometrical optics approximation, λ ↦ xµ(λ) is a light-like geodesic and the
velocity vector is equal to the wave vector, i.e. dxµ/dλ = kµ.

Consider the ”projection” of the light-like geodesic on one Σt: λ↦ (x1(λ), x2(λ), x3(λ)).
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Figure 4.20: Two galaxies sending a light ray to one another.

The Christoffel symbols are

Γi00 =
1

2
giλ(−g00,λ) = 0 (4.184)

Γi0j =
1

2
giλ(gλj,0) = δij

ȧ

a
(4.185)

Γijk =
1

2
giλ(...) = 1

2
gim(...). (4.186)

with equation 4.186 being the same as for the spatial metric. The geodesic equation can
be written as

0 = ẍi + Γij0ẋ
jẋ0

= ẍi + ȧ
a
ẋ0ẋi + Γijkẋ

kẋj. (4.187)

So the ”projection onto space” of a geodesic is not necessarily one due to the extra
term. But it is the representation of one. Let yi(σ) ∶= xi(λ(σ)) for some σ ↦ λ(σ). In
the following, a dash ′ denotes the derivative with respect to σ and a dot ˙ denotes the
derivative with respect to λ. Then

(yi)′′ = (λ′ẋi)′ = λ′′ẋi + (λ′)2ẍi. (4.188)

Then solve the equation

λ′′ = (λ′)2 ȧ

a
ẋ0 (4.189)
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which depends on λ via t(λ). The precise solution depends on the precise solutions of
a(t) and t(λ). We can then write

(yi)′′ + Γijk(yj)′(yk)′ = (λ′)2 (ẍi + ȧ
a
ẋ0ẋi + Γjkiẋj ẋk)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

= 0. (4.190)

With this new parameterization, the projection of a light ray onto space traces out
a geodesic on Σt (a great circle on S3, a straight line on R3, a great arc on H3).
Each of these lines follows a Killing vector field, corresponding to a translation sym-
metry of Σt. Call this Xt, and expand it to all of spacetime. Make these Xt into a
4-dimensional Killing vector field on all of spacetime: X(t, x1, x2, x3)(4) = Xt(x1, x2, x3)
with gµν X(4) µ X(4) ν = −a2(t). The velocity vector of the light ray is

k(t) = ẋ(t) = α(t) ∂
∂t

+ β(t) X(4) . (4.191)

The vector k is light-like, so

0 = gµνkµkν = α2 − a2β2. (4.192)

On the other hand, we use the fact that λ↦ xµ(λ) is a geodesic, so

⟨k, X(4) ⟩ ∣t=t1 = ⟨k, X(4) ⟩ ∣t=t2 (4.193)

which means that (−a2β) is constant in λ (so also constant in t). That means that an
observer at rest in galaxy 1 measures the frequency

ω1 = ⟨ ∂
∂t
, k(t1)⟩ = α(t1) = a(t1)β(t1) (4.194)

and an observer at rest in galaxy 2 measures the frequency

ω2 = ⟨ ∂
∂t
, k(t2)⟩ = α(t2) = a(t2)β(t2). (4.195)

From this follows that ω1a(t1) = ω2a(t2) or

ω2

ω1

= a(t1)
a(t2)

. (4.196)

So as the universe expands, frequencies get red-shifted since for a wave at t1 with wave
length λ1 = 1/ω1, the wave length at t2 is λ2 = λ1 ⋅ a(t2)/a(t1). One defines the so-called
red-shift

z ∶= λ2 − λ1

λ1

= ω1

ω2

− 1 = a(t2)
a(t1)

− 1 (4.197)

or

1 + z = a(t2)
a(t1)

. (4.198)
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Figure 4.21: After light has been travelling through the universe, it has been reduced in
frequency, due to the expansion of the universe.

For ”nearby” galaxies (= during the time light rays need between them and us, the
universe has not expanded significantly), one has t2 − t1 ≈ d(t1), also

a(t2) − a(t1)
t2 − t1

≈ ȧ(t1) (4.199)

which means that

z = a(t2)
a(t1)

− 1 ≈ dH. (4.200)

So the red-shift of galaxies (near us) is proportional to the distance. This will be violated
for larger distances, depending on ä. This is precisely what was measured in the SNIa
observations in ∼ 1998, and one found ä > 0. Compare this with the FRW equation
(4.177): 3ä/a = −4π(ρ + 3P ) + Λ. If ä > 0, then necessarily Λ > 0. After more than 70
years, Einstein’s ”greatest blunder” had been rehabilitated.

FRW-spacetimes

In the following, we will look at different solutions to the Einstein equations.
First, we look at the so-called Einstein universe with ȧ = 0. Matter is dominated

by galaxies with negligible relative motion (P = 0). Then

Λ = 4πρ (4.201)

0 = 8π

3
ρ − k

a2
+ Λ

3
(4.202)

from which follows that k = 1 = 4πρa2. Then

a =
√

1

4πρ

⎛
⎝
=
√

c2

4πρGN

⎞
⎠
. (4.203)

The relativistic matter density today is ρ ≈ 6 atoms/m3 ≈ 10−26 kg/m3. Then a is a
constant of 10 billion light years. This model was proposed by Einstein in 1917, but
is actually unstable. In other words, even the tiniest disturbance of the matter density
would lead to either contraction or expansion of the universe. This model has been,
eventually, superseded by more realistic ones, in particular after Hubble measured the
expansion of the universe.
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Vacuum solutions with ρ = 0, P = 0 lead to ä = aΛ/3 and ȧ2 = a2Λ/3−k. We distinguish
several cases:

a) Λ = 0, k = 0⇒ a is an arbitrary constant. This is Minkowski space.

b) Λ = 0, k = −1 ⇒ a(t) = t. Here, the universe is a linearly expanding hyperboloid.
These are the same solution.

c) Λ > 0, k = 1⇒ a(t) = α cosh t/α with α =
√

3/Λ. This is deSitter space dS4.

d) Λ > 0, k = 0⇒ a(t) = et/α

e) Λ > 0, k = −1⇒ a(t) = α sinh t/α. Again, these all describe (different parts of) the
same solution. In all of these cases, ∂t and Σt are not unique. This is very special
for vacuum solutions, otherwise one can use the rest system of the matter for ∂t.

f) Λ < 0, k = −1⇒ ”Anti-deSitter space” AdS4. (k = −1 is the only allowed value for
Λ < 0.)

Figure 4.22: Case b) of the previous list. This covers part of Minkowski space, namely
the forwards light cone. The parameter t is not x0, which is why with this
coordinate this solution has ηµν ≠ gµν .

Models with matter have

ȧ2

a2
= 8πρ

3
− k

a2
+ Λ

3

3ä

a
= −4π(ρ + 3P ) +Λ. (4.204)

We define the volume of a small spherical region

C ∶= 8

3
πa3ρ (4.205)

and write
Ċ = −8πP ȧa2 (4.206)

or
d

dt
(4π

4
ρa3) + 4πa2P ȧ = 0. (4.207)
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Figure 4.23: Different cases of the previous list, each with the vector field ∂t drawn,
for comparison. The first three are c), d), e), different patches on deSitter
space, while the last one is f), some patch on Anti-deSitter space.
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The total matter inside that region is ∼ 4
3πa

3ρ = C/2 =∶ U . Its surface area is ∼ 4πa2,
which means that

U̇ +APȧ = 0 (4.208)

which is like dU = −PdV : The energy balance of a system without thermal flow. If one
assumes a very simple equation of state, e.g. P = wρ for some constant w, we get

ρ̇

ρ
= −(1 +w)

˙(a3)
a3

(4.209)

which integrates to
ρ ∼ a−3(1+w). (4.210)

For dust with P = 0, we have ρa3 = const = C, ”matter conservation”. For radiation
with P = ρ/3, we have ρa4 = const. One can show that with mixed composition

ρ = ρdust + ρrad (4.211)

P = Pdust
±
=0

+ Prad
±
ρrad/3

. (4.212)

But each part separately satisfies ρdusta3 = const1, ρrada4 = const2 for the same a. Nowa-
days, measurements suggest that 1/atoday = ρrad/ρdust ∼ 10−3. The radiation density ρrad

is mostly the cosmic microwave background (radiation from stars etc. is negligible com-
pared to that). That means that at the time trec, when a(today)/a(recombination) ∼ 103,
one had ρrad(trec) ≈ ρdust(trec). If the universe is expanding, then the universe was radi-
ation dominated before trec and matter dominated afterwards.

Figure 4.24: Before recombination, radiation dominated the matter content of the uni-
verse. After recombination, dust did.

Let us now consider ”classical solutions” with Λ = 0. For a long time, this was supposed
to be the only sensible type of models. We have
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� Λ = 0, k = 0, dust (w = 0), a(t) ∼ t2/3 or radiation (w = 1/3), a(t) ∼ t1/2.

� Λ = 0, k = −1, dust: t = 1/2C(sinhχ − χ), a = 1/2C(coshχ − 1), χ > 1, Ċ = 0 =
8/3πρa3.

� Λ = 0, k = +1, dust: t = 1/2C(χ − sinhχ), a = 1/2C(1 − cosχ), χ ∈ [0, π].

The value of k depends on the value of ρ0 = ρtoday. We introduce the density parameter

Ω0 =
8πρ0

3H2
0

⎧⎪⎪⎪⎨⎪⎪⎪⎩

> 1
= 1
< 1

if k =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

+1
0

−1
. (4.213)

Figure 4.25: The ”classical” solutions to the FRW equations, i.e. with Λ = 0. One can
still find these three possibilities (collapsing universe, asymptotically, and
infinitely expanding universe) in some textbooks, although they are nowa-
days obsolete.

For Λ /= 0, there is a very large set of possible solutions, but Λ > 0, k = 0 seems to fit
the observations best. The value of k is related to the present day density parameter Ω0

and ΩΛ,0 ∶= Λ/(3H2
0). We have

Ω0 +ΩΛ,0

⎧⎪⎪⎪⎨⎪⎪⎪⎩

> 1
= 1
< 1

if k =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

+1
0
−1

. (4.214)

Observation suggests k = 0. The density parameter splits into a density parameter
Ω0,ba ≈ 0.05 for baryons and one Ω0,d ≈ 0.26 for dark matter, also ΩΛ,0 ≈ 0.69. This
leads to a ”ΛCDM” model with six free parameters containing properties of matter and
fluctuations etc. This is nowadays the accepted model of our universe.
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4.7 Linearised solutions and gravitational waves

While few exact solution to Einstein’s equations are known, some approximate solutions
can be computed. One example for this is the case of linear perturbations around
Minkowski space. This is also called the linearised case.

One makes the ansatz

gµν = ηµν + hµν (4.215)

and assumes that hµν , as well as all of its derivatives, are small. Of course, this violates
the principle of general covariance, since components that are small in one coordinate
system are not necessarily small in some other coordinate system. To this end, we also
allow to only make coordinate transformations

xµ Ð→ x̃µ = xµ + εµ(x) (4.216)

which are themselves small, i.e. the functions εµ and all of its derivatives are small. In
the following, we disregard all terms quadratic in h, ε, and products hε, as well as terms
containing more than one derivative.

First we note that, for any tensor which is small, i.e. contains h or ε, we can use either
g or η to raise or lower indices, since the difference is a second order term, which we
neglect.

For the inverse metric, we make the ansatz gµν = ηµν +kµν , with small coefficients kµν .
With this and (4.215) we get

δµν = gµρgρν = (ηµρ + kµρ) (ηρν + hρν)

= δµν + kµρηρν + ηµρhρν .

We define hµν to be the result of hµν after raising both indices (again, it does not matter
whether we raise them with gµν or ηµν):

hµν = ηµρηνσhρσ. (4.217)

With this we get that kµν = −hµν , i.e.

gµν = ηµν − hµν . (4.218)

Note the sign difference compared to (4.215).
Next we note that the Christoffel symbols in the linearised case are themselves small.

So products of two or more can be neglected This means that the Riemann curvature
tensor (with all indices down), given by (2.151), is simply

Rµνσρ = 1

2
(hµρ,νσ − hµσ,νρ + hνσ,µρ − hρν,σµ) . (4.219)

The Ricci tensor and Ricci scalar are then

Rνρ = ηµσRµνσρ = 1

2
(hµρ,νµ − hµµ,νρ + hνµ,µρ − ◻hνρ) , (4.220)

R = ηνρRνρ = hµν
,µν − ◻(hµµ). (4.221)
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Here we have used the (unfortunately, quite standard) notation of
”
upper commas“. In

particle physics (much more than in general relativity, actually), one off-handedly moves
indices upstairs or downstairs with the Minkowski metric. For instance, one writes

hµν
,ρ ∶= ηρσhµν,σ, or even hµν,ρ

σ ∶= ησλhµν,ρλ. (4.222)

This raising and lowering of indices actually works only because we are in the linearised
case, which means that the covariant derivative can be replaced by the ordinary partial
derivative. So all expressions above can, for this chapter, be treated as if they were
tensor equations.

The ◻ is called the d’Alembert operator, or wave-operator, and is shorthand for
◻ = ηµν∂µ∂ν , the Minkowski analogue of the Laplace operator.

Putting all of this together, the Einstein equations in vacuum Rµν = 0 become

Rµν = 1

2
(hµρ,νρ − hρρ,νµ + hνρ,ρµ − ◻hµν) = 0. (4.223)

4.7.1 Linearised gauge transformations

In chapter 3.2.3 we have talked about the fact that diffeomorphisms are acting as gauge
transformations on the metric. Practically, this is realised by using what is called active
change of coordinates. Start from a metric in some coordinates gµν(x). One can take any
change of coordinates xµ ↦ x̃µ(x), compute the transformed metric coefficients g̃µν(x̃),
and replace, in its formula, all x̃µ by xµ. This leads to a new metric g̃µν(x) in the
same coordinate system, which is regarded to be physically equivalent to the original
one gµν(x).

With the linearised coordinate transformations (4.216), the inverse transformation is,
to first order, given by

xµ = x̃µ − εµ(x) = x̃µ − εµ(x̃), (4.224)

where we have used that, to first order,

εµ(x) = εµ(x̃ − ε) = εµ(x̃) − εν(x)∂νεµ(x) +⋯ = εµ(x̃). (4.225)

Thus, the partial derivatives are

∂xµ

∂x̃ν
= δµν −

∂εµ

∂x̃ν
. (4.226)

Putting these into the formula (4.215) for the metric, keeping only first order terms, and
replacing x̃ with x everywhere then leads to

h̃µν = hµν − εµ,ν − εν,µ, (4.227)

where εµ ∶= ηµνεν , and all functions are takes at the same argument x.
It is noteworthy that (4.227) is the linearised gravity analogue of the gauge transfor-

mation aµ → Aµ + χ,µ in electromagnetism. The presence of this gauge transformation
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means that we can impose a specific condition on our field, which are such that for every
metric, there is a gauge transformed one which satisfies the condition. Such a condition
is called gauge fixing. Examples in electromagnetism for this are, e.g. the time gauge
A0 = 0 or the Coulomb gauge Aµ,µ = 0.

Consider the expression hµν,µ − 1
2h

µ
µ,ν . Then, under a gauge transformation (4.227),

one has that

hµν,µ Ð→ h̃µν,µ = hµν,µ − εµ,νµ − ◻εν (4.228)

hµµ,ν Ð→ h̃µµ,ν = hµµ,ν − 2εµ,µν . (4.229)

This means that

h̃µν,µ −
1

2
h̃µµ,ν = hµν,µ −

1

2
hµµ,ν − ◻εν . (4.230)

In other words, by applying gauge transformations (4.227), we can change hµν,µ − 1
2h

µ
µ,ν

by ◻εν . Since the εν are arbitrary (as long as they are small), we can use it to make
the above term vanish. To do this, first solve the equation ◻ν = hµν,µ − 1

2h
µ
µ,ν for εµ3,

and use that εµ in the gauge transformation (4.227). The resulting h̃µν then satisfies
h̃µν,µ − 1

2 h̃
µ
µ,ν = 0. In other words, without loss of generality, we can always find a gauge

transformation to make our field satisfy this condition, so we impose

hµν,µ −
1

2
hµµ,ν = 0. (4.231)

This is also called de Donder gauge, and is often used in general relativity. Using it,
Einstein’s equations (4.223) simply become

−Rµν = ◻hµν = 0. (4.232)

So every component of the metric tensor solves the massless wave equation on Minkowski
space. In other words, small perturbations in the Minkowski metric propagate with the
speed of light. These perturbations are called gravitational waves.

4.7.2 Gravitational waves

Let us solve (4.232). To this end, we first note that the equation is easily solved4 by

hµν(x) = eµν exp (ikλxλ) (4.233)

for a constant 4 × 4-matrix eµν and a wave vector kµ. Putting this into (4.232), we
immediately get

kλkλ = ηµνk
µkν = 0. (4.234)

3Which is possible, since this is just the wave equation with a source term, which can be solved e.g. by
using the Green’s function of the wave operator. See (...) for details.

4Since the equations (4.232) are linear, we can pretend that the hµν are allowed to be complex, and,
in the end, simply take the real part of our solution.
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So the wave vector k is light like, which confirm that the wave propagates at the speed
of light. The matrix eµν is not arbitrary, however, since we have assumed the de Donder
gauge condition (4.231). This condition, using (4.233) translates to

kµe
µ
ν − kνe

µ
µ = 0. (4.235)

We assume that the wave travels in 3-direction, so

kµ =
⎛
⎜⎜⎜
⎝

ω/c
0
0
−k

⎞
⎟⎟⎟
⎠
, k = ω

c
(4.236)

For the four different values of ν = 0,1,2,3, the equation for eµν are then

2(e00 + e30) = e00 − e11 − e22 − e33 (4.237)

2(e01 + e31) = 0 (4.238)

2(e02 + e32) = 0 (4.239)

2(e03 + e33) = −e00 + e11 + e22 + e33. (4.240)

Since hµν is symmetric, so is eµν . Subtracting (4.240) from (4.237) leads to

e11 = −e22, (4.241)

while the sum of both equations results in

e30 = e00 + e33

2
. (4.242)

From this we can see that there are, in fact not 10 independent components in the matrix
eµν , but the do Donder gauge reduces that to six independent components, which can
e.g. be taken to be e00, e11, e33, e12, e13, and e23.

However, we are not done at this point: Although we have used the gauge transfor-
mations (4.227) to bring the metric into a specific form, i.e. one that satisfies (4.231),
there is still some residular gauge symmetry let. One can see this by considering the
gauge-fixing procedure described above, and note that the equation

◻εµ = hµν,µ −
1

2
hµµ,ν (4.243)

does not uniquely determine εµ. In particular, we can add another solution to Boxεµ = 0,
since this leaves (4.231) invariant.

Let us investigate how such a gauge transformation would change eµν : The equation
◻eµ = 0 can be solved by

εµ(x) = δµ exp (ilλlλ) (4.244)
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for some light-like lµ. We choose lµ = kµ, and put this and (4.233) into (4.227), and we
see that this leads to

eµν Ð→ ẽµν = eµν + ikµδν + ikνδµ. (4.245)

Since k is of the form (4.236), we get

ẽ00 = e00 + 2ikδ0

ẽ11 = e11

ẽ33 = e33 − 2ikδ3

ẽ12 = e12

ẽ13 = e13 + ikδ1

ẽ23 = e23 − ikδ2

Since the δµ are arbitrary, we can chose them so that the only non-zero components
are e12 = e21 and e11 = −e22. These are also denoted e× and e+, and are called the two
polarisations of the gravitational wave. With the notation

h+ =
⎛
⎜⎜⎜
⎝

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

⎞
⎟⎟⎟
⎠
, h× =

⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠

(4.246)

one can write this (in a slightly non-covariant form) as

hµν(x) = (e+h+ + e×h×) exp (ikλxλ) + c.c. (4.247)

4.7.3 Polarisations of gravitational waves

After solving the linearised Einstein equationsm we have seen that the solution space
contains two massless degrees of freedom per mode k⃗. Let us gain an intuition of the
effect of these metrics (4.247). First we note that this metric leads to the Christoffel
symbols

Γ0
00 = 0 = Γi00. (4.248)

There are other, non-vanishing Christoffel symbols, but these two are enough for us to
show that the worldl ines

xµ(s) =
⎛
⎜⎜⎜
⎝

s
x1

x2

x3

⎞
⎟⎟⎟
⎠

(4.249)
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for constant x1, x2, x3 are geodesics. This is remarkable, since it means that particles
at rest stay at rest, as soon as a gravitational wave passes through them. Of course, the
notion of being at rest is misleading here, since it is only in the Minkowski coordinate
system that they appear as being at rest. In general, it does not make any sense to ask
whether a gravitational wave moves particles or not.

In fact, one can show that, although it appears that all particles are at rest, the
distance of nearby particles changes over time. To see this, we consider a number of
dust particles, arranged at rest in the (x, y)-plane, on a circle around the origin of
length L. Each of the particles can be identified by an angle φ, i.e. if it has the spatial
coordinates x1 = L cosφ, x2 = L sinφ. In the space-time described by the metric (4.247),
we consider the distance of that point to the center of the circle.

To first order, one can show that straight lines in the (x, y)-plane are indeed (reparametri-
sations of) geodesics. Hence, the distance of the dust particle at φ is equal to (minus)
the length of the straight line from the center of the circle to the particle, i.e. the curve

x0(λ) = ct, x1(λ) = λL cosφ, x2(λ) = λL sinφ, x3(λ) = 0. (4.250)

The length of the curve depends on t, and is given by

`t = ∫
1

0
dλ

√
−(ηµν + hµν)ẋµẋν .

This can be easily computed, since the integrand is, in fact, independent of λ. One has,
to first order,

`2
t = L2(1 + 2(e× sin(2φ) − e+ cos(2φ)) cos(ωt)). (4.251)

The two cases e× = 0, and e+ = 0 can be considered separately. The two describe points
lying on an ellipse, with small eccentricity, which is either stretching and contracting
over time t, in the x1-direction, or with angle π/4 relative to it.

So the gravitational wave does not ”move” points, but compresses/stretches space
between them in such a way that the distance between them changes over time.

If one solves the Einstein equations with matter, one can show that rotating bod-
ies indeed generate gravitational waves, which radiate away. One can show that the
quadrupole moment of the matter distribution is the first non-vanishing moment which
contributes to this radiation. This means that there are no scalar and dipole moments
of the radiation. The most important example of a stellar phenomenon generating grav-
itational waves consists of two massive bodies orbiting one another.

While gravitational waves have, for a long time, been only a theoretical possibility,
there are several ways to directly or indirectly measure gravitational radiation.

� The most famous indirect method to confirm the existence of gravitational waves
is the PSR1913+16. This is the name of a binary star system, in which a pulsar
(quickly rotating neutron star) and another neutron star orbit around each other,
once every 7.75 hours. Since they are quite heavy, they generate gravitational
waves, which radiate energy away from the binary system, which leads to a slow
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Figure 4.26: The two polarisations of a gravitational wave. Depicted are the collection
of dust particles in Cartesian coordinates y1, y2, for different t. The circle
is continuously deformed into an oscillating ellipse.

increase in their rotation period. Since that can be measured quite accurately (a
pulsar sends out very regular bursts of energy), the increase in the rotation time
has been measured, and confirmed the prediction fro GR to an astonishing degree.

The involved scientists Hulse and Taylor received the Nobel prize in physics 1993
for this discovery.

� More recent is, however, the direct verification of gravitational waves. These have
been measured using large interferometers, with an arm lenth of several kilometres.
The first confirmed detection of two colliding black holes, (rather, the gravitational
wave signal emitted by them) was in September 2015, almost exactly a century
after the publication of Einstein’s theory of general relativity. Apart form technical
difficulties, the detection relied on very accurate numerical simulations, which
predicted the exact wave form of such an event. In 2017, Wise, Barish and Thorne
received the Nobel Prize in Physics for their research related to this discovery.
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Figure 4.27: Measurement and theoretical prediction of orbital decline of the Pulsar
PSR1913+16.
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Figure 4.28: Numerical simulation of colliding black holes, and emitted gravitational
radiation.
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Figure 4.29: Detection of the gravitational wave signal GW150914, of two black holes
colliding. The two signals were measured independently 7ms apart, in two
stations roughly 3000km from one another.
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